

POLITECHNIKA KOSZALIŃSKA WYDZIAŁ MECHANICZNY CENTRUM NIEKONWENCJONALNYCH TECHNOLOGII HYDROSTRUMIENIOWYCH

ROZPRAWA DOKTORSKA

Wpływ warunków hydraulicznych i geometrii samowzbudnej głowicy pulsacyjnej na charakterystykę wytwarzanej strugi wodnej

Monika Szada-Borzyszkowska

Promotor: prof. dr hab. inż. Józef Borkowski

Koszalin, 2019

Spis treści

Wy	kaz w	ażniejszych oznaczeń	6		
1.	WST	STĘP			
2.	ANA	LIZA STANU ZAGADNIENIA	11		
	2.1.	1. Stan rozwoju badań dotyczących pulsującej strugi cieczy			
	2.2.	2. Teoretyczny opis turbulentnego przepływu cieczy			
	2.3.	Wysokociśnieniowa struga wodna	16		
		2.3.1. Wysokociśnieniowa struga wodna o strukturze ciągłej	16		
		2.3.2. Pulsująca struga wodna	18		
	2.4.	Metody generowania impulsów w strudze cieczy	21		
		2.4.1. Generowanie pulsacji strugi wodnej o częstotliwości ultradźwiękowej	21		
		2.4.2. Teoretyczne podstawy udarowego wytwarzania impulsów hydrodynamicznych w strudze wodnej	23		
		2.4.3. Charakterystyka funkcjonowania głowicy pulsacyjnej	31		
	2.5.	Wnioski	35		
3.	CEL	EL, HIPOTEZY I ZAKRES PRACY			
	3.1.	. Cel pracy			
	3.2.	Hipotezy pracy	40		
	3.3.	3.3. Zakres pracy			
4.	TEO	RETYCZNA ANALIZA PRZEPŁYWÓW TURBULENTNYCH I			
	PULSACYJNYCH42				
	4.1.	Teoretyczne podstawy przepływów turbulentnych	42		
		4.1.1. Równania Reynoldsa dla przepływów turbulentnych	43		
		4.1.2. Metoda bezpośredniej symulacji obliczeniowej (DNS) przepływów turbulentnych	44		
	4.2.	Analiza funkcjonowania zastosowanej głowicy pulsacyjnej45			
	4.3.	Ogólny model matematyczny przepływów pulsacyjnych46			
	4.4.	Metodyka badań komputerowych	48		
		4.4.1. Ustawienia programu do obliczeń symulacyjnych	49		
		4.4.2. Numeryczne badania wstępne	50		

		4.4.3.	Model badań numerycznych	51	
		4.4.4.	Wybór planu badań	53	
	4.5.	4.5. Wnioski			
5.	BAD	DANIA NUMERYCZNE			
	5.1.	Badania podstawowe modelu samowzbudnej głowicy pulsacyjnej			
		5.1.1.	Badania wervfikacvine wcześniejszych dokonań	59	
		5.1.2.	Symulacvine badania wpływu usytuowania otworów bocznych	62	
		5.1.3.	Symulacyjne badania oddziaływania geometrii komory wirowej na prędkość strugi wodnej wypływającej z samowzbudnej głowicy pulsacyjnej	73	
		5.1.4.	Wnioski	81	
	5.2.	Badan	ia modelu głowicy pulsacyjnej przeznaczonej do drążenia otworów	85	
		5.2.1.	Oddziaływanie kształtu wlotowej i wylotowej części komory wirowej	85	
		5.2.2.	Rola wysokości dyszy wylotowej	90	
		5.2.3.	Wpływ średnicy komory wirowej	91	
		5.2.4.	Oddziaływanie wysokości komory wirowej	93	
		5.2.5.	Oddziaływanie wysokości dyszy wlotowej	95	
		5.2.6.	Wpływ kąta natarcia komory wirowej	97	
		5.2.7.	Oddziaływanie średnicy dyszy wylotowej	99	
		5.2.8.	Oddziaływanie średnicy otworów bocznych	100	
		5.2.9.	Wpływ średnicy dyszy wlotowej	102	
		5.2.10	 Charakterystyka modelu głowicy pulsacyjnej przeznaczonej do drążenia otworów 	104	
		5.2.11	. Wnioski	105	
	5.3.	Badan	ia modelu głowicy pulsacyjnej przeznaczonej do obróbki powierzchni	107	
		5.3.1.	Podstawowe cechy modeli samowzbudnej głowicy pulsacyjnej	107	
		5.3.2.	Badania wpływu ilości otworów bocznych samowzbudnej głowicy pulsacyjnej	110	
		5.3.3.	Wpływ geometrii samowzbudnej głowicy pulsacyjnej na prędkość strugi wodnej	120	
		5.3.4.	Wpływ geometrii samowzbudnej głowicy pulsacyjnej na zasysanie czynnika zewnętrznego przez otwory boczne	133	
		5.3.5.	Wpływ smukłości dyszy wlotowej na prędkość strugi wodnej	142	
		5.3.6.	Wpływ średnicy otworów bocznych na prędkość strugi wodnej	143	
		5.3.7.	Wpływ kształtu komory wirowej na prędkość strugi wodnej	145	
		5.3.8.	Charakterystyka modelu samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni	147	

		5.3.9. Wnioski	150	
6.	MET	ETODYKA BADAŃ EKSPERYMENTALNYCH		
6.1. Stanowiska badawcze			156	
		6.1.1. Urządzenia do wytwarzania wysokociśnieniowej strugi wodnej	156	
		6.1.2. Stanowisko badawcze dla głowic pracujących w ośrodku powietrznym	158	
		6.1.3. Stanowisko badawcze dla głowic pracujących w ośrodku wodnym	159	
		6.1.4. Aparatura i przyrządy pomiarowe	161	
	6.2.	Metody pomiarowe	163	
		6.2.1. Metoda oceny kształtu strugi pulsacyjnej	163	
		6.2.2. Sposoby pomiaru częstości impulsów wodnych	165	
		6.2.3. Sposób oceny erozyjności strugi impulsowej	166	
	6.3.	Samowzbudne głowice pulsacyjne i materiały obrabiane używane w badaniach.	168	
		6.3.1. Charakterystyka samowzbudnych głowic pulsacyjnych	168	
		6.3.2. Charakterystyka materiałów obrabianych	172	
	6.4.	Metodyka planowania doświadczeń	173	
		6.4.1. Model badań	173	
		6.4.2. Wybór planu eksperymentu	174	
		6.4.3. Ustalenie liczebności pomiarów paralelnych	176	
	6.5.	Wnioski	180	
7.	BAD	DANIA EKSPERYMENTALNE	182	
	7.1.	Badania charakterystyki strugi wodnej wytwarzanej w samowzbudnej głowicy		
		pulsacyjnej opracowanej według dokonań zagranicznych		
		7.1.1. Badania pulsacji strugi wodnej przy użyciu piezoelektrycznego czujnika siły	182	
		7.1.2. Badania struktury pulsującej strugi wodnej przy użyciu ultraszybkiej kamery TV	183	
		7.1.3. Wnioski	184	
	7.2.	Badania charakterystyki strugi wodnej wytwarzanej w samowzbudnej głowicy		
		pulsacyjnej przeznaczonej do drążenia otworów		
		7.2.1. Kształtowanie się impulsów wodnych rejestrowanych ultraszybką kamerą TV	185	
		7.2.2. Częstotliwość występowania impulsów wodnych rejestrowanych ultraszybką kamerą TV	190	
		7.2.3. Częstotliwość występowania impulsów wodnych w pulsującej strudze wodnej, rejestrowana piezoelektrycznym czujnikiem siły	192	

		7.2.4.	Przydatność metod pomiaru częstotliwości występowania impulsów hydrodynamicznych w pulsującej strudze wodnej198		
		7.2.5.	Erozyjność pulsującej strugi wodnej		
		7.2.6.	Wnioski		
	7.3.	B. Badania charakterystyki strugi wodnej wytwarzanej w samowzbudnej głowicy			
		pulsac	yjnej przeznaczonej do obróbki powierzchni		
		7.3.1.	Kształtowanie się impulsów wodnych rejestrowanych ultraszybką kamerą TV		
		7.3.2.	Częstotliwość występowania impulsów hydrodynamicznych w środowisku wodnym, rejestrowana ultraszybką kamerą TV 208		
		7.3.3.	Częstotliwość występowania impulsów hydrodynamicznych w pulsującej strudze wodnej, rejestrowana piezoelektrycznym czujnikiem siły		
		7.3.4.	Ocena przydatności metod pomiaru częstotliwości występowania impulsów hydrodynamicznych w pulsującej strudze wodnej		
		7.3.5.	Erozyjność pulsującej strugi wodnej		
		7.3.6.	Wnioski		
8.	POD	SUMO	WANIE		
9.	BIBI	LIOGR	AFIA		

Wykaz ważniejszych oznaczeń

C_D	-	współczynnik sprawności wypływu wody,
d	[mm]	średnica dyszy/tłoka,
f	[Hz]	częstotliwość,
h	[mm]	wysokość słupa cieczy,
k		współczynnik strat ciśnienia,
l_i	[mm]	odległość kształtowania się impulsu od wylotu z dyszy,
m	[kg]	masa wody,
p	[Pa]	nominalne ciśnienie wody,
p_o	[Pa]	ciśnienie odniesienia,
p(t)	[Pa]	chwilowe ciśnienie w komorze wodnej,
t	[s]	czas przepływu wody,
υ	[m/s]	prędkość wypływu wody z dyszy/prędkość ruchu posuwisto-
		zwrotnego tłoka,
\mathcal{U}_{ko}	[m/s]	prędkość końcowa na wylocie z głowicy,
\mathcal{U}_{max}	[m/s]	prędkość maksymalna na wlocie głowicy,
Uśr	[m/s]	prędkość średnia na wylocie z głowicy,
$\bar{\upsilon}$	[m/s]	prędkość uśredniona w określonym przedziale czasu,
υ'	[m/s]	prędkość ruchu pulsacyjnego,
$\dot{x}(t)$	[m/s]	chwilowa prędkość tłoka,
$\ddot{x}(t)$	[m/s ²]	chwilowe przyspieszenie tłoka,
З	$[m^2/s^3]$	współczynnik dyssypacji lepkiej energii,
μ	[Pa·s]	dynamiczny współczynnik lepkości,
v	[m ² /s]	współczynnik lepkości kinematycznej wody,
\mathcal{V}_t	$[m^2/s]$	kinematyczna lepkość wirowa/turbulentna,
ρ	$[kg/m^3]$	gęstość płynu/wody,
$ ho_o$	$[kg/m^3]$	gęstość odniesienia,
$ ho_w$	[kg/m ³]	gęstość wody,
σ	[N/m ²]	kinematyczne naprężenia Reynoldsa $\sigma_{\rm T} = -\rho \overline{\upsilon_{\rm l} \upsilon_{\rm l}}$,
τ	[N/m ²]	tensor naprężeń,
$ au_T$	[N/m ²]	tensor naprężeń Reynoldsa $\tau_T=-\rho\overline{\upsilon_{1}\upsilon_{J}}$ / naprężenia turbulentne,

Α	[m ²]	powierzchnia przekroju cylindrycznej komory wodnej,
C_s	-	stała Samagorina (0,1),
C_K	-	stała Kármána (0,41),
C_r	-	stosunek względnej prędkości młota oraz tłoka bezpośrednio po i
		przed uderzeniem,
D	[mm]	średnica komory wirowej,
E_{wf}	[m ² /N]	ściśliwość wody przy ciśnieniu 2,96 GPa,
F	[m ²]	pole powierzchni prostopadłego przekroju dyszy,
F_t	[m ²]	pole przekroju tłoka,
F(t)	[N]	siła oporu wody wywierana na tłok,
K_w	[Pa]	moduł sprężystości objętościowej (moduł ściśliwości),
L	[m]	długość tłoka,
M_t	[kg]	masa tłoka,
Re_t	-	turbulentna liczba Reynoldsa oparta na makroskali turbulencji,
V	[m ³]	objętość komory.

1. WSTĘP

Postęp jaki osiągnięto w ciągu ostatnich dziesięcioleci w dziedzinie technologii strugi wodnej jest imponujący. Nadal jednak prowadzonych jest wiele badań, które mogłyby doprowadzić do znacznej poprawy jej wydajności. Od około 50 lat jednostki na całym świecie zajmują się zagadnieniem dotyczącym pulsującej strugi wodnej. Prowadzone są również badania nad nowymi technologiami takimi jak wytwarzanie mikro-kawitacji [52] czy też impulsowych przepływów strugi [18, 91]. Techniczne sposoby wytwarzania takich zjawisk oraz ich zastosowanie wiążą się z występowaniem gwałtownego efektu uderzeń wodnych podnoszących skuteczność erozyjną takiej strugi. Dzięki temu taka struga cieczy jest narzędziem o wysokim potencjale aplikacyjnym, który nie został jeszcze w pełni zbadany.

Mimo licznych prób naukowo-technicznych, podejmowanych w ośrodkach naukowych, to zagadnienie generowania strugi pulsacyjnej nie doczekało się rozwiązania technicznego. Teoretyczne analizy rozwoju generowania pulsacji w strugach wodnych można zaobserwować w pierwszych pracach Heymann'a [43] i Hung'a [48], które przedstawiają kumulację energii mechanicznej na powierzchni twardego materiału, występującej podczas hydrodynamicznego uderzenia z dużą częstotliwością bardzo szybko przemieszczających się kropel [48]. Taki efekt zwielokrotnienia uderzeń hydraulicznych sprawiał, że maksymalne ciśnienie strugi pulsującej nawet kilkukrotne przewyższało ciśnienie stagnacji strugi ciągłej, co w swoich eksperymentach potwierdzili Smith i Kinslow [92]. Oprócz wysokich maksymalnych wartości ciśnienia, efekt erozyjny pulsującej strugi wodnej został również poprawiny dzięki zwiększonej dynamice cyklicznych fal uderzeniowych występujących w obszarze kontaktu z materiałem.

Poważne postępy w wytwarzaniu pulsującej strugi wodnej wprowadził kanadyjski zespół prof. M.M. Vijay'a [97, 98], który zajmuje się tą tematyką od ponad 25 lat. Dotyczy to zwłaszcza generowania impulsów hydrodynamicznych wytwarzanych przy użyciu urządzenia segmentującego strugę wodną z ultradźwiękową częstotliwością. Prace nad dalszym rozwojem tej metody wytwarzania pulsującej strugi wodnej kontynuuje obecnie czeski zespół prof. J. Foldyny [32, 38]. Zastosowanie w tej metodzie dysz o strukturze rurowej do wywoływania fal w strumieniu jako pierwszy opisał E.B. Nebeker i S.E. Rodriguez [70, 71] oraz dalej rozwinął G. L.Chahine [18]. Niewiele natomiast z tych systemów znajduje obecnie zastosowanie praktyczne.

Badaniem strugi pulsacyjnej oraz jej zastosowaniem w technologii drążenia otworów w górnictwie naftowym zajmują się również chińczycy [46, 85], którzy do wytworzenia takiej strugi wykorzystują głowice pulsacyjne o odpowiednim kształcie komory wirowej. Funkcjonowanie takiej głowicy, nieposiadającej części ruchomych, stało się inspiracją do bliższego poznania mechanizmu wytwarzania impulsów hydrodynamicznych.

Dlatego ze względu na możliwość poznania i rozwoju technologicznych zastosowań wysokociśnieniowej strugi wodnej o okresowo zmiennej strukturze i dynamicznych właściwościach, generowanych w głowicy pulsacyjnej, podjęto realizację tej tematyki w postaci niniejszej rozprawy.

Rozpoczynając specjalizację naukową w tym kierunku przeprowadzono szereg symulacji komputerowych, sprawdzających oddziaływania parametrów geometrycznych głowicy i usytuowania otworów bocznych jej komory wirowej na rozkłady wektorów prędkości i ciśnienia wewnątrz takiej głowicy pulsacyjnej oraz na prędkość wypływającej z niej strugi wodnej. Pulsująca struga wodna wytwarzana w samowzbudnej głowicy pulsacyjnej, jako narzędzie erozyjne, jest czynnikiem decydującym o parametrach takiej obróbki oraz jej skuteczności. Ze względów technologicznych szczególnego znaczenia nabiera tu taka właściwość strugi wodnej, jak efektywność erozyjna.

Badania własne [12] przeprowadzone przy wykorzystaniu głowicy przeznaczonej do drążenia otworów, potwierdziły występowanie cyklicznych niejednorodności strugi wodnej na wylocie z głowicy oraz wzrost hydrodynamicznych impulsów ciśnienia w wytwarzanej strudze pulsacyjnej. Na podstawie tych badań stwierdzono, iż geometria samowzbudnej głowicy pulsacyjnej odgrywa ważną role w kreowaniu wysokociśnieniowej strugi pulsacyjnej. W poszukiwaniu skutecznego narzędzia do hydrostrumieniowej obróbki i czyszczenia powierzchni technicznych podjęto próbę opracowania modelu samowzbudnej głowicy pulsacyjnej. W tym celu wykonano badania własne [6], na podstawie których stwierdzono występowanie niejednorodności struktury strugi pulsacyjnej na wylocie z samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni.

Na podstawie tych badań stwierdzono, że odpowiedni dobór parametrów geometrycznych i hydraulicznych warunków pracy takiej głowicy pulsacyjnej wpływa na jakość generowanej w niej strugi wodnej. Pozytywne wyniki tych prób legły u podstaw decyzji o rozpoczęciu optymalizacji głowic pod kątem maksymalizacji prędkości wypływu pulsującej strugi wodnej na wylocie z głowic. Uwzględniając powyższe podjęto próbę optymalizacji parametrów geometrycznych, wykorzystując do tego celu oprogramowanie Solid Works FlowSimulation. O złożoności opracowywanego zagadnienia świadczy to, że dla

zoptymalizowania samowzbudnej głowicy pulsacyjnej przeznaczonej do drążenia otworów wykonano około 500 komputerowych symulacji wpływu wybranych parametrów 500 analogicznych geometrycznych, podobnie około operacji symulacyjnych przeprowadzono dla głowicy projektowanej do obróbki powierzchni. Do badań optymalizacyjnych obydwu modeli samowzbudnej głowicy pulsacyjnej, przeznaczonej: do drążenia otworów i do obróbki powierzchni wykorzystano plan pięciopoziomowy rotatabilny PS/DS-P:λ [77, 79].

Na podstawie komputerowych badań symulacyjnych zaprojektowano i wykonano dwa rozwiązania głowic: jedną do drążenia otworów a drugą do obróbki powierzchni, które wraz z głowicą wykonaną według projektu opracowanego w chińskim Instytucie Ropy Naftowej [85] przebadano eksperymentalnie. W badaniach tych zastosowano plan statyczny zdeterminowany monoselekcyjny wielokrotny PS/DS-M:M [78, 79], wykorzystywany w pracach badawczych dotyczących wysokociśnieniowych przepływów strugi wodnej [10, 21].

2. ANALIZA STANU ZAGADNIENIA

Analiza literaturowego stanu zagadnienia uwzględniająca chronologiczny przegląd ogólnego rozwoju badań dotyczących pulsującej strugi cieczy i teoretycznego opisu turbulentnego przepływu cieczy oraz problematykę wysokociśnieniowej strugi wodnej o strukturze ciągłej i pulsującej. Zaprezentowano w niej najistotniejsze zagadnienia i analizy metod generowania impulsów hydrodynamicznych w takiej strudze cieczy oraz a także kwestie zastosowania samowzbudnej głowicy pulsacyjnej.

2.1. Stan rozwoju badań dotyczących pulsującej strugi cieczy

Rozwój technologii wysokociśnieniowej strugi wodnej stosowany jest na świecie od ponad 50 lat. Obecnie prowadzi się intensywne badania nad nowymi technologiami, szczególnie wytwarzania mikro-kawitacji [14, 52] oraz impulsowych przepływów strugi [18, 40, 84, 102]. Dotyczy to zwłaszcza technicznych sposobów wytwarzania takich zjawisk i ich zastosowań ze względu na występowanie korzystnego efektu gwałtownych uderzeń wodnych zwielokrotniających efektywność erozyjną takiej strugi. Między innymi dzięki takim zjawiskom struga cieczy jest narzędziem o wysokim potencjale aplikacyjnym, który nie został jeszcze w pełni zbadany.

Doprowadziło to do stworzenia wysoce wyrafinowanych urządzeń wykorzystujących wysokoenergetyczny strumień wodny jako precyzyjne narzędzie do obróbki. Taka struga umożliwia przetwarzanie szerokiej gamy materiałów, od minerałów, metali i tworzyw sztucznych do miękkich tkanek biologicznych. Obecny wysoki poziom technologii został osiągnięty dzięki projektowaniu i produkcji pomp wysokociśnieniowych o ciśnieniu nominalnym rzędu 600 MPa [5, 9]. Efekt erodowania wysokociśnieniową strugą wodną o charakterze ciągłym okazał się jednak niewystarczająco wydajny do cięcia większości twardych materiałów, dlatego od ponad 35lat do takiej strugi wodnej różnymi sposobami wprowadza się domieszki materiałów ściernych.

O technicznej złożoności możliwości realizacji tych zagadnień najlepiej może świadczyć przykład stale nie przesądzonej kwestii zastosowania pulsacyjnej strugi wodnej. Prace nad generowaniem pulsacji w tego rodzaju strugach wodnych rozpoczęto około 50 lat temu [16, 43] wykazując dwukrotny wzrost efektywności erozyjnej takiej strugi. Równoczesne prowadzenie teoretycznych analiz obserwowanych zjawisk [16, 107] i prac eksperymentalno-konstrukcyjnych [30, 74] początkowo owocowały one wyraźnym postępem. Świadczą o tym już pierwsze prace Heymann'a [43] i Huang'a [48] powstałe pod koniec lat 60-tych XX wieku, które dotyczą wysokiej kumulacji energii mechanicznej na powierzchni twardego materiału, występującej podczas hydraulicznego uderzania z dużą częstotliwością bardzo szybko przemieszczających się kropel [53]. Analizując efekty takich uderzeń ustalono, że maksymalne ciśnienie strugi pulsacyjnej kilkakrotnie przekracza ciśnienie stagnacji strugi ciągłej, co zostało też potwierdzone eksperymentami przeprowadzonymi przez Smitha i Kinslow'a [92]. Oprócz wysokich maksymalnych wartości ciśnienia, efekt erozyjny pulsacyjnej strugi został również poprawiony dzięki zwiększonej dynamice okresowych fal uderzeniowych występujących w obszarze kontaktu z materiałem obrabianym.

Mimo bardzo licznych prób naukowo-technicznych, podejmowanych niemal we wszystkich ośrodkach naukowych świata, to kluczowe zagadnienie nie doczekało się jednak ostatecznego rozwiązania technicznego. Największe sukcesy w tym względzie powstały w kanadyjskim zespole profesora Vijay'a [2, 100, 101], który nad tym zagadnieniem pracuje od ponad ćwierćwiecza. Spore osiągnięcia ma również czeski zespól profesora Foldyny [3, 32], który zajmuje się badaniem pulsującej strugi wodnej wykorzystując do tego ultradźwiękową częstotliwość przetwarzania strugi wodnej. Kolejnym zespołem, na który należy zwrócić uwagę są Chińczycy, miedzy innymi Wang Rui-he, DuYukun, Ni Hongjian [45, 106], którzy zajmują się badaniami właściwości pulsującej strugi wodnej oraz jej zastosowaniem do drążenia głębokich otworów.

Od dziewięciu lat prowadzone są również intensywne badania dotyczące wytwarzania pulsującej strugi wodnej i jej zastosowań w zespole profesora Borkowskiego [6, 7, 12] w Centrum Niekonwencjonalnych Technologii Hydrostrumieniowych Politechniki Koszalińskiej. Rozliczne badania realizowane z wykorzystaniem różnych technik generowania pulsującej strugi wodnej a także szerokie możliwości rozwojowe opracowywanych technologii były inspiracją dla dogłębniejszego badania właściwości i zastosowań strugi pulsacyjnej wytwarzanej w głowicy o specjalnej konstrukcji.

2.2. Teoretyczny opis turbulentnego przepływu cieczy

W technice przepływów płynów rzeczywistych rozważa się dwie formy przepływów: laminarne oraz turbulentne. W analizach tych, nieodzownym kryterium stanowi liczba Reynoldsa, której wartość krytyczna pozwala określić stan krytyczny przepływu oddzielający obszar statecznego przepływu laminarnego od przepływu turbulentnego [112]. Utrata stateczności przepływu laminarnego i przejścia w formę przepływu turbulentnego następuje w skutek nadmiernego wzrostu sił bezwładności nad siłami lepkości, działających na poruszające się elementy płynu [1]. W poruszającym się płynie pojawiają się przestrzenne wiry o różnej skali długości (wiry małe, średnie i wiry duże), co skutkuje powstaniem niestacjonarnych, małych odchyłek pól prędkości i ciśnień od wartości średnich i w konsekwencji przepływ staje się przestrzenny i chaotyczny [13].

Przepływy burzliwe (turbulentne) są skomplikowanym zjawiskiem, które można przedstawić jako dwa odrębne działy mechaniki płynów. Najbardziej rozpowszechnione to zjawisko fizyczne, towarzyszące każdemu przepływowi cieczy oraz gazów. Drugie oblicze turbulencji to termin stosowany do wysoce wyspecjalizowanego działu nauki, który poświęcony jest badaniu stanów i mechanizmów rządzących ruchem turbulentnym.

Do cech przepływu turbulentnego należą:

- losowa zmienność w czasie, jak i w przestrzeni wszystkich charakteryzujących ją wielkości fizycznych,
- istnienie ciągłego spektrum struktur wirowych o zmieniających się rozmiarach,
- trójwymiarowy charakter turbulencji,
- drastyczna intensyfikacja wszystkich zachodzących w przepływie procesów dyfuzji, które wielokrotnie przewyższają efektywność dyfuzji molekularnej.

Zagadnienie turbulencji jest bardzo złożone a jej zdefiniowanie w postaci matematycznej stwarza wiele trudności. Najprostsze bowiem przepływy płynów opisywane są układem nieliniowych cząstkowych równań różniczkowych w 4-ro wymiarowej czasoprzestrzeni. Ważną rolę w badaniu turbulencji odgrywają zatem badania laboratoryjne oraz badania eksperymentalne [31]. Ruch burzliwy o dużej wartości liczby Reynoldsa charakteryzuje się tym, że energia w tym ruchu jest większa niż ciepło wytworzone na skutek tarcia. Przepływ płynu traci stateczności, przybiera różne formy rozprzestrzeniając zaburzenia przepływu, co jednocześnie prowadzi do nowej struktury zwanej turbulentną.

Ogromną rolę w tym ruchu odgrywają nieregularne zaburzenia oraz pulsacje, które powodują, że ruch ten jest zmienny w czasie [64]. Do opisu przepływów najczęściej stosowane są równania Naviera-Stokesa. Wykorzystanie ich przy przepływach turbulentnych jest utrudnione szczególnie podczas opisu warunków początkowych i brzegowych. Poszukiwane są zatem inne rozwiązania opisu takiego rodzaju przepływu. Często stosowane są uśrednienia prędkości v, przyjmując jako sumę prędkości uśrednionej \bar{v} w czasie $t_2 - t_1$ i prędkość ruchu pulsacyjnego (fluktuacji) v'opisane następującymi zależnościami:

$$v = \bar{v} + v', \tag{2.1}$$

$$\bar{v} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} v dt, \qquad (2.2)$$

w których: v jest prędkością, \bar{v} - prędkość uśredniona w przedziale czasu $t_2 - t_1$, v'- prędkość ruchu pulsacyjnego.

Na podstawie wzoru (2.1) można także określić uśrednione wartości prędkości decydujące o charakterze ruchu turbulentnego. Z kolei uśrednione po czasie wartości przepływu turbulentnego, które zależą od prędkości również uśrednionych po czasie, opisane zgodnie z zależnością (2.2) są równe zero:

$$\overline{v'} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} v' \, dt = 0.$$
(2.3)

Gdy prędkości uśrednione \bar{v} są niezmienne w czasie to mamy do czynienia z przepływem ustalonym. W przepływach nieustalonych lokalna pochodna prędkości uśrednionej $\frac{\partial \bar{v}}{\partial t}$ jest różna od zera. Na rys. 2.1 zaprezentowano charakter przepływu przy zastosowaniu uśrednionych prędkości.

Rys. 2.1. Przepływ turbulentny: a) ustalony, oraz b) nieustalony

Przepływ turbulentny charakteryzuje się tym, że występują w nim naprężenia styczne τ wywołane lepkością newtonowską (naprężenia lepkie - τ_L) i ruchem pulsacyjnym (naprężenia turbulentne - τ_T), które podczas takiego ruchu są znacznie wyższe niż w ruchu laminarnym płynu [69, 94].

Do opisu ruchu turbulentnego wykorzystuje się następujące równania Naviera-Stokesa:

$$\frac{dv_x}{dt} = X - \frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} \right) + \frac{\nu}{3} \frac{\partial}{\partial x} \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} \right) \\
\frac{dv_y}{dt} = Y - \frac{1}{\rho} \frac{\partial p}{\partial y} + \nu \left(\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2} \right) + \frac{\nu}{3} \frac{\partial}{\partial y} \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} \right) \\
\frac{dv_z}{dt} = Z - \frac{1}{\rho} \frac{\partial p}{\partial z} + \nu \left(\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2} \right) + \frac{\nu}{3} \frac{\partial}{\partial z} \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} \right) \right\}.$$
(2.4)

Następnie wykonuje się uśrednianie, zgodnie z zależnością (2.1), dla płynu nieściśliwego (ρ=const) uzyskując poniższe zapisy równań:

$$\frac{d\overline{v}_{x}}{dt} = X - \frac{1}{\rho} \frac{\partial \overline{p}}{\partial x} + \nu \nabla^{2} \overline{v}_{x} - \frac{\partial}{\partial x} \overline{v_{x}'^{2}} - \frac{\partial}{\partial x} \overline{v_{x}'v_{y}'} - \frac{\partial}{\partial x} \overline{v_{x}'v_{z}'} \\
\frac{d\overline{v}_{y}}{dt} = Y - \frac{1}{\rho} \frac{\partial \overline{p}}{\partial y} + \nu \nabla^{2} \overline{v}_{y} - \frac{\partial}{\partial x} \overline{v_{y}'v_{x}'} - \frac{\partial}{\partial y} \overline{v_{y}'^{2}} - \frac{\partial}{\partial x} \overline{v_{y}'v_{z}'} \\
\frac{d\overline{v}_{z}}{dt} = Z - \frac{1}{\rho} \frac{\partial \overline{p}}{\partial z} + \nu \nabla^{2} \overline{v}_{z} - \frac{\partial}{\partial x} \overline{v_{z}'v_{x}'} - \frac{\partial}{\partial y} \overline{v_{z}'v_{y}'} - \frac{\partial}{\partial z} \overline{v_{z}'^{2}} \\
\end{cases}.$$
(2.5)

Gdy uśrednione wielkości pulsacyjne są równe zero a pary iloczynu tych wielkości mogą być różne od zera, wówczas układy równań (2.5) stają się równaniami Reynoldsa. Przy podstawieniu $\mu = \nu \rho = const$, wyrazy $\nu \nabla^2 \overline{v}_x$ równania te przyjmują następującą postać:

$$v \nabla^{2} \overline{v}_{x} = \frac{1}{\rho} \left[\frac{\partial}{\partial x} \left(\mu \frac{\partial \overline{v}_{x}}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial \overline{v}_{x}}{\partial y} \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial \overline{v}_{x}}{\partial z} \right) \right]$$

$$v \nabla^{2} \overline{v}_{y} = \frac{1}{\rho} \left[\frac{\partial}{\partial x} \left(\mu \frac{\partial \overline{v}_{y}}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial \overline{v}_{y}}{\partial y} \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial \overline{v}_{y}}{\partial z} \right) \right]$$

$$v \nabla^{2} \overline{v}_{z} = \frac{1}{\rho} \left[\frac{\partial}{\partial x} \left(\mu \frac{\partial \overline{v}_{z}}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial \overline{v}_{z}}{\partial y} \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial \overline{v}_{z}}{\partial z} \right) \right]$$

$$(2.6)$$

Należy przy tym zauważyć, że człon $\nu \nabla^2 \overline{v}_i$ zaprezentowany w równaniu Reynoldsa (2.6), opisuje wpływ naprężeń lepkich $\mu(\partial v_i/\partial_j)$ w postaci poniższych zależności:

$$\frac{1}{\rho} \left[\frac{\partial}{\partial x} \left(-\rho \overline{v_x'}^2 \right) + \frac{\partial}{\partial y} \left(-\rho \overline{v_x'} \overline{v_y'} \right) + \frac{\partial}{\partial z} \left(-\rho \overline{v_x'} \overline{v_z'} \right) \right] \\ \frac{1}{\rho} \left[\frac{\partial}{\partial y} \left(-\rho \overline{v_y'}^2 \right) + \frac{\partial}{\partial z} \left(-\rho \overline{v_y'} \overline{v_z'} \right) + \frac{\partial}{\partial x} \left(-\rho \overline{v_y'} \overline{v_y'} \right) \right] \\ \frac{1}{\rho} \left[\frac{\partial}{\partial z} \left(-\rho \overline{v_z'}^2 \right) + \frac{\partial}{\partial x} \left(-\rho \overline{v_z'} \overline{v_x'} \right) + \frac{\partial}{\partial y} \left(-\rho \overline{v_z'} \overline{v_y'} \right) \right] \right].$$
(2.7)

Ostatnie wyrazy powyższego układu trzech równań (2.7) wyrażają wpływ naprężeń turbulentnych τ_T opisanych wzorem:

$$-\rho \overline{v_i v_j} = \tau_{\mathrm{T}}.$$
 (2.8)

Dzięki temu naprężenia te można zapisać jako tensor dziewięciu składowych naprężeń turbulentnych, zwanych naprężeniami Reynoldsa:

$$\tau_{ij} = \begin{bmatrix} -\rho \overline{v_x'^2} & -\rho \overline{v_x' v_y'} & -\rho \overline{v_x' v_z'} \\ -\rho \overline{v_y' v_x'} & -\rho \overline{v_y'^2} & -\rho \overline{v_y' v_z'} \\ -\rho \overline{v_z' v_x'} & -\rho \overline{v_z' v_y'} & -\rho \overline{v_z'^2} \end{bmatrix}.$$
(2.9)

Tensor dziewięciu składowych, przedstawiony w równaniach (2.9) jest tensorem symetrycznym o sześciu niezależnych składowych podanych w następującym wyrażeniu:

$$-\rho \overline{v_i v_j} = -\rho \overline{v_j v_i}.$$
(2.10)

Zakładając, że istnieje związek pomiędzy naprężeniami turbulentnymi a prędkością uśrednioną \bar{v} , to parametrem charakterystycznym dla tego związku jest współczynnik

lepkości turbulentnej Boussinesqa. Wówczas składowe naprężeń turbulentnych τ_T opisywane są zależnością:

$$\frac{\tau_T}{\rho} = \nu_T \left(\frac{\partial \overline{v}_i}{\partial_j} + \frac{\partial \overline{v}_j}{\partial_i} \right), \tag{2.11}$$

w której v_T jest współczynnikiem lepkości turbulentnej.

Wyrażenie $\left(\frac{\partial \overline{v}_i}{\partial_j} + \frac{\partial \overline{v}_j}{\partial_i}\right)$ opisuje prędkość deformacji ruchu uśrednionego. Obszar prędkości turbulentnych charakteryzuje współczynnik lepkości v_T , który nie jest właściwością fizyczną płynu. Przepływu turbulentnego nie można jednoznacznie opisać ze względu na niewiadome ($\overline{v}_x, \overline{v}_y, \overline{v}_z, \overline{p}, \tau_{ij}$), występujące w równaniu Reynoldsa (2.5) i równaniu ciągłości (2.4) oraz warunki początkowe i brzegowe. Trzeba więc ustalić dodatkowe kryteria określające składowe naprężeń τ_T i stworzyć odpowiednie modele turbulencji [31, 64, 80].

Przepływy turbulentne to zjawiska, w których występują chaotyczne fluktuacje takich parametrów hydrodynamicznych i termodynamicznych, jak: ciśnienie, prędkość, temperatura, gęstość. Intensywność procesów turbulencji przepływu wynika ze złożonego transportu ruchu o różnej skali energii [51]. W przepływach turbulentnych wykorzystuje się koncepcje lepkości turbulentnej, która opiera się w dużej mierze na hipotezie Boussinesq'a, omawiającej relacje między składowymi naprężenia turbulentnego (τ_T) a składowymi prędkości uśrednionego wektora prędkości \bar{v} [31, 54].

Trudno jest jednoznacznie opisać przepływ turbulentny szczególnie przy zastosowaniu wysokich ciśnień roboczych, dlatego do opisania tego zjawiska zwykle niezbędne jest wykonanie szeregu założeń upraszczających.

2.3. Wysokociśnieniowa struga wodna

Rozwiązania dotyczące teoretycznych i doświadczalnych podstaw obróbki powierzchni wysokociśnieniową strugą ciągłą oraz pulsacyjną wymaga znajomości aktualnej wiedzy literaturowej tych zagadnień. Istotna jest również wiedza z zakresu budowy strugi wodnej i skutków przepływu strugi, a zwłaszcza jej rozpraszania. Scharakteryzowano tu również zagadnienia związane z opisem wysokociśnieniowej ciągłej i pulsacyjnej strugi wodnej.

2.3.1. Wysokociśnieniowa struga wodna o strukturze ciągłej

O właściwościach wysokociśnieniowego strumienia wodnego decydują sposób i warunki kształtowania strugi oraz jej cechy. Zasadniczym zadaniem strugi wodnej do obróbki różnych materiałów jest uzyskanie na wyjściu z dyszy strugi o właściwościach hydrodynamicznych, zapewniającą efektywność procesu obróbkowego [5, 19]. Efektywność procesu obróbkowego oceniana jest na podstawie koherentności strugi (właściwości hydrodynamicznych strugi) [30]. Pojecie koherentności należy rozumieć jako zdolność strugi wodnej do nierozpraszania się podczas ruchu i zachowania swojego potencjału energetycznego [73, 88, 90, 110].

Wysokociśnieniowa struga wodna przy wylocie z dyszy trafia na powietrze - ośrodek o gęstości około 800 razy mniejszy od wody. Pod działaniem otaczającego ją ośrodka oraz działania turbulentnych pulsacji, [65, 90] wymiany masy i energii [50] struga ulega nieznacznemu rozszerzeniu, tracąc swój pierwotny kształt generowany średnicą dyszy. Struga ulega napowietrzeniu, zwane aeracją, tracąc przy tym swój pierwotny kształt [74]. Wskutek tego wraz z odległością od dyszy tworzy się rozszerzający stożek [110]. W początkowej strefie wysokociśnieniowej strugi występuje zwarty rdzeń [11], który przyjmuje stałą prędkość ruchu i ciśnienie spiętrzenia i stopniowo zanika w strefie przejściowej przedstawionej na rys. 2.2.

Rys. 2.2. Struktura wysokociśnieniowej strugi wodnej [110] (d - średnica dyszy; l_p - teoretyczna długość rdzenia; l_c - rzeczywista długość rdzenia; l_b - długość strugi zwartej; l_r - całkowita długość strugi)

Wszystkie etapy rozpadu strugi wodnej pociągają za sobą obniżenie prędkości strugi, która jest funkcją ciśnienia według zmodyfikowanej zależności Bernoulli'ego:

$$v = c_D \sqrt{\frac{2p}{\rho}}, \qquad (2.12)$$

w której *c*^{*D*} jest współczynnikiem wypływu wody [68].

Charakter rozkładu prędkości wysokociśnieniowej strugi wodnej opisano w różnych

badaniach [81, 87, 89]. Przykład zmian prędkości wysokociśnieniowej strugi przedstawiono na rys. 2.3.

Rys. 2.3. Rozkład prędkości wysokociśnieniowej strugi wodnej [11]

Szczególnie duży wzrost prędkości strugi występuje w płaszczyźnie prostopadłej do jej osi, zwłaszcza zaś w strefie jej styku z powietrzem. Zetknięcie się poruszającej naddźwiękowej strugi wodnej z otaczającym ją powietrzem skutkuje bardzo dużą różnicą prędkości. W związku z tym w kierunkach promieniowych względem osi strugi powstają duże siły aerodynamiczne, które są proporcjonalne do tej różnicy prędkości. Wszystko to wywołuje nierównomierny rozkład masy strugi, co pogłębia się w miarę oddalania od dyszy. W miarę przyrostu odległości wysokociśnieniowej strugi wodnej od dyszy na powierzchni strugi tworzą się nierówności w postaci fal, [66, 87] które są zależne od kształtu oraz długości wypływu strugi.

2.3.2. Pulsująca struga wodna

Zastosowanie strugi pulsującej ma na celu głównie zwiększenie efektywności obróbki gdyż impulsy hydrodynamiczne zapewniają kilkukrotnie wyższą moc strugi. Dynamiczne oddziaływanie wody na materiał obrabiany powoduje wypłukiwanie jego mniej odpornych faza następnie deformację powierzchni i tworzenie szczelin. Ciągłe bombardowanie powierzchni strugą pulsującą w powtarzanym cyklu wywołuje sumowanie się nacisków. W analogicznych warunkach obróbki ciągłą strugą wodną, jej efektywność erozyjna jest znacznie niższa gdyż maksymalne naciski pojawiają się jedynie w początkowej fazie kolizji strugi z materiałem obrabianym, a następnie ulegają one stagnacji [63].

Odpowiednie modulowanie strugi pulsującej oraz wpływ takich czynników, jak: wymiar i kształt strugi, rozkład prędkości w przekroju poprzecznym, napięcie powierzchniowe cieczy, turbulencja przepływu, oddziaływanie bezpośredniego środowiska otaczającego strugę, i inne, stanowią istotę do opisu złożonych pulsacyjnych przepływów. Uzyskanie pulsującej strugi ciągłej jest ważne ze względu na koncentrację energii oraz jakość obróbki [29, 62, 63]. Charakter przepływu pulsującej strugi można zaobserwować na przykładzie badań Nebeker'a [68], który opracował obrotową głowicę z otworami na obwodzie (rys. 2.4), zapewniającą modulowanie prędkości wypływu wody w funkcji czasu.

Rys. 2.4. Schemat konstrukcji i zasada działania modulatora strugi wodnej [68]

W takim urządzeniu generowane cząstki cieczy mające większą prędkość doganiały wolniejsze (rys. 2.5). Formowanie pulsującej strugi wodnej mającej początkowo kształt nieregularny, zaczyna się więc zaraz po opuszczeniu dyszy. W miarę zaś oddalania się od niej powodowało to rozrywanie się strugi i formowanie jej oddzielnych segmentów [63].

Rys. 2.5. Schemat formowania się modulowanej strugi wodnej i sinusoidalny rozkład jej prędkości

Przykładowe korzyści z zastosowania nieciągłej strugi wodnej o ciśnieniu 65 MPa przy częstotliwości modulacji 5000 i 2000 impulsów na sekundę oraz zastosowaniu dyszy o średnicy 1,5 mm, ilustrują wyniki badań [63] procesu erodowania materiałów skalnych, wykazały czterokrotny wzrost wydajności erodowania wapienia i odpowiednio dwukrotny dla piaskowców. Potwierdzają to również badania Bresee'a [15], zaprezentowane na rys. 2.6.

Rys. 2.6. Zależności zapotrzebowania energii i wydajności procesu erodowania piaskowca od ciśnienia strugi wodnej o strukturze niemodulowanej oraz modulowanej według sinusoidy i prostokąta [15]

Według tych wyników, zgodnie z analizami Wyliego [108], zastosowanie strugi wodnej modulowanej według sinusoidy, pociąga za sobą zwiększenie mocy zaledwie o 18% w porównaniu ze strugą niemodulowaną. Takie warunki obróbkowe zapewniają natomiast ponad dwukrotny wzrost wydajności urobku materiałów skalnych, a zastosowanie strugi wodnej o ciśnieniu modulowanym według cyklu prostokątnego zapewnia ponad trzykrotne zwiększenie takiego urobku.

Z kolei obrazy pulsującej strugi wodnej w postaci nieregularnych jej segmentów lub kropli uzyskanych przez Nebeker'a [69] zaprezentowano na rys. 2.7.

Rys. 2.7. Obraz pulsującej strugi wodnej: a) struga modulowana, b) fotografia wykonana techniką podczerwieni, c) fotografia wykonana techniką podczerwieni z dokładnością 300 cykli na sekundę, d) fotografia strugi wodnej z dodatkowym oświetleniem [69]

Nieciągłości struktury strugi wodnej można więc uzyskiwać różnymi metodami, których przykładowe sposoby zostaną bliżej przedstawione w kolejnych podrozdziałach.

2.4. Metody generowania impulsów w strudze cieczy

Zaprezentowane tu metody wytwarzania impulsów hydrodynamicznych polegają na:

- segmentowaniu strugi wodnej wywoływanym przez ultradźwiękowe drgania zaworu przerywającego przepływ strugi wodnej przez dyszę [99, 102, 103],
- wytwarzaniu wysokociśnieniowej strugi wodnej o strukturze pulsacyjnej przy użyciu urządzenia generującego impulsy wodne [23, 24, 82],
- generowaniu impulsowej strugi wodnej w głowicy pulsacyjnej [46, 85].

2.4.1. Generowanie pulsacji strugi wodnej o częstotliwości ultradźwiękowej

Do wytwarzania impulsów hydrodynamicznych w wysokociśnieniowej strudze wodnej zastosowano urządzenie wykorzystujące ultradźwiękową częstotliwość przemieszczania się zaworu, odcinającego możliwość przepływu wody. Twórcami tej metody sprzed niemal 45 lat są Nebeker i Rodriguez [70, 71], a także Chahine [18], który ją udoskonalił. Po dziesięciu latach istotnego rozwoju dokonał profesor Vijay [97, 98, 102] a kolejny postęp wprowadził profesor Foldyna [33, 39].

Schematy trzech różnych wariantów urządzenia wytwarzającego pulsującą strugę wodną o częstotliwości ultradźwiękowej, zaprezentowano na rys. 2.8 [38].

Rys. 2.8. Schematy urządzenia do wytwarzania pulsacyjnego strumienia wody [38]

W schematach tych urządzeń do generowania pulsacji strugi wodnej wykorzystuje się: a) bezpośrednie działanie pobudzacza akustycznego na ciecz pod ciśnieniem w komorze akustycznej; b) pośrednie oddziaływanie pobudzacza akustycznego na ciecz pod ciśnieniem w komorze akustycznej poprzez ściankę tej komory; c) bezpośrednie działanie pobudzacza akustycznego na ciecz pod ciśnieniem w komorze akustycznej wyposażonej w strojoną komorę rezonansową [38].

Do wytworzenia impulsów wykorzystuje się akustyczny generator pulsacji ciśnienia obejmujący falowód cylindryczny, który jest wprawiany w wibracje o niskiej amplitudzie przez przetwornik elektromechaniczny. Wibracje cylindrycznego falowodu tworzą niskie amplitudy pulsacji ciśnienia powstające w komorze akustycznej zawierającej płyn pod ciśnieniem. Takie rozwiązanie konstrukcyjne stanowi część komory akustycznej wzmacniając niskie amplitudy pulsacji ciśnienia generowane poprzez falowód cylindryczny [3, 34, 35, 38].

Próby wykorzystania ultradźwiękowej częstotliwość przetwarzania strugi wodnej przeprowadzono w Czechach we współpracy z Uniwersytetem Technicznym w Brnie oraz Uniwersytetem Technicznym w Pradze [33, 36, 37]. Wizualizację pulsującej strugi wody zarejestrowana za pomocą cyfrowego aparatu Nikon D70 przedstawiono na rys. 2.9 [33].

Rys. 2.9. Obraz pulsującej strugi wody przy ciśnieniu 20MPa [33]

W zależności od konstrukcji dyszy wysokociśnieniowa struga wodna, zarówno pulsująca, jak i ciągła, może przybierać różne kształty oddziaływujące na efektywność obróbki. Przykładowo, przy użyciu podwójnej strugi wirującej efektywność erodowania betonu pulsującą strugą wody jest od 2,3 do 6,3 razy wyższa niż przy użyciu strugi ciągłej [39]. Analiza efektów wynikających z zastosowania płaskiej strugi wodnej również wskazuje na korzyść pulsującej strugi wodnej, za pomocą której usuwa się zwiększoną objętość obrabianego materiału niż przy użyciu strugi o charakterze ciągłym [28, 91].

Ze względu na stosunkowo niewielką trwałość aparatury technologicznej stosowanej do generowania pulsacji w strudze wodnej, występują ograniczenia jej praktycznych zastosowań.

2.4.2. Teoretyczne podstawy udarowego wytwarzania impulsów hydrodynamicznych w strudze wodnej

Do rozsadzania skał zwykle stosuje się metody wybuchowe, w wyniku czego powstają również ogromne głazy. Dalsze ich rozkruszanie, najczęściej ciężkimi młotami udarowymi, jest trudne i kosztowne, zwłaszcza gdy są przeprowadzane w trudno dostępnych miejscach, jak podziemne jaskinie, wnęki itp. Dla zniwelowania tego rodzaju problemów technologicznych szczególnie przydatne staje się zastosowanie pulsującej strugi wodnej. Struga taka zapewnia zintensyfikowanie energii rozklinowywania pęknięć skalnych, przy obniżonej sile reakcji na uchwycie urządzenia roboczego. Umożliwia to stosowanie lżejszych i elastyczniejszych urządzeń zapewniających bezpieczniejszą i bardziej efektywną pracę.

Istota udarowej metody wytwarzania impulsów hydrodynamicznych w strudze wodnej

Dla efektywnego rozkruszania skał Dehkhoda opracował urządzenie [23, 25] (rys. 2.10) zapewniające cykliczne generowanie impulsów hydrodynamicznych o niższej częstotliwości.

W górnej części tego urządzenia znajduje się odpowiedni mechanizmem (młot) cyklicznie pobijający tłok umieszczony w cylindrycznej komorze wodnej, natomiast w przeciwległym jej końcu usytuowane jest ostrze robocze zaopatrzone w dyszę wodną. Pod wpływem cyklicznych obciążeń tłoka pobijanego przez młot, w dyszy generowane są impulsy hydrodynamiczne odznaczające się odpowiednio wysoką energią.

Istotny wkład do zmaksymalizowania impulsów hydrodynamicznych wniosły wyniki badań Rehbinder'a [82], który uwzględniając równanie ciągłości dokonał szczegółowej analizy przepływów wewnątrz komory wodnej i dyszy. Ułatwia to ocenę oddziaływania ciśnienia wody na prędkość wypływu impulsowej strugi wodnej i długotrwałość impulsu hydrodynamicznego. Ilustrują to przykładowe obrazy tworzenia się impulsu hydrodynamicznego, kształtowanego w środowisku powietrznym przy ciśnieniu roboczym równym 200 MPa, zaprezentowane na rys. 2.11 [25].

Rys. 2.11. Tworzenie się impulsu hydrodynamicznego w środowisku powietrznym (dla:d=1,02 mm, p=200 MPa, szybkość filmowania 225000 kl/s, odstęp czasu między klatkami 22,2 µs) [25]

Analiza przeprowadzonych badań umożliwiła opracowanie analitycznego modelu zjawisk zachodzących podczas pracy tego urządzenia, dzięki czemu zoptymalizowano jego konstrukcję [22]. Już wyniki wstępnych badań [25] wykonanych przy użyciu takiego urządzenia, wskazują na efektywne i bardzo korzystne zastosowanie pulsującej strugi wodnej do rozłamywania dużych brył skalnych na mniejsze części, o gabarytach odpowiadających objętości około 1 m³.

Zatem metoda generowania impulsów hydrodynamicznych w wysokociśnieniowej strudze wodnej przy zastosowaniu opracowanego urządzenia [22] stwarza duże możliwości jej praktycznych zastosowań.

Zagadnienie ściśliwości wody w urządzeniu generującym impulsy hydrodynamiczne

Analizę zjawiska ściśliwości wody w urządzeniu generującym impulsy hydrodynamiczne należy rozpocząć od opisu chwilowych relacji pomiędzy ciśnieniem a gęstością wody:

$$dp = K_w \frac{d\rho}{\rho},\tag{2.13}$$

w której *K*_w jest współczynnikiem (modułem) ściśliwości objętościowej wody.

Alternatywną metodą porównywania gęstości płynu ściśliwego z ciśnieniem jest równanie stanu Tait'a [49, 72, 83], które dla wody jest zapisywane jako:

$$\frac{p+B}{p_0+B} = \left(\frac{\rho}{\rho_0}\right)^n,\tag{2.14}$$

gdzie: *n* i *B* to stałe; *n*=7,415 i *B*=296,3 MPa [49] indeks "o" oznacza stan odniesienia: $p_o=0$ - dla ciśnienia, $\rho_o = \rho_w$ - dla gęstości cieczy.

Empiryczne równanie stanu Tait'a odnoszące się do gęstości i ciśnienia płynu, zapewnia doskonałe wyniki dla wody o ciśnieniu 2,5 GPa w zakresie temperatury od 20 do 60°C, n=7 i B=321,4MPa [83]. Zastosowanie natomiast tego równania dla cieczy o niższych ciśnieniach, w zakresie od 10 do 100 MPa, prowadzi do błędnych wyników [42], co potwierdzają również wyniki badań przeprowadzonych przez innych naukowców [59].

Równanie (2.13) dla początkowych wartości $p_0 = 0$, $\rho = \rho_w$ prowadzi do równania stanu.

$$p = K_w \ln\left(\frac{\rho}{\rho_w}\right). \tag{2.15}$$

Rehbinder przyjął przybliżone równanie stanu wody [82] oparte na przebiegach ciśnienia podane przez Bridgeman'a [17] dla różnych gęstości względnych przy stałej temperaturze. Równanie to wskazuje, że uzasadnione jest zaniedbanie zmiany temperatury w przypadku gdy woda jest ściskana, dlatego zakłada aproksymację liniową zależności pomiędzy ciśnieniem p a gęstością ρ [82], w którym funkcja ciśnienia nie może przyjąć wartości ujemnej.

$$p = E_{wf} \left(\frac{\rho}{\rho_w} - 1\right),\tag{2.16}$$

gdzie: *E_{wf}* jest określony jako ściśliwość wody przy ciśnieniu 2,96 GPa.

Ciągłość i zachowanie masy w cyklu pracy urządzenia generującego impulsy hydrauliczne

Dla fizykalnego opisu podstaw funkcjonowania urządzenia wytwarzającego impulsy hydrodynamiczne, znaczenia nabiera określenie chwilowej ilości wody (wyrażonej w jednostkach masy), jaka znajduje się w cylindrycznej komorze wodnej tego urządzenia. Ze względu na zmniejszanie się objętości wody w miarę wykonywania kolejnych ruchów tłoka podczas pracy urządzenia, jej chwilową masę, przy uwzględnieniu zasady ciągłości przepływu według równania Reynoldsa [103], można zapisać w postaci zależności:

$$\frac{dm}{dt} = \left(\frac{\partial}{\partial t} \iiint \rho \, dV\right)_{cv} + \left(\iint \rho \, v \, n \, dA\right)_{cs} = 0, \tag{2.17}$$

gdzie: m - oznacza masę wody, ρ - gęstość wody, v - prędkość, n - wektor jednostkowy normalny do powierzchni kontrolnej, cv - odniesione do objętości, cs - odniesione do powierzchni, V - objętość, A - powierzchnia przekroju cylindrycznej komory wodnej. Równanie (2.17) przekłada się na stwierdzenie, że czas gromadzenia się masy wewnątrz objętości komory wodnej musi być zrównoważony przez czas cyklu ruchu posuwistozwrotnego młota [41]. W komorze objętość wody zmienia się w zależności od szybkości poruszającego się tłoka, przez to równanie (2.17) przybiera postać:

$$\left(\frac{\partial}{\partial t}\iiint\rho dV\right)_{cv} = \frac{\partial}{\partial t}\left(\rho A(h-x)\right) = \dot{\rho}A(h-x) - \rho A\dot{x}, \qquad (2.18)$$

w którym: ρ - gęstość wody, A - powierzchnia przekroju cylindrycznej komory wodnej, h - wysokość słupa wody w tej komorze, natomiast x i \dot{x} są odpowiednio przemieszczeniem i prędkością tłoka.

Podczas gdy szybkość przepływu masy płynnej przy powierzchni ścian wynosi zero, prędkość wypływu przez dyszę i szczelinę pomiędzy tłokiem a ściankami komory wodnej nie będzie na ogół zerowa, dlatego też drugi człon równania jest przybliżony do przepływu ustalonego [22]:

$$(\iint \rho \ n \ dA)_{cs} = C_d \ \rho \ v \ F + \frac{\pi D \ l^3 dp}{12\mu L}.$$
(2.19)

Prawa cześć tego równania przy założeniu stanu ustalonego to natężenie przepływu przez dyszę, gdzie: C_d - jest współczynnikiem wypływu z dyszy, F - to pole powierzchni prostopadłego przekroju dyszy, v - to chwilowa prędkość przy wylocie z dyszy. Drugi człon po prawej strony równania (2.19) określa zmianę objętości płynu poprzez spadek ciśnienia w przepływie przez szczelinę, oraz naprężenia styczne, które przeciwstawiają się wzdłuż granic ścian cylindrycznej komory [41]. W tym członie dp jest różnicą ciśnień wzdłuż tworzącej tłoka, D - średnica tłoka, L - długość tłoka, μ - lepkość dynamiczna wody.

Poprzez połączenie prawych stron równań (2.18) i (2.19) otrzymuje się zależność:

$$\dot{\rho}A(h-x) - \rho A\dot{x} + C_d \rho v F + \frac{\pi D \, l^3 dp}{12\mu L} = 0, \qquad (2.20)$$

gdzie: C_d - jest współczynnikiem wypływu z dyszy, F - to powierzchnia przekroju dyszy, υ - to chwilowa prędkość przy wylocie z dyszy dp - różnica ciśnień wzdłuż tłoka, D - średnica tłoka, L - długość tłoka, μ - lepkość dynamiczna wody.

Zachowanie energii mechanicznej i równanie Bernoulliego umożliwiające określanie prędkości wypływu pulsującej strugi wodnej

W następnym etapie analizy do ustalenia prędkości wypływu strugi wodnej z dyszy, stosuje się równanie Bernoulliego dla przepływu ściśliwego. Dzięki temu przybliżoną prędkość na wylocie z dyszy określa się na podstawie wartości ciśnienia wewnątrz komory wodnej [22]. Prędkość przepływu wewnątrz komory jest znacznie mniejsza niż prędkość strugi wodnej na wypływie z dyszy. W takim przypadku ciśnienie w komorze wodnej może

być potraktowane jako ciśnienie spiętrzenia wody, która wypływa z dyszy, co wyraża następujące równanie:

$$\int_{p}^{0} \frac{dp}{\rho} + \frac{v^{2}}{2} = 0, \qquad (2.21)$$

gdzie: v - jest to prędkością na wylocie z dyszy.

W komorze jest kilka ostrych krawędzi i zanim wodna dopłynie do wylotu z dyszy podlega naprężeniom ścinającym, mogącym nawet wywołać rozwarstwienia przepływu, co powoduje zauważalne straty ciśnienia w głowicy. Efekt ten został uwzględniony i dodany jako straty energii kinetycznej oraz zapisany w postaci poniższej zależności [22]:

$$\int_{p}^{0} \frac{dp}{\rho} + \frac{v^{2}}{2} + k \frac{v^{2}}{2} = 0, \qquad (2.22)$$

gdzie: k - jest współczynnikiem strat ciśnienia. Straty tego współczynnika mogą być traktowane jako 0,5 [41], dlatego równanie (2.22) przyjmuje następującą postać:

$$\int_{p}^{0} \frac{dp}{\rho} + 1.5 \frac{v^{2}}{2} = 0.$$
 (2.23)

Dla poprawienia dynamiki przepływu wewnątrz komory wodnej urządzenia wytwarzającego impulsy hydrodynamiczne dokonano modernizacji podzespołu dyszy przepływowej, co usprawniło funkcjonowanie tego urządzenia.

Dynamika elementów roboczych urządzenia generującego impulsy hydrodynamiczne

Aby we właściwy sposób opisać stan dynamiczny urządzenia służącego do generowania impulsów hydrodynamicznych, niezbędne jest sformułowanie równań, opisujących dynamikę oddziaływania młota z tłokiem. Do odtworzenia dynamiki ciśnienia wewnątrz komory wodnej należy ze zbioru równań (2.15), (2.20) oraz (2.23) wyznaczyć następujące parametry: x(t)i $\dot{x}(t)$ które są odpowiednio przemieszczeniem i prędkością przepływu wody na granicy powierzchni woda-tłok, $\rho(t)$ i $\dot{\rho}(t)$ są odpowiednio gęstością wody i jej pochodną czasową, natomiast p(t) i v(t) są ciśnieniem w komorze wodnej oraz prędkością wypływu wody na wylocie z dyszy roboczej. Przy wykorzystaniu tych parametrów można sformułować równania umożliwiające rozwiązanie problemu przy dodatkowym uwzględnieniu dynamicznych aspektów ruchu tłoka.

Zarówno młot, jak i tłok należy traktować jako bryły, dlatego początkowa prędkość na styku tłoka z wodą, oznaczona jako $\dot{x}(0)$, jest równa prędkości tłoka sprowadzonego do punktu znajdującego się w środku jego masy w chwili natychmiastowej po uderzeniu przez młot. Podczas kolizji równanie pędu w kierunku osiowym można zapisać w następującej postaci:

$$M_t v_{t1} + M_m v_{m1} = M_t v_{t2} + M_m v_{m2}, \qquad (2.24)$$

gdzie: M i v to odpowiednio: masa i prędkość tłoka oraz młota; natomiast indeksy t i m oznaczają odniesienie do tłoka oraz młota, a ponadto indeks 1 oznacza fazę przed uderzeniem młota, natomiast indeks 2 oznacza fazę po jego uderzeniu.

Podczas zderzenia młota z tłokiem część energii kinetycznej dostarczona przez młot jest rozproszona w wyniku lokalnego odkształcenia plastycznego na powierzchni kontaktu z tłokiem generując dodatkowo ciepło, dźwięk i tarcie wewnętrzne. Jeżeli zignoruje się tarcie to bierzemy pod uwagę spadek energii przy zastosowaniu współczynnika restytucji C_r, który jest po prostu stosunkiem względnej prędkości młota oraz tłoka bezpośrednio po i przed uderzeniem w każdym cyklu tj.:

$$C_r = \frac{v_{t2} - v_{m2}}{v_{t1} - v_{m1}}.$$
(2.25)

Jeżeli współczynnik restytucji jest równy zero to względna prędkość separacji także jest zerowa i wówczas mamy do czynienia ze zderzeniem idealnie plastycznym. Jeżeli współczynnik ten równy jest jedności to względna prędkość separacji jest równa względnej prędkości podejścia i wówczas energia kinetyczna całego systemu jest zachowana. Taka sytuacja występuje w przypadku uderzeń doskonale sprężystych [93]. Natomiast jeżeli wartość współczynnika restytucji jest znana lub założona, to końcową prędkość tłoka i młota po uderzeniu można określić na podstawie równania pędu, w postaci następujących zależności:

$$v_{t2} = \frac{(C_r + 1)M_m v_{m1} + v_{t1}(M_t - C_r M_m)}{M_t + M_m},$$
(2.26)

$$v_{m2} = \frac{(C_r + 1)M_t v_{t1} + v_{m1}(M_m - C_r M_t)}{M_t + M_m}.$$
(2.27)

Zakładając, że młot i tłok stanowią bryłę, to wówczas ich zderzenie oznacza natychmiastową kolizję [19]. Dlatego natychmiast po uderzeniu przez młot prędkość tłoka będzie równa prędkości tłoka w tym właśnie momencie $\dot{x}(0+)=V_p(0+)$; $\dot{x}(t)$ i x(t), prędkość i przemieszczenie na granicy powierzchni woda-tłok może być określana za pomocą równania ruchu lub drugiego prawa Newtona. Model ten zakłada, że gdy tłok porusza się do przodu to ściska wodę powodując wzrost ciśnienia, które przeciwstawia się ruchowi tłoka i zmniejsza jego prędkość. Oddziaływanie to jest proporcjonalne do chwilowego ciśnienia w komorze wodnej i może być określone przez poniższą funkcję przyspieszenia tłoka, zgodnie z drugim prawem Newtona:

$$F(t) = -p(t)F_t = M_t \ddot{x}(t).$$
(2.28)

W powyższym równaniu F(t) jest siłą oporu wody wywieraną na tłok, p(t) to chwilowe ciśnienie w komorze, $\ddot{x}(t)$ to przyspieszenie, a M_t to masa tłoka i F_t to pole przekroju tłoka.

Bazując na tym wyjściowym równaniu (2.28) można uzyskać istotne zależności kinematyczne i konstrukcyjne. W wyniku pierwszego całkowania tego równania uzyskuje się równanie prędkości tłoka, natomiast druga całka daje równanie jego przemieszczenia, co ukazują poniższe wzory:

$$\dot{x}(t) = -\frac{F_{\rm i}}{M_{\rm i}} \int_0^t p(t) dt + \dot{x}(0), \qquad (2.29)$$

$$x(t) = -\frac{F_{\rm H}}{M_{\rm H}} \int_0^t \left(\int_0^t p(t) dt \right) dt + \dot{x}(0)t, \qquad (2.30)$$

w których: $\dot{x}(t)$ jest chwilową prędkością tłoka po uderzeniu i może być określona za pomocą równania (2.16) w oparciu o prędkość uderzenia młota i współczynnika restytucji (dla stali $C_r = 0.65$).

Prędkość i ciśnienie strugi wodnej na wypływie z urządzenia generującego impulsy wodne

Szczególnie ważnymi wielkościami, wręcz decydującymi o możliwości rozpoczynania prac projektowych, jest prędkość pulsującej strugi wodnej na wylocie z dyszy urządzenia wytwarzającego impulsy hydrodynamiczne oraz ciśnienie wody panujące w cylindrycznej komorze wodnej tego urządzenia.

Prędkość pulsującej strugi wodnej jest określana jako funkcja ciśnienia wody w cylindrycznej komorze wodnej, co przedstawia poniższa zależność:

$$\upsilon(t) = \sqrt{\frac{2K_w}{1.5\rho_w} \left(1 - exp\left(-\frac{p(t)}{K_w}\right)\right)}.$$
(2.31)

Z kolei ciśnienie wody określa się na podstawie wyjściowego równia (2.21), do którego należy wprowadzić następujące równania: (2.16), (2.29), (2.30) i (2.31). Wówczas uzyskuje się zależność, w następującej postaci:

$$\frac{dp}{dt} = \left\{ K_w \left(F_t \left(-\frac{F_t}{M_t} \int_0^t p(t) dt + \dot{x}(t) \right) - C_d F \sqrt{\frac{2K_w}{1,5\rho_w}} \left(1 - exp\left(-\frac{p(t)}{K_w} \right) \right) \right) - \frac{\pi D l^3 dp}{12\mu L} exp\left(-\frac{p(t)}{K_w} \right) \right\};$$

$$F_t \left(h - \left(-\frac{F_t}{M_t} \int_0^t \left(\int_0^t p(t) dt \right) dt + x(0)t \right) \right).$$
(2.32)

Powyższe zależności opisujące istotne aspekty udarowego wytwarzania impulsów hydrodynamicznych w strudze wodnej umożliwiają przeprowadzenie analiz tego zagadnienia. Przykładowe wyniki kształtowania się przebiegów ciśnienia generowanego w komorze wodnej urządzenia impulsowego podczas cyklu jego pracy, zaprezentowano na rys. 2.12 [22]. Poszczególne wykresy zamieszczone na rys. 2.12a określono dla różnej masy udarowej młota (przy jednakowej masie tłoka), natomiast na rys. 2.12b dla różnej masy tłoka lecz przy niezmiennej masie młota.

Rys. 2.12. Przebiegi ciśnienia w różnych konfiguracjach masy młota (M_h) i masy tłoka (M_p): a) M_p - stała, M_h - zmienna, b) M_p - zmienna, M_h - stała [22]

Analizując oddziaływanie masy wody znajdującej się w cylindrycznej komorze wodnej urządzenia impulsowego, ocenianej początkową wysokością słupa wody L_w, stwierdzono występowanie wyrazistych zależności. Przykładem tego rodzaju wyników są rozkłady ciśnienia generowanego w komorze wodnej w cyklu pracy urządzenia impulsowego, zaprezentowane na rys. 2.13 [22].

Rys. 2.13. Przebiegi ciśnień występujących w komorze wodnej urządzenia impulsowego, przy różnych początkowych wysokościach słupa wody L_w, dla losowo wybranych wartości Y (dla M_h=2M_p) [22]

Taka metoda generowania impulsów hydrodynamicznych w wysokociśnieniowej strudze wodnej zastosowana do półtechnicznych badań poligonowych [25], przeprowadzonych przy rozkruszaniu dużych brył (o objętości powyżej 1 m³) różnych materiałów skalnych, wykazała się wysoką efektywnością erozyjną i praktyczną przydatnością.

2.4.3. Charakterystyka funkcjonowania głowicy pulsacyjnej

Bardzo interesującym sposobem wytwarzania pulsującej strugi wodnej jest zastosowanie głowicy pulsacyjnej [85, 106], charakteryzującej się specyficznym kształtem komory wirowej i brakiem części ruchomych, co jest korzystne z racji eksploatacyjnej niezawodności. Ideowy przykład konstrukcyjnego rozwiązania takiej głowicy zaprezentowano na rys. 2.14.

Rys. 2.14. Budowa i schemat specjalnej głowicy pulsacyjnej zawierającej komorę wirową: 1 - obudowa; 2 - złącze górne; 3 - dysza górna; 4 - otwory ssące; 5 - tuleja; 6 - dysza; 7 - uszczelka [46, 85]

W analizach przeprowadzanych przy użyciu uproszczonego modelu głowicy pulsacyjnej zawierającej komorę wirową (rys. 2.15) wprowadzano następujące warunki brzegowe [85]:

- na wlocie 1 do głowicy pulsacyjnej zadawano ciśnienie strugi równe 15 MPa,
- ze względu na stabilność pracy pompy pominięto zakłócenia tego ciśnienia,
- wokół wejścia 2 do otworów bocznych głowicy występuje ciśnienie atmosferyczne,
- przyjęto, że na wylocie 3 z głowicy występuje turbulentny przepływ strugi wodnej,
- wszystkie istotne powierzchnie głowicy przyjęto jako doskonale gładkie.

Rys. 2.15. Uproszczony model głowicy pulsacyjnej z komorą wirową [85]

Złożony mechanizm modulacji dynamicznych impulsów w strudze wodnej przepływającej przez taką głowicę polega na kształtowaniu się impulsów hydrodynamicznych prowokowanych przez podciśnienie wytwarzane dzięki odpowiedniej konstrukcji komory, ułatwiającej tworzenie się hydraulicznych pierścieni wirowych. Odpowiednio ukształtowane pierścieniowe warstwy wody wirowe przyczyniają się również do pulsacyjnej modulacji strugi wodnej, w której na wylocie z głowicy okresowo występuje gwałtowny wzrost ciśnienia. Na rys. 2.16 zaprezentowano przebiegi ciśnienia w strudze wodnej z pulsacją i bez pulsacji, wytworzone wtakiej głowicy przy nominalnym ciśnieniu wody równym 15 MPa [85].

Rys. 2.16. Oscylacja ciśnienia płynu na wyjściu z specjalnej głowicy pulsacyjnej [85]

Wytwarzane w taki sposób impulsy hydrauliczne charakteryzują się wyraźnie większym okresowo zmiennym ciśnieniem roboczym, niż to występuje w ciągłej strudze wodnej bez pulsacji. Można więc oczekiwać analogicznych relacji efektywności obróbkowej obydwu rodzajów strug wodnych.

Natężenie przepływu wody przez taką głowicę, może być określane na podstawie teoretycznych rozważań opartych na geometrii głowicy pulsacyjnej. Zależy ono od średnicy dyszy wylotowej i sprawności używanej głowicy wodnej oraz średniej prędkości strugi wodnej na wylocie z głowicy pulsacyjnej. Wyraża to następująca zależność empiryczna:

$$Q_{w} = 10^{-3\frac{\pi}{4}} d_{3}^{2} \eta \, v_{\acute{s}r} \quad [\rm{dm}^{3}/\rm{s}], \tag{2.34}$$

gdzie: Q_w – natężenie przepływu strugi wodnej [dm³/s],

d3 – średnica dyszy wodnej [mm],

 η – sprawność dyszy wodnej,

*v*_{śr} – średniej prędkości strugi wodnej na wylocie z głowicy pulsacyjnej [m/s].

Prędkość wysokociśnieniowej strugi wodnej, określaną na podstawie równania Bernoulliego, można obliczyć z następującej przybliżonej zależności [63]:

$$v_{sr} = \sqrt{\frac{2p}{\rho}} \approx 14 \sqrt{10 p} \quad [m/s],$$
 (2.35)

w której: p – ciśnienie wody [MPa], ρ – gęstość wody [kg/dm³].

Podstawiając więc przybliżone wyrażenie (prawą stronę) powyższej zależności (2.35) do równania (2.34), uzyskuje się wzór empiryczny opisujący natężenie przepływu strugi wodnej (w dwóch wariantach, uzależnionych od rodzaju jednostek):

$$Q_{w} \approx 34.8 \ 10^{-3} d_{3}^{2} \eta \sqrt{p} \quad [\text{dm}^{3}/\text{s}],$$
 (2.36a)

$$Q_{w} \approx 2,09 d_{3}^{2} \eta \sqrt{p}$$
 [dm³/min]. (2.36b)

Z uwagi na to, że sprawność dyszy wodnej jest także liczbą ($\eta=0,8\div0,9$) to ogólną postać natężenia przepływu wody określa się następującą funkcją:

$$Q_{w} \approx f(d_{3}^{2}\sqrt{p}) \quad [\mathrm{dm}^{3}/\mathrm{s}].$$
 (2.37)

Z uwagi na to, że średnica dyszy wylotowej (d₃) jest jednym z wcześniej wymienionych parametrów geometrycznych takiej głowicy pulsacyjnej, zatem hydrodynamiczne warunki pracy zależą jedynie od ciśnienia wody, a ściślej od jej pierwiastka, co zostało udowodnione w powyższej zależności (2.37).

Kolejne badania wytwarzania impulsów hydrodynamicznych zostały przeprowadzone w chińskim Instytucie Ropy Naftowej. Wykorzystano tu urządzenie o odpowiedniej konstrukcji, w której impulsy hydrauliczne wytwarzano za pomocą omawianej tu głowicy pulsacyjnej [45, 105, 111]. Przy jej wykorzystaniu wprowadzano także do strugi wodnej domieszki piasku kwarcowego o ziarnistości 0,4÷0,8 mm i gęstości 3100 kg/m³ oraz kulek stalowych o średnicy 1÷4 mm o twardości Rockwella 60, HRC 56 i gęstości 4,4 g/cm³. Zdolność erozyjną takiej pulsacyjnej strugi wodno-ściernej badano w warunkach cięcia bloczków betonowych (25% cementu i 75% piasku) o wymiarach 60x60x60 cm i wytrzymałości na ściskanie 40 MPa [46].

Przykładowy wykres wpływu ziarnistości piasku kwarcowego na skuteczność cięcia betonu pulsującą strugą wodno-piaskową zaprezentowano na rys. 2.17.Z badań tych wynika, że w takich warunkach najbardziej korzystne jest stosowanie cząstek piasku kwarcowego o granulacji 0,4÷0,8 mm. Analogiczne badania przeprowadzono również z zastosowaniem domieszek innych materiałów ściernych, jak zielony węglik krzemu, granat, czarny piasek oliwinowy i kulki stalowe.

Rys. 2.17. Głębokość erodowania strugi wodno-ściernej (5% konsystencji piasku kwarcowego) przy ciśnieniu 15 MPa i odległości 20 mm od obrabianego materiału [46]

Porównanie kształtu różnych materiałów ściernych zaprezentowane na rys. 2.18 (piasku kwarcowego i kulek stalowych) przed oraz po eksperymencie.

Rys. 2.18. Mikroskopowe porównanie ścierniw (powiększenie x15): a) piasku kwarcowego, b) kulek stalowych, przed i po eksperymencie [46, 111]

Zużycie dyszy wylotowej urządzenia do modulowania impulsów hydrodynamicznych, przed i po eksperymencie, zaprezentowano na rys. 2.19.

Rys. 2.19. Dysza wylotowa urządzenia do modulowania impulsów przed i po badaniach [46, 111]

Zaobserwowane uszkodzenia powierzchni dyszy wylotowej są spowodowane przez twarde cząstki, a zwłaszcza przez kulki stalowe, co powoduje zaokrąglenie krawędzi dyszy wylotowej. Impulsy wodne wytwarzane w analizowanym urządzeniu mogą prowadzić do korodowania oraz ścierania elementów urządzenia, a zwłaszcza dyszy wylotowej [46, 111].

Na podstawie analizy wyników badań stwierdzono, że wprowadzanie materiałów ściernych do pulsującej strugi wodnej zwiększa efektywność obróbki. Jednocześnie przyczynia się to do zintensyfikowania zużycia elementów roboczych głowicy. Dlatego, by wydłużyć trwałość tych elementów nieodzowne jest zastosowanie bardziej wytrzymałych materiałów. Pulsująca struga wodna modulowana w otworze dyszy wylotowej oddziałuje na materiał obrabiany w szczególny sposób, przyczyniając się do obniżenia jego wytrzymałości. Wszystko to korzystnie świadczy na rzecz stosowania tego rodzaju głowic, do drążenia głębokich otworów. Z powyższych względów tego rodzaju głowica pulsacyjna jest przydatna w pracach górniczych zwłaszcza do drążenia głębokich otworów [46, 47].

2.5. Wnioski

Analiza literaturowego stanu zagadnienia dotyczącego wysokociśnieniowych przepływów ciągłej i pulsacyjnej strugi wody potwierdziła, że zagadnienie to w wielu aspektach ciągle jeszcze wymaga przeprowadzenia kolejnych badań. Bardzo interesującym zagadnieniem, które nie jest jeszcze wystarczająco zbadane, jest generowania okresowo zmiennych impulsów hydrodynamicznych a także ich wykorzystania podczas drążenia i rozkruszania skał, czy też obróbki materiałów technicznych i czyszczenia ich powierzchni.

Na podstawie analiz literaturowego stanu tego zagadnienia możliwe stało się sformułowanie następujących wniosków:

- Wysokociśnieniowa struga wodna, pomimo tego, że jej liczne zastosowania są znane od około 50 lat, to w wielu aspektach, dotyczących zwłaszcza nieciągłości jej struktury, nie została jeszcze dokładnie zbadana. Z powyższych względów różnego rodzaju badania i analizy tej tematyki nadal są podejmowane i rozwijane przez wiele zespołów naukowobadawczych na całym świecie.
- 2. Wysokociśnieniowe przepływy cieczy, zwłaszcza zaś o okresowo zmiennych ciśnieniach, należą do grupy specyficznych przepływów turbulentnych, których fizykalne zdefiniowanie i matematyczny opis ich przebiegu przysparza wiele trudności, wynikających głównie z niejednorodności zjawisk i zmienności parametrów hydrodynamicznych a często także i termodynamicznych.
- 3. Właściwości wysokociśnieniowej strugi wodnej zależą głównie od sposobu jej wytwarzania i geometrycznych parametrów jej kształtowania oraz warunków hydrodynamicznych a niekiedy także i termodynamicznych.
- 4. Istnieje kilka sposobów generowania pulsującej strugi wodnej, między innymi przez: segmentację strugi wywoływaną ultradźwiękowymi drganiami elementu przerywającego jej przepływ, udarowe wymuszanie impulsów w trakcie wypływu strugi ze zbiornika, czy też hydrodynamiczne modulowanie jej przepływu przez komorę wirową o specyficznym kształcie.
- 5. Impulsowa struga wodna generowana dzięki zastosowaniu urządzenia wykorzystującego drgania zaworu przerywającego przepływ wody przez dyszę z ultradźwiękową częstotliwością, zapewnia takiej strudze kilkukrotnie wyższą moc, w stosunku do strugi ciągłej, dzięki czemu np. efektywność erodowania betonu wzrasta 2,3÷6,3 krotnie. Ze względu jednak na złożoność aparatury technologicznej i stosunkowo niewielką jej trwałość występują ograniczenia praktycznych zastosowań tej metody.
- 6. Wysokociśnieniowa struga wodna o strukturze pulsacyjnej, wytwarzana przy użyciu mechanicznego urządzenia generującego impulsy hydrodynamiczne o niższej częstotliwości, zapewnia zintensyfikowanie energii rozklinowywania pęknięć skalnych przy obniżonej sile reakcji na uchwycie urządzenia roboczego, co umożliwia stosowanie lżejszych i elastyczniejszych urządzeń zapewniających bezpieczniejszą i bardziej efektywną pracę przy rozłamywaniu i rozkruszaniu skał, zwłaszcza w trudnodostępnych miejscach.
- 7. Impulsowa struga wodna generowana w głowicy pulsacyjnej odznaczającej się specyficznym kształtem komory wirowej i brakiem części ruchomych, charakteryzuje się okresowo zmiennym ciśnieniem zwiększającym, w porównaniu ze strugą ciągłą, efektywność obróbki materiałów. Taka głowica pulsacyjna umożliwia także wprowadzanie materiałów ściernych do pulsującej strugi wodnej, co radykalnie zwiększa efektywność obróbki, przy stosunkowo umiarkowanym zużyciu części roboczych, głównie dyszy wylotowej. Wszystko to korzystnie świadczy na rzecz stosowania tego rodzaju głowic pulsacyjnych w pracach górniczych, zwłaszcza zaś do drążenia głębokich otworów.
- 8. Przeprowadzona szczegółowa analiza powyższych metod generowania impulsowej strugi wodnej i jej zastosowań przyczyniła się do zwrócenia uwagi na te zmienne parametry i warunki, które wpływają na efektywne generowanie impulsów wody, stwarzając tym samym nowe możliwości projektowania efektywniejszych urządzeń i narzędzi.
- 9. Zastosowanie pulsującej strugi wodnej, dzięki periodycznej koncentracji energii, zwiększa efektywność obróbki. Dlatego pulsująca struga wodna znajduje zastosowanie w wielu gałęziach przemysłu, do czyszczenia, erodowania i cięcia materiałów ceramicznych i skalnych, itp.
- 10. Najbardziej korzystne możliwości praktycznych zastosowań mają mechaniczne urządzenia służące do generowania impulsów hydrodynamicznych w wysokociśnieniowej strudze wodnej, w tym zwłaszcza głowica pulsacyjna o specyficznym kształcie komory wirowej, odznaczająca się stosunkowo najbardziej uproszczoną budową, pozbawioną jakichkolwiek elementów ruchomych, co jest korzystne z racji eksploatacyjnej niezawodności.
- 11. Generowanie impulsów hydraulicznych w takiej głowicy pulsacyjnej nie wymaga stosowania specjalnych urządzeń czy osprzętu niezbędnego do wytwarzania pulsacji. Zjawiska wywoływane przepływem wysokociśnieniowej strugi wodnej przez głowicę pulsacyjną zależą od wielu czynników, takich jak: złożona geometria przestrzeni przepływowych, różnice w prędkościach przepływu w poszczególnych strefach głowicy, występowanie wtórnych ruchów wirowych, anizotropia turbulencji. Specyficzne ukształtowanie komory wirowej i geometrii wnętrza tej głowicy wywołuje zróżnicowanie ciśnienia w poszczególnych jej strefach, co również sprzyja wytwarzaniu pulsującego przepływu strugi wodnej. Szczegółowa analiza oddziaływania tych czynników pozwoli na efektywniejsze wykorzystanie generowanych impulsów hydrodynamicznych.

12. Wykorzystanie istniejących analiz teoretycznych i zastosowanie odpowiednich metod symulacji cyfrowej umożliwia przeprowadzanie analogicznych badań symulacyjnych oddziaływania parametrów geometrycznych specjalnej głowicy pulsacyjnej i usytuowania jej otworów bocznych na rozkłady wektorów prędkości i ciśnienia wewnątrz takiej głowicy oraz na prędkość wypływającej z niej pulsującej strugi wodnej.

3. CEL, HIPOTEZY I ZAKRES PRACY

Podjęcie tego tematu badawczego wynika z potrzeby zwiększenia wydajności obróbki wysokociśnieniową strugą wodną. Wzrost wydajności obróbki strugą wodną osiąga się zwykle przez generowanie coraz to wyższego ciśnienia wody. Jednak radykalny rozwój innowacyjnych sposobów takiej obróbki umożliwia dopiero użycie strugi wodnej o okresowo zmiennej strukturze i właściwościach dynamicznych. Ze względu na możliwość takiego właśnie rozwoju technologicznych zastosowań wysokociśnieniowej strugi wodnej podjęto realizację tego tematu.

3.1. Cel pracy

Celem rozprawy jest określenie wpływu geometrycznych parametrów samowzbudnej głowicy pulsacyjnej i hydrodynamicznych warunków pracy na funkcjonowanie takiej głowicy oraz dynamiczną charakterystykę wytwarzanej w niej strugi wodnej a także jej technologiczną przydatność dla erodowania materiałów.

Aby osiągnąć wytyczone cele, należało spełnić następujące cele szczegółowe:

- 1. Opracować koncepcję i model samowzbudnej głowicy pulsacyjnej.
- Przeprowadzić komputerowe badania umożliwiające optymalizację budowy samowzbudnej głowicy pulsacyjnej.
- 3. Wytypować reprezentatywną grupę materiałów poddanych badaniom.
- 4. Określić wpływ istotnych parametrów geometrycznych samowzbudnej głowicy pulsacyjnej na skuteczność obróbki materiałów.
- 5. Ustalić oddziaływanie hydrodynamicznych warunków pracy samowzbudnej głowicy pulsacyjnej na skuteczność obróbki materiałów.
- Ustalić względne korzyści stosowania strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej, odniesione do analogicznej strugi wodnej wytwarzanej w dyszy standardowej.
- 7. Określić technologiczną przydatność samowzbudnej głowicy pulsacyjnej.

Cel pracy realizowano przeprowadzając zarówno komputerowe badania symulacyjne jak i badania eksperymentalne przy wykorzystaniu samowzbudnej głowicy pulsacyjnej wykonanej na podstawie wyników badań komputerowych. Podczas badań eksperymentalnych określano wpływ parametrów geometrycznych i warunków hydrodynamicznych na charakter i rozkład hydrodynamicznych impulsów strugi wodnej wytwarzanej w opracowanych rozwiązaniach konstrukcyjnych samowzbudnej głowicy pulsacyjnej.

3.2. Hipotezy pracy

Na podstawie szczegółowej analizy rozpatrywanego zagadnienia naukowego oraz dotychczasowych analiz i badań własnych można sformułować dwie następujące hipotezy naukowe:

- 1. Takie parametry geometryczne samowzbudnej głowicy pulsacyjnej, jak: średnica i wysokość komory wirowej oraz jej kąt natarcia i średnice otworów bocznych, a zwłaszcza średnica i wysokość dyszy wlotowej, wraz ze średnicą i wysokością dyszy wylotowej; jak również hydrauliczne warunki pracy w postaci ciśnienia rozstrzygającego wraz ze średnicą dyszy o natężeniu przepływu wody przez taką głowicę, decydują o jej funkcjonowaniu przejawiającym się w postaci dynamicznych rozkładów ciśnienia oraz zróżnicowanych formach przepływów w komorze wirowej a także prędkości wypływu strugi z takiej głowicy, które przesądzają o właściwościach wytwarzanej strugi wodnej oraz o jej zachowaniach.
- 2. Struga wodna wytwarzana w korzystnych warunkach funkcjonowania takiej samowzbudnej głowicy pulsacyjnej o zoptymalizowanych parametrach geometrycznych, przy uwzględnieniu zmienności hydrodynamicznych warunków pracy takiej głowicy, w istotnym stopniu oddziałuje na zmienność jej struktury wewnętrznej oraz jej właściwości dynamiczne (jak wartości siły naporu strugi, rozkłady jej chwilowych nacisków i częstotliwość występowania tych zmian) a także na zwiększenie technologicznej efektywności erodowania materiałów.

Powyższe ujęcie naukowych hipotez zawiera także nadrzędną ich postać, których zapis został wyodrębniony w postaci pogrubionego tekstu.

3.3. Zakres pracy

Zakres pracy wynika z realizacji celu głównego oraz z naukowych hipotez. Głównym zadaniem realizowanej rozprawy jest dobór parametrów geometrycznych samowzbudnej głowicy pulsacyjnej, takich jak: średnica i wysokość komory wirowej oraz jej kąt natarcia i średnice bocznych otworów wlotowych, a zwłaszcza średnica i wysokość dyszy wlotowej i dyszy wylotowej. Równie ważnym zadaniem jest określenie hydrodynamicznych warunków pracy takiej głowicy samowzbudnej, w postaci ciśnienia, które wraz ze średnicą dyszy decydują o natężeniu przepływu wody przez tę głowicę. Wszystkie te parametry decydują

bowiem o jej funkcjonowaniu przejawiającym się w postaci dynamicznych rozkładów ciśnienia oraz zróżnicowanych formach przepływów w komorze wirowej a także prędkości wypływu strugi z takiej głowicy, które to wielkości mają istotny wpływ na właściwości wytwarzanej strugi wodnej oraz o jej zachowaniach.

Korzystne warunki funkcjonowania takiej samowzbudnej głowicy pulsacyjnej o zoptymalizowanych parametrach geometrycznych, przy uwzględnieniu zmienności hydrodynamicznych warunków pracy takiej głowicy, w istotnym stopniu oddziałują na okresowe zmienności wewnętrznej struktury wytwarzanej strugi wodnej oraz jej właściwości dynamiczne (jak wartości siły naporu strugi wodnej i częstotliwość jej zmian) a także wpływają na zwiększenie technologicznej skuteczności erodowania materiałów.

Badania oddziaływania wszystkich parametrów geometrycznych takiej głowicy pulsacyjnej i hydrodynamicznych warunków jej pracy przeprowadzano w szerokim zakresie zmian tych wielkości.

Wpływ oddziaływania parametrów konstrukcyjnych na prędkość strugi generowaną w dyszy wylotowej przeprowadzono dla trzech rodzajów samowzbudnych głowic pulsacyjnych. Pierwszą głowicę opracowaną w chińskim Instytucie Ropy Naftowej przebadano w celu weryfikacji badań literaturowych. Głowica ta charakteryzowała się parametrami konstrukcyjnymi takimi jak: średnicą dyszy wlotowej 5 mm, wysokością dyszy wlotowej 6 mm, kątem natarcia komory 120°, średnicą otworów bocznych 5 mm, wysokością komory wirowej 35 mm, średnicą komory wirowej 50 mm, średnicą dyszy wylotowej 9 mm oraz hydraulicznymi – ciśnieniem nominalnym 15 MPa.

Drugą głowicę, ze względu na możliwości jej wykorzystania do drążenia otworów, badano dla zmiennych ciśnień nominalnych w zakresie 15÷150 MPa oraz zmiennych zakresów parametrów konstrukcyjnych jak: średnica dyszy wlotowej 2,0÷3,2 mm, wysokość dyszy wlotowej 6÷12 mm, kąt natarcia komory 100÷120°, średnica otworów bocznych 2÷8 mm, wysokość komory wirowej 15÷45 mm, średnica komory wirowej 20÷50 mm, średnica dyszy wylotowej 4÷9 mm, wysokość dyszy wylotowej 4÷24 mm oraz szerokość powierzchni pierścieniowych 1÷6 mm.

Kolejna badana głowica przeznaczona do obróbki powierzchni, charakteryzowała się zakresem zmienności średnicy dyszy wlotowej $0,6\div1,2$ mm, wysokością dyszy wlotowej $0,5\div3,5$ mm, kątem natarcia komory $100\div120^{\circ}$, średnicą otworów bocznych $0,4\div1,4$ mm, wysokością komory wirowej $1,4\div6,2$ mm, średnicą komory wirowej $4,6\div7,4$ mm, średnicą dyszy wylotowej $0,6\div1,2$ mm, oraz szerokością powierzchni pierścieniowych $0,6\div2$ mm badano przy ciśnieniu nominalnym 15 MPa.

4. TEORETYCZNA ANALIZA PRZEPŁYWÓW TURBULENTNYCH I PULSACYJNYCH

Dla przybliżenia celu pracy dotyczącego wpływu warunków hydrodynamicznych i geometrii samowzbudnej głowicy pulsacyjnej na charakterystykę wytwarzanej w niej strugi wodnej postanowiono przeprowadzić szerszą analizę teoretyczną. Tworząc niniejszą analizę kierowano się niskimi kosztami oraz umiarkowaną dokładnością wyników spowodowaną koniecznością przyjmowania założeń i uproszczeń. W rozdziale tym przeprowadzono jedynie analizę najogólniejszych zagadnień, które przyczyniają się do ograniczenia drogich i pracochłonnych badan laboratoryjnych.

Teoretyczna analiza przepływów turbulentnych oraz opis metod symulacji przybliża mechanizm kształtowania się hydrodynamicznych zawirowań w komorze wirowej głowicy pulsacyjnej. Znajomość mechanizmu przepływu strugi przez samowzbudną głowicę pulsacyjną pozwoli na określenie wpływu geometrycznych parametrów głowicy i hydrodynamicznych warunków pracy na funkcjonowanie takiej głowicy i dynamiczną charakterystykę wytwarzanej w niej strugi wodnej.

Końcowa część tego rozdziału zawiera metodykę numerycznych badań symulacyjnych, których wyniki mają wyłonić najbardziej przydatne modele konstrukcyjne samowzbudnych głowic pulsacyjnych o zoptymalizowanej geometrii.

4.1. Teoretyczne podstawy przepływów turbulentnych

Modelowanie turbulencji polega na nieskończonej liczbie powiązań między poszczególnymi skalami zjawiska, których efektem są procesy turbulentnego transportu masy, pędu czy energii. Oddziaływania te są utożsamiane z wirową strukturą turbulencji, która przedstawiana jest jako nieskończona kaskada wirów (skala Kołmogorowa) realizujących procesy transportu w sposób charakterystyczny dla przepływu turbulentnego [20]. Złożona struktura turbulencji przepływu jest istotna ze względu na intensyfikację wszystkich procesów transportu zachodzących w przepływach turbulentnych [4]. Do opisu turbulencji w przepływie w obliczeniach numerycznych, wykorzystywane są różne metody. Jedną z nich jest metoda oparta na równaniach Reynoldsa dla przepływów turbulentnych oraz metoda wykorzystująca bezpośrednie symulacje obliczeniowe przepływów turbulentnych.

4.1.1. Równania Reynoldsa dla przepływów turbulentnych

Pierwsza z metod opisująca przepływ burzliwy opiera się na koncepcji O. Reynoldsa wykorzystując klasyczne równanie Naviera-Stokesa. Metoda ta nosi nazwę Reynolds Avaraged Navier-Stokes Equations, w skrócie RANS. Opiera się ona na hipotezie Reynoldsa [31], zgodnie z którą, każda wielkość charakteryzująca przepływ turbulentny w danym punkcie może być traktowana jako suma wielkości uśrednionej w czasie oraz składowej fluktuacyjnej.

Zastosowanie tej koncepcji do równań Naviera-Stokesa przekształca je do postaci znanej jako równanie Reynoldsa, które dla płynu nieściśliwego może być [4] zapisane w postaci:

$$\rho\left(\frac{\partial \overline{v}_i}{\partial t} + \overline{v}_j \frac{\partial \overline{v}_i}{\partial x_j}\right) = \frac{\partial}{\partial x_j} (\tau_{ij}) + \overline{f}_{ij}, \qquad (4.1)$$

gdzie: ρ - gęstość, v - prędkość, f - siła masowa, natomiast tensor naprężeń przyjmuje postać (4.2):

$$\tau_{ij} = -\bar{p}\delta_{ij} + \nu\rho \left(\frac{\partial \bar{v}_i}{\partial x_j} + \frac{\partial \bar{v}_j}{\partial x_i}\right) - \rho \overline{v_i v_j} .$$
(4.2)

Tensor naprężeń τ_{ij} zawiera dodatkowy człon $-\rho \overline{v_i v_j}$ zwany kinematycznym naprężeniem Reynoldsa:

$$\tau_T = -\rho \overline{\upsilon_l \upsilon_j} \,. \tag{4.3}$$

Tensor naprężeń Reynoldsa jest tensorem symetrycznym, co w przypadku układu przestrzennego oznacza, że wartości sześciu z dziewięciu składowych są nieznane. Równanie ciągłości części średniej ma postać:

$$\frac{\partial \overline{v}_i}{\partial x_i} = 0. \tag{4.4}$$

Równania (4.1) i (4.2) uzupełnione o zależności oparte na modelowaniu, stanowią podstawę modeli turbulentnych RANS. Ponieważ równania Naviera-Stokesa są nieliniowe, każdy proces uśredniania generuje dodatkowe niewiadome, które wymagają powiązania z wielkościami średnimi. Złożona ilość niewiadomych występujących w analizowanych równaniach, nie daje rozwiązania nawet po uwzględnieniu warunków brzegowych. Oznacza to, że układ równań Naviera-Stokesa staje się niezamknięty i problem jego domknięcia jest domeną modeli turbulencji (nazywanych często hipotezami zamykającymi) [4]. Do zamknięcia układu wymagane są dodatkowe modele turbulencji. Obecnie w celu "domknięcia" układu równań stosuję się powszechnie dwie metody:

- Eddy Viscosity Models (EVM) modele oparte na lepkości wirowej v_t, będącej analogią współczynnika lepkości molekularnej płynu, polegające na wykorzystaniu hipotezy Boussinesq'a.
- 2. Reynolds Stress Models (RSM) modele transportu naprężeń Reynoldsa polegają na bezpośrednim modelowaniu równań opisujących składowe tensora naprężeń, które nie wykorzystują koncepcji lepkości turbulentnej. Naprężenia Reynolds'a wyznaczane są bezpośrednio z równań transportu, ujmujących procesy generacji, dyfuzji, konwekcji i dyssypacji.

Oba zaprezentowane modele EVM oraz model RSM, są podstawą wszystkich pakietów numerycznych CFD (Computational Fluid Dynamics) używanych obecnie do modelowania przepływów [103].

4.1.2. Metoda bezpośredniej symulacji obliczeniowej (DNS) przepływów turbulentnych

Metoda wykorzystująca bezpośrednią symulację obliczeniowa przepływów turbulentnych DNS (Direct Numerical Simulation) polega na bezpośrednim rozwiązaniu równań Naviera-Stokesa bez jakichkolwiek uproszczeń. Traktuje ona turbulencję w sposób deterministyczny, uzyskując rozwiązanie równań Naviera-Stokesa w dziedzinie czasu na bardzo gęstych siatkach, których oczka muszą być mniejsze niż najdrobniejsze skale turbulencji (skale lepkie - mikroskale Kołmogorowa [20]) przy czym poszczególne rozwiązania są równoważne kolejnym realizacjom przepływu turbulentnego. Obliczenia prowadzone metodą DNS umożliwiają prawidłowe odtworzenie dynamiki wszystkich skal liniowych i czasowych turbulencji, które w odróżnieniu od metod RANS nie są modelowane, lecz są wynikiem numerycznego rozwiązania. Kolejnym problemem związanym ze stosowaniem metod bezpośrednich jest długość kroku czasowego, który musi być na tyle mały aby przemieszczenie molekuły płynu w tym czasie nie przekroczyło wielkości pojedynczego elementu siatki. Niezbędnym do uzyskania wiarygodnego rozwiązania przy zastosowaniu metody DNS dla przepływu turbulentnego jest obliczenie szacunkowej liczby węzłów siatki zgodnie z zależnością [95]:

$$N_{DNS} > \left(\frac{l}{\eta}\right)^3 \approx Re_t^{\frac{9}{4}},\tag{4.5}$$

gdzie: Re_t - turbulentna liczba Reynoldsa oparta na makroskali turbulencji, l - rozmiar wirów o największej skali, η - rozmiar najmniejszych zawirowań istotnych dla prawidłowego odtworzenia dynamiki turbulencji (skala długości Kołmogorowa).

Rozmiar najmniejszych zawirowań istotnych η określa się zależnością:

$$\eta = \left(\frac{\nu^3}{\varepsilon}\right)^{\frac{1}{4}} \approx Re_t^{\frac{9}{4}},\tag{4.6}$$

gdzie: v - współczynnik lepkości kinematycznej, ε - współczynnik dyssypacji lepkiej energii. Innym istotnym parametrem jest liczba kroków czasowych *n* określana zależnością [96]:

$$n \approx \frac{l}{\eta} \approx R e_t^{\frac{3}{4}}.$$
(4.7)

Z kolei czas obliczeń można oszacować z równania:

$$t = \frac{l}{\sqrt{E_{kt}}},\tag{4.8}$$

gdzie: E_{k_t} - energia kinetyczna turbulencji.

Zastosowanie tej metody wiąże się z dużą mocą obliczeniową komputerów. Obecnie największe wieloprocesorowe komputery umożliwiają symulację DNS dla przepływów charakteryzujących się liczbą Re_t rzędu $10^3 \div 10^4$, podczas gdy przepływy w skali przemysłowej charakteryzują się liczbą Reynoldsa rzędu Re_t~ $10^5 \div 10^6$. Metoda DNS stosowana jest do badań prostych przepływów modelowych, co umożliwia pełną analizę zjawisk zachodzących w tych przepływach oraz ich pełne zrozumienie [4].

4.2. Analiza funkcjonowania zastosowanej głowicy pulsacyjnej

Do wytwarzania pulsującej strugi wodnej można wykorzystać głowicę o odpowiedniej konstrukcji [85, 106], która mając specyficzny kształt komory wirowej powoduje samowzbudne tworzenie się dynamicznych impulsów w wypływającej z niej strudze wodnej. Na rys. 4.1 zaprezentowano przykład takiego rozwiązania.

Rys. 4.1. Uproszczony model fizyczny i schemat budowy głowicy pulsacyjnej [46, 85]

Mechanizm modulacji dynamicznych impulsów w strumieniu wody przepływającym przez taką głowicę jest zjawiskiem złożonym [12]. Polega on na kształtowaniu się impulsów hydrodynamicznych wywoływanych przez podciśnienie wytwarzane dzięki odpowiedniej konstrukcji komory, ułatwiającej tworzenie się wirów. Odpowiednio ukształtowane wiry przyczyniają się również do modulacji pulsacyjnej strugi wodnej, w której na wylocie z głowicy okresowo występuje gwałtowny wzrost ciśnienia [85]. Dlatego taka struga wodna posiada również okresowo dużą energię chwilową, dzięki czemu skutecznie intensyfikuje kruszenie wierconych skał [44, 109]. Ponadto, stosowana głowica pulsacyjna okresowo wywołuje podciśnienie w strefie wiercenia, dzięki czemu ułatwia usuwanie zwierconych cząstek skalnych [58]. Skomplikowana geometria głowicy oraz kształtujące się w niej wiry przyczyniły się do wyboru modelu matematycznego opartego na metodzie równań Reynoldsa dla przepływów turbulentnych.

4.3. Ogólny model matematyczny przepływów pulsacyjnych

Do opisu zjawisk zachodzących w samowzbudnej głowicy pulsacyjnej wykorzystano równanie Naviera-Stokesa zawierające równania w postaci równań ciągłości, opisujących zasadę zachowania masy i pędu dla poruszającego się płynu. W przestrzeni fizycznej pole prędkości $v = (v_1, v_2, v_3)$, wyrażone w kartezjańskim układzie współrzędnym $x = (x_1, x_2, x_3)$ jest rozwiązaniem układu zawierającego równania pędu i ciągłości [86]. Postać indeksowa "nieściśliwego" równania Naviera-Stokesa to:

$$\frac{\partial v_i}{\partial t} + v_j \frac{\partial v_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + v \frac{\partial}{\partial x_j} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right) i = 1,2,3 \dots,$$
(4.9)

$$\frac{\partial u_i}{\partial x_i} = 0, \tag{4.10}$$

gdzie: *p* - ciśnienie zaś *v* - lepkość kinematyczna [86].

W kolejnym etapie dokonano filtracji równania Naviera-Stokesa przez równania sterujące. W przestrzeni płynu funkcja filtrująca ma stałą wartość, którą jest odwrotność objętości elementarnej siatki numerycznej. Zatem symulowane wiry mają rozmiary rzędu wielkości objętości elementarnego podziału numerycznego. Następnie dzielimy zmienne przepływowe f(x, t) na zmienne o dużej skali $\overline{f}(x, t)$ i zmienne o małej skali f'(x, t).

$$f(x,t) = \bar{f}(x,t) + f'(x,t), \qquad (4.11)$$

gdzie:
$$\bar{f}(x,t) = \int_{F} G(x,x')f(x',t)dx',$$
 (4.12)

gdzie: G(x, x') - funkcja filtrująca, F - pole przepływu, G - oznacza funkcję, która decyduje o szerokości filtra.

G(x, x') jest zdefiniowana jako:

$$G(x, x') = \begin{cases} 1/V, \ x' \in V_{o} \\ 0, \ x' \notin V_{o} \end{cases},$$
(4.13)

gdzie: Vo - objętość elementu obliczeniowego.

Użycie zapisu Einsteina sprawia, że równania Naviera-Stokesa dla płynu nieściśliwego we współrzędnych kartezjańskich przyjmuje postać:

$$\frac{\partial \bar{v}_i}{\partial x_i} = 0, \tag{4.14}$$

$$\frac{\partial \overline{v}_i}{\partial t} + \frac{\partial \overline{v}_i \overline{v}_j}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + v \frac{\partial^2 \overline{v}_i}{\partial x_j x_j}.$$
(4.15)

Filtrując równanie (4.15) przez równanie (4.11), możemy uzyskać równania sterujące o następującej postaci:

$$\frac{\partial \bar{v}_i}{\partial x_i} = 0, \tag{4.16}$$

$$\frac{\partial \overline{v}_i}{\partial t} + \frac{\partial \overline{v}_i \overline{v}_j}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + v \frac{\partial^2 \overline{v}_i}{\partial x_j x_j} - \frac{\partial \tau_{ij}}{\partial x_j},$$
(4.17)

gdzie: τ_{ij} - tensor naprężeń przepływu turbulentnego, opisany zależnością (4.18).

$$\tau_{ij} = \overline{v_i v_j} - \bar{v}_i \bar{v}_j. \tag{4.18}$$

Wyrażenie τ_{ij} oznacza nieznaną ilość, która może być rozwiązana za pomocą trybu Smagorinsky'ego opartego na kinematycznej lepkości wirowej [27, 104]. W tym trybie części anizotropowe w naprężeniach podpunktu są proporcjonalne do produktu o burzliwym współczynniku kinematycznej lepkości wirowej i dużej częstości odkształcenia tensora.

$$\tau_{ij} - \frac{1}{3}\tau_{kk}\delta_{ij} = -2\nu_t \overline{S_{ij}},\tag{4.19}$$

gdzie: v_t - kinematyczna lepkość wirowa, $\overline{S_{ij}}$ - oznacza stopień precesji tensora.

$$\overline{S_{\iota j}} \equiv \frac{1}{2} \left(\frac{\partial \overline{u_l}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right).$$
(4.20)

W wyniku operacji filtrowania uzyskano wyrażanie, opisujące tensorowe naprężenia podsiatkowe [4]. Do określenia kinematycznej lepkości wirowej v_t stosowano model Smagorinsky'ego-Lilly, który został przedstawiony przez Smagorinsky'ego i rozwinięty przez Lilly [60, 61]. Ma on następującą postać ogólną:

$$\nu_t = \rho L_S^2 |\bar{S}|, \tag{4.21}$$

gdzie:

 ρ - gęstość mieszaniny [kg/m³]

L_S - długość mieszania siatki [m]

 $|\bar{S}|$ - wielkość tensora deformacji [1/s]

$$|\bar{S}| = \sqrt{2\bar{S}_{ij}\bar{S}_{ij}},\tag{4.22}$$

$$L_S = \min\left(C_{\kappa}l, C_S V^{\frac{1}{3}}\right),\tag{4.23}$$

gdzie: C_{κ} - stała Kármán, l - długość do najbliższej ściany, V - objętość elementu obliczeniowego, C_S - stała Samagorina.

Ze względu na niewiadome występujące w równaniu ciągłości (4.9), jak również niewiadome dla warunków początkowych i brzegowych nie można jednoznacznie opisać przepływu turbulentnego. Ustala się więc dodatkowe kryteria określające składowe naprężeń τ_{ij} oraz tworzy modele turbulencji, w których wykorzystuje się koncepcje lepkości turbulentnej, opierającej się w dużej mierze na różnych hipotezach i wielu dodatkowych modelach. Dlatego też opisywanie ciągle zmieniających się niestabilnych ruchów wirowych jest szczególne trudne i złożone a przydatność ich wyników jest wysoce niepewna. Z powyższych względów nieodzowne staje się przeprowadzanie modelowych badań symulacyjnych.

4.4. Metodyka badań komputerowych

Dla analizy przepływu strugi przez samowzbudną głowicę pulsacyjną oraz określenia wpływu geometrycznych parametrów głowicy niezbędnym stało się wykonanie komputerowych badań wstępnych polegających na znalezieniu grupy rozwiązań konstrukcyjnych głowicy charakteryzujących się pomiarem efektów oddziaływania na kreowaną w samowzbudnej głowicy pulsacyjnej strugę wodną. Następnie można było przystąpić do realizacji zasadniczych badań, które realizowano dla dwóch wybranych rozwiązań konstrukcyjnych samowzbudnej głowicy pulsacyjnej. W pierwszym etapie badań zasadniczych określano wpływ parametrów konstrukcyjnych samowzbudnej głowicy pulsacyjnej na prędkość strugi generowaną w dyszy wylotowej. Natomiast drugi etap badań zasadniczych obejmował oddziaływanie parametrów konstrukcyjnych głowicy na kształt i efektywność erozyjną generowanej strugi wodnej. Badania przeprowadzano wykorzystując oprogramowanie Solid Works Flow Simulation, służące do analizy ruchu cieczy.

Metodyka planowania doświadczeń, została dopasowana do planu, który umożliwia zoptymalizowanie parametrów geometrycznych samowzbudnej głowicy pulsacyjnej w stosunku do prędkości strugi na wylocie z głowicy. Dla zrealizowania tego celu, wykonano wstępne badania numeryczne, które w obu zastosowanych głowicach obejmowały badania komputerowe oraz badania zasadnicze dotyczące parametrów geometrycznych głowicy.

Złożony i rozbudowany model obiektu badanego jakim jest samowzbudna głowica pulsacyjna, oraz liczne badania symulacyjne oceny wpływu parametrów konstrukcyjnych na kreowaną wysokociśnieniową strugę wodną w głowicy, nakładają szczególną uwagę na dobór właściwego planu badań, decydującego o ich wiarygodności i pracochłonności. W wyniku tego część badań realizowano według planu pięciopoziomowego rotatabilnego oznaczonego symbolem PS/DS-P:λ [62, 85].

4.4.1. Ustawienia programu do obliczeń symulacyjnych

Badania symulacyjne wykonano z wykorzystaniem programu Solid Works FlowSimulation przyjmując następujące założenia:

- obliczenia numeryczne turbulencji wykonano z wykorzystaniem modelu k-ε oraz jego standardowymi współczynnikami,
- obliczenia wykonano z wykorzystaniem siatki strukturalnej w obszarze przyściennym oraz siatki tetragonalnej poza warstwą przyścienną,
- siatka strukturalna w pobliżu ściany została zagęszczona i składa się z 3 warstw,
- łącznie geometria zawiera 563 tys. elementów (dalsze zwiększanie liczby elementów nie powodowało zmian rezultatów obliczeń numerycznych rozkładu prędkości w profilu wylotowym dyszy),
- proces symulacji kończył się automatycznie po osiągnięciu kryterium zbieżności, które wymagało wykonania co najmniej 500 iteracji,
- symulacji dokonano w stanie ustalonym, gdyż stwierdzenie istnienia wirów w komorze wirowej głowicy, nie sam sposób ich powstawania, decydował o właściwej pracy głowicy,
- pominięto chropowatość ścian,
- przepływ przez głowicę wymuszano ciśnieniem zdefiniowanym w dyszy wlotowej,
- kanały boczne oraz dysza wylotowa zostały zdefiniowane poprzez ciśnienie odpowiadające wartości ciśnienia otoczenia,
- woda podczas symulacji jest traktowana jako płyn nieściśliwy będący fazą ciągłą,
- nie zachodzi wymiana ciepła z zewnątrz, temperatura płynu jest stała [85, 106].

Na rysunku 4.2 zaprezentowano widok zróżnicowania siatki strukturalnej wykorzystanej w symulacyjnych badaniach komputerowych.

Rys. 4.2. Widok zróżnicowania siatki strukturalnej używanej w symulacyjnych badaniach komputerowych

4.4.2. Numeryczne badania wstępne

Celem numerycznych badań wstępnych było ustalenie warunków do przeprowadzenia zasadniczych badań komputerowych a także badań eksperymentalnych. Nadrzędnym celem był wybór oraz ograniczenie parametrów geometrycznych samowzbudnych głowic pulsacyjnych badanych pod kątem ograniczeń aparatury badawczej oraz pracochłonności.

W numerycznych badaniach wstępnych przeanalizowano różne parametry geometryczne głowic jak również usytuowanie otworów bocznych w stosunku do komory wirowej a także ilość otworów bocznych i kształt pierścieni wirowych wewnątrz głowic. W badaniach tych przeprowadzono również analizę wpływu parametrów konstrukcyjnych głowic na prędkość strugi wodnej rejestrowanej na wyjściu z głowicy oraz prędkość zasysania czynnika przez otwory boczne a także dokonano oceny kształtu pierścieni wirowych w komorze wirowej samowzbudnej głowicy pulsacyjnej. Do tego celu wykorzystano oprogramowanie Solid Works Flow Simulation, w którym przyjęto określone założenia: jako kryterium do symulacji przyjęto płyn nieściśliwy - wodę, będącą fazą ciągłą, dla której nie występuje wymiana ciepła z zewnątrz, a temperatura początkowa jest stała.

4.4.3. Model badań numerycznych

Zasadniczym celem badań numerycznych jest wybór i ograniczenie liczby czynników badanych pod kątem prędkości strugi badanej w dyszy wylotowej. W badaniach tych przeprowadzono symulacje komputerowe parametrów konstrukcyjnych dwóch rodzajów samowzbudnych głowic pulsacyjnych, przeznaczonych do drążenia otworów oraz do obróbki i czyszczenia powierzchni technicznych. Każdorazowo w badaniach takich głowic pulsacyjnych należy uwzględniać oddziaływanie następujących czynników:

- znaczenie średnicy dyszy wlotowej wpływającej na prędkość strugi na wypływie z głowicy,
- usytuowanie otworów bocznych w stosunku do komory wirowej, wpływające na proces zasysania czynnika zewnętrznego oraz prędkość wypływu strugi z dyszy wylotowej,
- wysokość dyszy wlotowej, wpływa na prędkość strugi wodnej na wyjściu z tej dyszy oraz na tworzenie się wodnych pierścieni wirowych wewnątrz komory,
- 4. nachylenie kąta natarcia komory wirowej, pod względem kształtowania się wodnych pierścieni wirowych powstających w jej wnętrzu,
- znaczenie średnicy otworów bocznych, przyczyniających się do zasysania czynnika zewnętrznego, blokowania przepływu strumienia głównego i wpływających na kształtowanie się wodnych pierścieni wirowych wewnątrz samowzbudnej głowicy pulsacyjnej,
- wymiary średnicy komory wirowej oraz jej wysokości mającymi wpływ na prędkość przy wylocie strugi oraz zasysanie czynnika zewnętrznego na tworzenie wodnych pierścieni wirowych wewnątrz komory,
- wpływ średnicy dyszy wylotowej przyczyniającej się do wzrostu prędkości na wypływie z głowicy,
- 8. wysokość dyszy wylotowej wpływającej na prędkość strugi wodnej na wypływie z samowzbudnej głowicy pulsacyjnej,
- szerokość powierzchni pierścieniowych komory wirowej, wpływających na proces zasysania czynnika zewnętrznego oraz na tworzenie wodnych pierścieni wirowych wewnątrz tej komory.

Przeprowadzona analiza teoretyczna tego zagadnienia i numeryczne badania wstępne, umożliwiły wytypowanie istotnych cech konstrukcyjnych samowzbudnej głowicy pulsacyjnej Z uwagi na złożoność badanego obiektu i potrzeby ograniczenia pracochłonności badań, do ich realizacji stosowano plan statystyczny zdeterminowany pięciopoziomowy, rotatabilny (oznaczonym PS/DS-P:λ) [78, 79].

Ponadto wykorzystanie metod statystycznych do planowania badań może znacząco zwiększyć dokładność wyników oraz jednoczesne zmniejszyć liczbę koniecznych symulacji [55, 56]. Natomiast zastosowanie programu "Experiment Planer" do komputerowego wspomagania planowania badań eksperymentalnych może znacznie przyspieszyć prace związane z opracowaniem modelu statystycznego. Dodatkowym atutem jest to że plan jest powszechnie znany i akceptowany do różnych rozwiązań [26, 75].

Wykorzystując cybernetyczną zasadę "czarnej skrzynki" (rys. 4.3), tj. braku pełnej znajomości mechanizmów obiektu, poszukuje się związków pomiędzy zmiennymi wyjściowymi y, a zmiennymi wejściowymi x (przy założeniu występowania czynników stałych C oraz czynników zakłócających h, których wpływ jest ujmowany jako przedział ufności modelu).

Rys. 4.3. Schemat modelu badań numerycznych

Model zaplanowanych badań numerycznych w przypadku głowicy do drążenia głębokich otworów zawierał następujące grupy czynników:

X - wielkości wejściowe:

- x1 średnica dyszy wlotowej,
- x2 wysokość dyszy wlotowej,
- x3 kąt natarcia komory,
- x₄ średnica otworów bocznych,
- x5 średnica komory wirowej,
- x₆ wysokość komory wirowej,
- x7 średnica dyszy wlotowej,
- x8 wysokość dyszy wylotowej,

x9 - szerokość powierzchni pierścieniowych komory wirowej,

x₁₀-ciśnienie wody.

Z - wielkości wyjściowe:

- z1 prędkość strugi na wyjściu,
- z2 prędkość zasysania czynnika zewnętrznego przez otwory boczne.

C - wielkości stałe:

- c1 czynnik roboczy woda,
- c₂ temperatura początkowa.

H - wielkości zakłócające:

h₁ - błąd dyskretyzacji,

h2 - błąd odwzorowania warunków rzeczywistych pracy głowicy.

Wszystkie te zabiegi służyły ograniczeniu wariantów badań i zredukowania ich pracochłonności.

4.4.4. Wybór planu badań

Badania wpływu parametrów geometrycznych samowzbudnej głowicy pulsacyjnej na prędkość wypływu strugi z tej głowicy i prędkość zasysania czynnika zewnętrznego przez otwory boczne realizowano w oparciu o plan pięciopoziomowy rotatabilny (PS/DS-P: λ). Nadrzędnym celem zrealizowania badań było znalezienie równania regresji, opisującego odchylenie profilu od linii średniej v prędkości strugi na wyjściu z głowicy w zależności od parametrów: średnica komory wirowej D; wysokość komory wirowej H; wysokość dyszy wlotowej h_1 ; kąt natarcia komory λ ; średnica otworów bocznych d_2 ; średnica dyszy wylotowej d_3 ; średnica dyszy wlotowej d_1 . Równanie ma ogólną postać:

$$v_1 = v_1 \left(\overline{H}, \overline{D}, \overline{h}, \overline{\lambda}, \overline{d_1}, \overline{d_2}, \overline{d_3}, \overline{SP}, \overline{p} \right). \tag{4.24}$$

W celu określenia postaci funkcji oraz przedziału ufności określono zbiór czynników badanych, stałych, zakłócających oraz wynikowych, które przedstawiają się następująco:

\overline{X} - Zbiór czynników badanych $[\overline{X}(\overline{x}_1, \overline{x}_2, \overline{x}_3, \overline{x}_4, \overline{x}_5, \overline{x}_6, \overline{x}_7)]$:

 $\bar{x}_1 = \bar{d}_1$, mm,- średnica dyszy wlotowej,

 \bar{x}_2 =h, mm - wysokość dyszy wlotowej,

 $\bar{x}_3 = \bar{\lambda}$, ° - kąt natarcia komory,

 $\bar{x}_4 = \bar{d}_2$, mm - średnica otworów bocznych,

 $\bar{x}_5 = \bar{D}$, mm - średnica komory wirowej,

 $\bar{x}_6 = \bar{H}$, mm - wysokość komory wirowej,

 $\bar{x}_7 = \bar{d}_3$, mm - średnica dyszy wylotowej,

 $\bar{x}_8 = \overline{SP}$, mm - szerokość powierzchni pierścieniowych komory wirowej,

 $\bar{x}_9 = \bar{p}$, MPa - ciśnienie wody na wlocie do głowicy.

Z - wielkości wyjściowe:

 z_1 - v_1 , m/s - prędkość strugi na wyjściu,

z₂-*v*₂, m/s - prędkość zasysania czynnika przez otwory boczne.

C - zbiór czynników stałych:

c₁=t, 293,2 K - temperatura początkowa,

c₂=p₂, 0,101325 MPa - ciśnienie wody w otworach bocznych,

c₃=p₃, 0,101325 MPa - ciśnienie wody na wylocie z głowicy.

H - zbiór czynników zakłócających:

h1 - błąd dyskretyzacji,

h2 - błąd odwzorowania warunków rzeczywistych pracy głowicy.

Następnie ustalono przedziały zmienności czynników badanych. W badaniach numerycznych *dla głowicy przeznaczonej do drążenia otworów* przyjęto następujące zakresy zmienności czynników:

 $\bar{x}_1 = \bar{d}_1$: 2,0; 2,5; 2,2; 2,5; 3; 3,2 mm,

 $\bar{x}_2 = \overline{h_1}: 6, 8, 10, 12 \text{ mm},$

 $\bar{x}_3 = \bar{\lambda}: 100, 110, 120^\circ,$

- $\bar{x}_4 = \bar{d}_2:2, 3, 4, 5, 6, 7, 8 \text{ mm},$
- $\bar{x}_5 = \overline{D}$: 20, 25, 30, 35, 40, 45, 50 mm,

 $\bar{x}_6 = \overline{\text{H}}$: 15, 20, 25, 30, 35, 40, 45 mm,

 $\bar{x}_7 = \bar{d}_3$: 4, 5, 6, 7, 8, 9 mm,

 $\bar{x}_8 = \overline{SP}$: 1, 2, 3, 4, 5, 6 mm,

 $\bar{x}_9 = \bar{p}$: 15, 30, 45, 60, 75, 90, 105, 120, 135, 150 MPa.

Zakresy zmienności: Dla osiągnięcia wyższej prędkości strugi wodnej na wlocie do głowicy, przy takim samym wydatku wody, średnica dyszy wlotowej w porównaniu do literaturowego rozwiązania, została zmniejszona do 2,5÷3,2 mm. Analiza literatury [85, 106] oraz wstępnych symulacji komputerowych [7, 8] wykazała, że stosunek wysokości dyszy wlotowej do jej średnicy jest różny i wynosi od 1,2 do 5, dlatego wysokość dyszy wlotowej badano w zakresie 6÷12 mm. Kąt natarcia komory ustalono w granicach 100÷120°. Wstępne badania symulacyjne [12] wykazały, że kąt powyżej 120° powodował niekorzystne kształtowanie się pierścieni wirowych oraz niekorzystnie wpływał na zasysanie czynnika

przez otwory boczne. Średnice otworów bocznych badano w zakresie 2÷8 mm. Otwory boczne głowicy dobierano ze względu na wysokość i szerokość komory wirowej. Wybór zakresu średnicy komory (20÷50 mm), dokonano ze względu na zmniejszenie wymiarów głowicy, w celu uzyskania wyższej prędkości strugi na wyjściu z głowicy. Wysokość komory dobierano odpowiednio do jej szerokości, którą badano w zakresie 20÷50 mm. Średnice dyszy wylotowej ustalono w granicach 4÷9 mm, zwiększając tym samym prędkość na wylocie strugi wodnej.

Dla głowicy przeznaczonej do obróbki powierzchni:

 $\bar{x}_1 = \overline{\mathbf{d}_1^{\text{II}}}$: 0,6; 0,7; 0,8; 0,9; 1,0; 1,2 mm,

 $\bar{x}_2 = \overline{h_1^{\text{II}}}$: 0,5; 0,8; 1,5; 1,8; 2,5; 3; 3,5 mm,

- $\bar{x}_3 = \bar{\lambda}: 100, 110, 120^\circ,$
- $\bar{x}_{4} = \overline{\mathbf{d}_{2}^{\text{II}}}$: 0,4; 0,6; 0,8; 1; 1,2; 1,4 mm,

 $\bar{x}_5 = \overline{D^{II}}$: 4,6; 5; 5,4; 5,8; 6,2; 7,4 mm,

 $\bar{x}_6 = \overline{\mathrm{H}^{\mathrm{II}}}$: 1,4; 2,2; 3,2; 4,2; 5,2; 6,2 mm,

 $\bar{x}_7 = \overline{\mathbf{d}_3^{\text{II}}}$: 0,6; 0,7; 0,8; 0,9; 1,0; 1,2 mm,

 $\bar{x}_8 = \overline{SP^{II}}$: 0,6; 0,8; 1,0; 1,2; 1,4; 2 mm.

Zakresy zmienności: Szerokość powierzchni pierścieniowych komory wirowej badano w zakresie SP^{II}=0,6÷2,0 mm. Wyboru zakresu parametrów średnicy komory D^{II}=4,6÷7,5 mm, dokonano ze względu na zmniejszenie wymiarów głowicy dla uzyskania wyższej prędkości na wyjściu z głowicy. Natomiast wysokość komory dobierano odpowiednio do jej średnicy, którą badano w zakresie H^{II}=1,4÷6,2 mm. Wysokość dyszy wlotowej badano w zakresie h^{II}=0,5÷3,5 mm. Relację wysokości dyszy wlotowej do średnicy dyszy wlotowej ustalono w zakresie h^{II}/d₁^{II}=0,8; 2,5; 3,0; 5,0. W celu osiągnięcia wyższej prędkości na wejściu przy takim samym wydatku wody średnica dyszy wlotowej w porównaniu do pierwszego rozwiązania została zmniejszona w zakresie d₁^{II}=0,6÷1,2 mm. W tym samym zakresie, przebadano również średnicę dyszy wylotowej d₃^{II}=0,6÷1,2 mm zwiększając tym samym prędkość na wyjściu strugi wodnej. Średnice otworów bocznych badano w zakresie d₂^{II}=0,4÷1,4 mm. Otwory boczne głowicy dobierano ze względu na wysokość i szerokość komory wirowej.

W następnej kolejności ustalano klasę modelu matematycznego obiektu badań. Współczynnik dokładności opisano funkcją kwadratową i przedstawiono w uproszczonej postaci sumacyjnej zmiennych wejściowych:

$$\hat{\bar{Y}} = b_0 + \sum_{i=1}^n b_i \, \bar{x}_i + \sum_{i=1}^n b_{ii} \, \bar{x}_i^2 + \sum_{\substack{i,j=1\\i < j}}^n b_{ij} \, \bar{x}_i \bar{x}_j, \tag{4.25}$$

gdzie: n – ilość czynników badanych

Następnie przeprowadzono kodowanie czynników badanych dla wartości centralnych \bar{x}_{i0} (i = 1, ..., n)wykorzystując zależność:

$$\bar{x}_{i0} = \frac{\bar{x}_{imax} + \bar{x}_{imax}}{2}$$
 dla *i*=1,..., n. (4.26)

Jednostki zmienności czynników $\Delta \bar{x}_i$ dla i=1,...,n, obliczono ze wzoru:

$$\Delta \bar{x}_i = \frac{\bar{x}_{imax} - \bar{x}_{i0}}{2} \quad \text{dla } i = 1, \dots, n.$$
 (4.27)

Badania powyższe realizowano według planu pięciopoziomowego rotatabilnego oznaczonego PS/DS-P: λ , dla którego wartość ramienia gwiezdnego dla S=n wynosiła $\alpha = \sqrt[4]{2^{s}}$ Pozwala to na określenie relacji kodowych zgodnych ze wzorem:

$$\check{x}_{i} = \frac{\bar{x}_{i} - \bar{x}_{i0}}{\Delta \bar{x}_{i}} \quad \text{dla } i = 1, ..., n,$$
(4.28)

gdzie \bar{x}_i -zmienne rzeczywiste, \check{x}_i -zmienne zakodowane

Oznacza to przyjęcie kodu:

$$\bar{x}_{i} = +\alpha : \bar{x}_{i}(+\alpha) = \bar{x}_{i0} + \alpha \Delta \bar{x}_{i0}, \qquad \bar{x}_{i} = -\alpha : \bar{x}_{i}(-\alpha) = \bar{x}_{i0} - \alpha \Delta \bar{x}_{i0},
\bar{x}_{i} = +1 : \bar{x}_{i}(+1) = \bar{x}_{i0} + \Delta \bar{x}_{i0}, \qquad \bar{x}_{i} = -1 : \bar{x}_{i}(-1) = \bar{x}_{i0} - \Delta \bar{x}_{i0},$$

$$\bar{x}_{i} = 0 : \bar{x}_{i}(0) = \bar{x}_{i0}.$$
(4.29)

W kolejnym etapie wartości \bar{x}_i według wzoru $\bar{x}_i = \bar{x}_{i0} + \check{x}_i \Delta \bar{x}_i$ podstawia się do postaci sumacyjnej (4.25) wyznaczonej z zależności (4.28) i po uporządkowaniu otrzymuje się w zapisie macierzowym:

$$\hat{\bar{Y}} = \check{\bar{X}}k, \tag{4.30}$$

gdzie:

$$k_0 = b_0 + \sum_{i=1}^n b_i \, \bar{x}_{i0} + \sum_{i=1}^n b_{ii} \, \bar{x}_{i0}^2 + \sum_{\substack{i,j=1\\i < j}}^n b_{ij} \, \bar{x}_{i0} \bar{x}_{j0}.$$
(4.31)

W dalszej fazie takich badań również realizowano planu pięciopoziomowy rotatabilny, w którym należy wykonać pomiary dla:

- układów ($n_k = 2^S$) w górnym i dolnym poziomie programu,

- układów w "punktach gwiezdnych" ($n_{\alpha} = 2S$),

- pomiarów paralelnych w "centrum programu" (n_0) .

W programie Eplaner sumuje się pomiary zgodnie ze wzorem $N_c = Nr = (n_k + n_\alpha + n_0)r$, gdzie: "r" to liczba powtórzeń pomiarów, i otrzymuje ilość symulacji komputerowych, które należy wykonać w celu wyznaczenia modelu matematycznego. Następnie dokonywano eliminacji wyników obarczonych błędem grubym. W tym celu przeanalizowano statystyki przeprowadzone przy wykorzystaniu testów Grubs'a B oraz statystyki $B^{\pm 4}$, $B^{\pm 6}$, $B^{\pm 7}$, $B^{\pm 8}$ [57].

Kolejno obliczono wariancję międzywierszowa i odchylenie standardowe oraz sprawdzono jednorodność wariancji w próbie za pomocą testu Cochran'a.

Umożliwia to dokonanie wyboru modelu matematycznego, obliczono współczynnik funkcji regresji oraz wykonano analizę statyczną funkcji. W programie Eplanner możliwy jest wybór następujących modeli: wielomian, funkcja logarytmiczna, wykładnicza, potęgowa i ułamkowa.

Ocenę adekwatności modelu matematycznego względem symulacji komputerowej dokonano testem "F", który jest stosunkiem wariancji adekwatności do wariancji charakteryzującej błąd doświadczenia. Wartość testu F porównuje się z wartością krytyczną F_{kr} testu. Jeżeli nierówność F<F_{kr} to należy przyjąć hipotezę o adekwatności funkcji regresji. Oznacza to, że model przez program został oceniony jako adekwatny do wyników pomiaru.

4.5. Wnioski

Teoretyczna analiza zagadnień dotyczących przepływów turbulentnych i pulsacyjnych, pogłębiona analizą funkcjonowania takiej głowicy, stała się inspiracją do bardziej szczegółowego poznania mechanizmu samowzbudnego generowania w niej impulsów hydraulicznych, a także opracowania korzystnej metodyki badań komputerowych, co pozwoliło na sformułowanie następujących istotnych wniosków metodologicznych:

- Do przeprowadzenia modelowych badań symulacyjnych CFD można wykorzystać metody RANS oraz DNS. Jako najbardziej adekwatną, do opisu przepływu turbulentnego głowicy pulsacyjnej, wybrano metodę opartą na lepkości wirowej, uwzględniając jednocześnie możliwości obliczeniowe posiadanego sprzętu komputerowego oraz możliwe do uzyskania wyniki.
- 2. Złożona geometria przestrzeni przepływowych jaką charakteryzuje się samowzbudna głowica pulsacyjna oraz tworzenie się warstwowych wirów hydrodynamicznych w komorze wirowej, jak również różnice w prędkościach przepływu przez poszczególne strefy głowicy, możliwe są do opisania przy wykorzystaniu metody opartej na lepkości wirowej stosując model Samagorinsky'ego-Lilly.
- 3. Struga wodna generowana w samowzbudnej głowicy pulsacyjnej, pod wpływem kształtujących się wewnątrz niej zawirowań hydrodynamicznych, które okresowo

wywołują gwałtowne wzrosty jej ciśnienia, cyklicznie przenosi duże impulsy energii zapewniające jej zwiększoną erozyjność.

- 4. Możliwości generowania impulsów hydraulicznych w samowzbudnej głowicy pulsacyjnej wykazały, że jest to proces interesujący, warty zbadania również w innych warunkach i zastosowaniach. Między innymi dlatego też podjęto działania mające potwierdzić wpływ odpowiednio ukształtowanych zawirowań płynu w ruchu turbulentnym na efektywność kształtowania się impulsów hydrodynamicznych wykorzystując metodę opartą na lepkości wirowej.
- 5. Ze względu na szczególnie trudny i złożony opis matematyczny ciągle zmieniających się i niestabilnych ruchów wirowych, niezbędne i przydatne z punktu widzenia pracochłonności staje się przeprowadzenie komputerowych badań symulacyjnych, dzięki którym możliwa jest analiza przepływu strugi przez samowzbudną głowicę pulsacyjną a zarazem określenie wpływu jej parametrów geometrycznych.
- 6. Parametry geometryczne wraz z hydraulicznymi warunkami pracy głowicy wytwarzającej impulsy wodne wpływają na charakter struktury wewnętrznej przepływu umożliwiając wytwarzanie pulsującej strugi wodnej, która dzięki właściwościom dynamicznym charakteryzuje się zwiększona erozyjnością.
- 7. O właściwościach impulsowej strugi wodnej a tym samym o funkcjonowaniu głowicy wytwarzającej taką strugę, w zasadniczym stopniu decydują jej parametry geometryczne, takie jak: średnica oraz wysokość dyszy wlotowej, średnica i wysokość dyszy wylotowej, kąt natarcia komory, średnica i wysokość komory wirowej oraz średnica otworów bocznych.
- 8. Funkcjonowanie głowicy wytwarzającej impulsy hydrauliczne o określonych właściwościach zależy także od hydraulicznych warunków pracy, z których najważniejsze jest ciśnienie nominalne wpływające na prędkość przepływu wody przez średnicę dyszy wylotowej.
- 9. Na podstawie teoretycznych rozważań opartych na geometrii modelu konstrukcyjnego głowicy można również określić natężenie przepływu wody przez taką głowicę pulsacyjną, które zależy od średnicy dyszy wylotowej i sprawności używanej dyszy wylotowej oraz średniej prędkości strugi wodnej na wylocie z głowicy samowzbudnej.
- Określenie parametrów geometrycznych modelu konstrukcyjnego głowic na podstawie wyników wstępnych badań komputerowych, zrealizowanych przy zastosowaniu planu badań PS/DS-P:λ, umożliwiło ustalenie programu zasadniczych badań komputerowych.

5. BADANIA NUMERYCZNE

Dokładne opisanie zmieniających się niestabilnych ruchów wirowych jest szczególne trudne i złożone a przydatność ich wyników jest wysoce niepewna. Z powyższych względów nieodzowne jest przeprowadzanie modelowych badań symulacyjnych. Badania takie wykonywano w celu określenia rozkładów prędkości i ciśnienia strugi wewnątrz samowzbudnej głowicy pulsacyjnej a także na jej wylocie. Badania te przeprowadzono przy wykorzystaniu odpowiedniego oprogramowania komputerowego SolidWorks Flow Simulation.

Dzięki temu w ramach badań wstępnych przeprowadzono symulacyjne badania własne, dotyczące kształtowania się powyższych istotnych wielkości w samowzbudnej głowicy pulsacyjnej o charakterystyce identycznej z głowicą opracowaną w chińskim Instytucie Ropy Naftowej [6, 12]. Uzyskanie identycznych wyników potwierdziło poprawność badań wykonanych w Chinach oraz jest świadectwem trafności zastosowanej własnej metody symulacji cyfrowej. Pozwoliło to, więc na przeprowadzenie analogicznych badań symulacyjnych oddziaływania usytuowania otworów bocznych samowzbudnej głowicy pulsacyjnej i geometrii jej komory wirowej na rozkłady ciśnienia i rozkłady wektorów prędkości wewnątrz takiej głowicy oraz na prędkość wypływającej z niej strugi wodnej. Na podstawie analizy uzyskanych wyników wyodrębniono najbardziej korzystne rozwiązania konstrukcyjne dwóch opracowywanych rodzajów samowzbudnych głowic pulsacyjnych

5.1. Badania podstawowe modelu samowzbudnej głowicy pulsacyjnej

Dla opracowania koncepcji samowzbudnej głowicy pulsacyjnej w pierwszym etapie wykonano szereg badań symulacyjnych wykorzystując oprogramowanie SolidWorks Flow Simulation. We wstępnych badaniach symulacyjnych przeanalizowano oddziaływanie parametrów konstrukcyjnych samowzbudnej głowicy pulsacyjnej na jej funkcjonowanie.

5.1.1. Badania weryfikacyjne wcześniejszych dokonań

Badaniom weryfikacyjnym poddano tu wyniki rozkładu prędkości strugi wodnej na wylocie z głowicy, opracowanej i przebadanej w Instytucie Ropy Naftowej w Chinach [85]. Model takiego literaturowego rozwiązania konstrukcyjnego samowzbudnej głowicy pulsacyjnej zaprezentowano na rys. 5.1.

Rys. 5.1. Schemat i parametry geometryczne samowzbudnej głowicy pulsacyjnej

W celu zweryfikowania badań literaturowych dla zaprezentowanej konstrukcji głowicy, przyjęto następujące warunki brzegowe: ciśnienie na wejściu do głowicy równe 15 MPa, natomiast ciśnienie w otworach bocznych oraz ciśnienie na wyjściu z głowicy równe ciśnieniu atmosferycznemu. Jako czynnik roboczy zastosowano wodę. Dla takich warunków brzegowych przeprowadzono komputerowe symulacje zachowania się wody wewnątrz samowzbudnej głowicy pulsacyjnej i na jej wypływie.

Na podstawie otrzymanych wyników sporządzono m.in. rozkłady prędkości strugi wodnej pulsującej i ciągłej na wylocie z głowicy, które przedstawiono na rys. 5.2 wraz z porównawczymi wynikami komputerowymi, uzyskanymi w Instytucie Ropy Naftowej w Chinach. Liniami ciągłymi oznaczono literaturowe wyniki badań, natomiast liniami przerywanymi wyniki, uzyskane z własnych badań symulacyjnych.

Rys. 5.2. Porównanie literaturowych [85] i własnych rozkładów prędkości pulsującej i ciągłej strugi wodnej na wylocie z głowicy dla ciśnienia nominalnego równego 15 MPa

Analiza otrzymanych wyników wykazała podobieństwo charakterystyk rozkładów prędkości uzyskanych na podstawie wykonanych komputerowych badań symulacyjnych z wynikami literaturowymi. Wartości średnie prędkości w przepływie dla strugi pulsacyjnej prezentowane w literaturze są o 3% niższe od wartości uzyskanych na podstawie przeprowadzonych badań komputerowych i około 18% dla prędkości strugi ciągłej.

Nieco większe rozbieżności uzyskano dla prędkości strugi przy ściance. Porównanie wyników badań literaturowych i komputerowych badań symulacyjnych prędkości strugi wodnej na wylocie z głowicy pulsacyjnej ilustruje rys. 5.3.

Rys. 5.3. Porównanie wyników badań literaturowych [85] i własnych komputerowych badań symulacyjnych prędkości strugi pulsującej i ciągłej na wylocie z głowicy pulsacyjnej

Z kolei na rys. 5.4 przedstawiono interpretację graficzną wyników otrzymanych z symulacji komputerowej rozkładów ciśnienia i wektorów prędkości występujących wewnątrz samowzbudnej głowicy pulsacyjnej przy nominalnym ciśnieniu wody 15 MPa.

Rys. 5.4. Rozkłady ciśnienia i wektorów prędkości wewnątrz samowzbudnej głowicy pulsacyjnej przy nominalnym ciśnieniu wody15 MPa

Pozytywnie zweryfikowane wyniki badań własnych, uzyskane według zastosowanej umożliwiają przeprowadzanie metody symulacji cyfrowej, analogicznych badań symulacyjnych wpływu usytuowania otworów bocznych i geometrii komory wirowej samowzbudnej głowicy pulsacyjnej na rozkłady ciśnienia i wektorów predkości wewnatrz takiej głowicy oraz na prędkość wypływającej z niej strugi wodnej. Pozwoliły również na ustalenie następującego mechanizmu powstawania impulsów wodnych w takiej głowicy pulsacyjnej. Struga wodna wpływająca z dyszy wlotowej do komory wirowej ulega rozproszeniu, tworząc w niej odpowiednie pierścienie wirowe, które zasilane czynnikiem zewnętrznym, dopływającym przez odpowiednio usytuowane otwory boczne, okresowo blokują przepływ głównego rdzenia strugi wodnej. Do modulacji pulsacyjnej strugi wodnej, wywołującej na wylocie z głowicy okresowy wzrost ciśnienia, w głównym stopniu przyczyniają się wodne pierścienie wirowe odpowiednio ukształtowane w komorze wirowej. Skuteczność ich dodatkowego oddziaływania, intensyfikującego wytwarzane impulsy, zależy również od zasysania czynnika zewnętrznego przez otwory boczne. W mniejszym stopniu procesy te wspomagane są również przez odpowiednie ukształtowanie kąta natarcia i szerokości powierzchni pierścieniowych komory wirowej. Łączne oddziaływanie wymienionych tu czynników kształtujących wodne pierścienie wirowe, przyczynia się do odpowiedniej modulacji strugi wodnej, dzięki temu na wylocie z takiej głowicy występują pulsujące zmiany ciśnienia.

5.1.2. Symulacyjne badania wpływu usytuowania otworów bocznych

Poprawność wyników uzyskanych w powyższych badaniach przy ciśnieniu nominalnym 15 MPa upoważnia do prowadzenia analogicznych symulacji komputerowych w zakresach sprawdzania zróżnicowanej geometrii usytuowania otworów bocznych oraz zastosowania wyższych ciśnień strugi wodnej. W związku z zamiarem zastosowania wysokociśnieniowej pompy wodnej typu HDP 483 (p_{max}= 155 MPa; Q_w= 160 dm³/min), napędzanej silnikiem DIESEL, CATERPILAR TYPE C18 ATAAC Stufe III (N=750 KM) do badań eksperymentalnych przy maksymalnym ciśnieniu strugi 150 MPa w dalszych badaniach numerycznych przyjęto maksymalną średnicę dyszy wlotowej 2,5 mm dla wydatku 160 dm³/min oraz ciśnienie nominalne 150 MPa. Zamierzeniem tych badań jest przeprowadzanie analiz rozkładów wektorów prędkości i ciśnienia, decydujących o wytwarzaniu pierścieni wirowych takiego kształtu, jaki umożliwia uzyskiwanie wyższych prędkości strugi wodnej na wylocie z samowzbudnej głowicy pulsacyjnej. Dlatego w pierwszej kolejności przeprowadzono komputerowe badania symulacyjne przy zmiennym usytuowaniu otworów bocznych w stosunku do komory wirowej. Badania te przeprowadzono przy ciśnieniu roboczym strugi wodnej równym 150 MPa. Na rys. 5.5 zaprezentowano różne warianty geometrii samowzbudnej głowicy pulsacyjnej stosowane do komputerowych badań symulacyjnych przepływu strugi wodnej przez głowicę.

Rys. 5.5. Zróżnicowanie geometrii samowzbudnej głowicy pulsacyjnej o różnym usytuowaniu otworów bocznych: a) nachylonych pod kątem 120° względem osi głowicy; b) stycznie do komory wirowej; c) prostopadle do osi głowicy

W analizie rozpatrywano trzy rozwiązania konstrukcyjne, w których otwory boczne usytuowane były: pod kątem 120° względem osi głowicy (rys. 5.5a), stycznie do komory wirowej (rys. 5.5b) oraz prostopadle do komory wirowej (rys. 5.5c). Dla takich założeń konstrukcji otworów bocznych badano rozkłady ciśnień i wektorów prędkości powstających wewnątrz samowzbudnej głowicy pulsacyjnej. W tabeli 5.1 zawarto wartości parametrów geometrycznych takiej głowicy stosowane w badaniach rozkładów ciśnienia i wektorów prędkości w jej wnętrzu, dla trzech wskazanych powyżej wariantów usytuowania otworów bocznych.

Lp.	Parametr geometryczny	Zakres	Jednostka
1	średnica dyszy wlotowej	2,5	[mm]
2	wysokość dyszy wlotowej	6;8;10;12	[mm]
3	kąt natarcia komory wirowej	100;110;120	[°]
4	średnica otworów bocznych	2;3;4;5;6;7;8	[mm]
5	średnica komory wirowej	20;25;30;35;40;45;50 (24;28;32;36)	[mm]
6	wysokość komory wirowej	20;25;30;35;40;45;50	[mm]
7	średnica dyszy wylotowej	4;5;6;7;8;9	[mm]

Tab. 5.1.Zakresy zmienności badanych parametrów geometrycznych dla różnych rozwiązań
konstrukcyjnych samowzbudnej głowicy pulsacyjnej pracującej przy ciśnieniu 150 MPa

W celu uzyskania większej prędkości strugi wodnej wpływającej do głowicy oscylacyjnej, przy zachowaniu identycznego wydatku wody, średnica dyszy wlotowej została zmniejszona do d₁=2,5 mm. Analiza literatury [63] oraz wstępnych symulacji komputerowych wykazała, że optymalny stosunek wysokości dyszy wlotowej do jej średnicy powinien wynosić 3. Dla takich założeń wysokość dyszy wlotowej zmieniano w zakresie 6÷12 mm. Kąt natarcia komory ustalano w granicach 100÷120°. Średnice otworów bocznych, dobierane ze względu na wysokość i szerokość komory wirowej, zmieniano w zakresie 2÷8 mm. Aby uzyskać zwiększoną prędkość strugi wodnej wypływającej z takiej głowicy założono zmniejszenie średnicy komory wirowej (w zakresie 20÷50 mm) oraz jej wysokości, którą badano w zakresie 20÷50 mm, zaś średnicę dyszy wylotowej zmieniano w granicach 4÷9 mm.

Przykładowe wyniki symulacji, rozkładu wektorów prędkości oraz ciśnienia dla otworów bocznych usytuowanych pod kątem 120° do komory wirowej przedstawiono na rys. 5.6.

Rys. 5.6. Wyniki badań rozkładów: a) i b) prędkości oraz c) ciśnienia wewnątrz samowzbudnej głowicy pulsacyjnej z otworami bocznymi usytuowanymi pod kątem 120° (H=20 mm, D=20 mm, $d_2=3 \text{ mm}, d_3=5 \text{ mm}, \lambda = 110^0, h_1=8 \text{ mm}$), dla ciśnienia nominalnego 150 MPa

Wyniki te uzyskano dla takich parametrów geometrycznych jak: wysokość komory wirowej H=20 mm; średnica tej komory D=20 mm; średnica otworów bocznych d₂=3 mm; średnica dyszy wylotowej d₃=5 mm; kąt natarcia komory 110°; wysokość dyszy wlotowej h₁=8 mm; przy ciśnieniu wejściowym 150 MPa. Prędkość maksymalną jaką otrzymano na wylocie z głowicy to około 506 m/s, natomiast średnia prędkość wypływu z głowicy to 94 m/s. Dla tych samych usytuowań otworów bocznych jak powyżej (rys 5.6) zaprezentowano rozkłady prędkości i ciśnienia przy zmienionych parametrach geometrycznych - rys. 5.7 (wysokość komory H=25 mm; średnica komory D=30 mm; średnica otworów bocznych d₂=4 mm; średnica dyszy wylotowej d₃=8 mm; kąt natarcia komory 120°; wysokość dyszy wlotowej h₁=6 mm).

Rys. 5.7. Wyniki badań rozkładów: a) i b) prędkości oraz c) ciśnienia wewnątrz samowzbudnej głowicy pulsacyjnej z otworami bocznymi usytuowanymi pod kątem 120°(H=25 mm, D=30 mm, d₂=4 mm, d₃=8 mm, λ=120⁰, h₁=6 mm), dla ciśnienia nominalnego 150 MPa

Dla zaprezentowanych wyników rozkładu prędkości oraz ciśnienia (rys. 5.7) w głowicy, która posiada otwory boczne skierowane pod kątem 120° względem jej osi, występuje prędkość maksymalna strugi wodnej równa 514 m/s oraz średnia jej prędkość na wylocie z głowicy 77 m/s. Taki spadek prędkości strugi wodnej wypływającej z głowicy spowodowany został zwiększeniem wymiarów geometrycznych głowicy pulsacyjnej.

Analiza wyników otrzymanych przy usytuowaniu otworów bocznych pod kątem 120° wykazała, że przy nominalnym ciśnieniu wody 150 MPa, rozkłady prędkości i ciśnienia oraz kształt pierścieni wirowych wewnątrz komory nie wpływają korzystnie na kształtowanie się impulsów hydraulicznych. Spowodowane jest to tym, że w takich warunkach struga wodna wypływa na zewnątrz również przez otwory boczne. Natomiast w warunkach zapewniających zasysanie czynnika roboczego przez takie otwory boczne, struga wodna wypływa z głowicy nie uzyskując dostatecznie wysokiej prędkości.

Kolejne badania symulacyjne przeprowadzono dla otworów bocznych usytuowanych stycznie do komory wirowej. Przykładowe wyniki badań głowicy z tak usytuowanymi otworami bocznymi, przy nominalnym ciśnieniu wody równym 150 MPa, zilustrowane na rys. 5.8.

Rys. 5.8. Wyniki badań rozkładów: a) i b) prędkości oraz c) ciśnienia wewnątrz samowzbudnej głowicy pulsacyjnej z otworami bocznymi usytuowanymi stycznie do komory wirowej

Powyższy model głowicy pracujący przy ciśnieniu nominalnym 150 MPa charakteryzuje się następującą geometrią komory wirowej: H=20 mm; D=20 mm, średnicą otworów bocznych d₂=3 mm, średnicą dyszy wylotowej d₃=5 mm, kątem natarcia komory 110°, wysokością dyszy wlotowej h₁=8 mm. Badania symulacyjne przeprowadzone dla stycznego usytuowania otworów bocznych względem komory wirowej, wykazały prędkość maksymalną strugi wodnej równą 647 m/s oraz średnią jej prędkość na wylocie z głowicy-315 m/s.

Z kolei, przykładowe rozkłady prędkości strugi wodnej wytwarzanej w takiej głowicy pulsacyjnej o nieco większych wymiarach komory wirowej, zostały zilustrowane na rys. 5.9, który ukazuje ponadto rozkład ciśnienia występujący w tej głowicy.

Rys. 5.9. Wyniki badań rozkładów: a) i b) prędkości oraz c) ciśnienia wewnątrz samowzbudnej głowicy pulsacyjnej z większą komorą wirową i stycznie usytuowanymi otworami bocznymi

Wyniki symulacji komputerowych zaprezentowane tu przy ciśnieniu nominalnym równym 150 MPa odnoszące się do głowicy pulsacyjnej, mającej następującą geometrię: wysokość komory wirowej i jej średnica H=D=25 mm; średnica otworów bocznych d₂=4 mm; średnicy dyszy wylotowej d₃=4 mm; kąt natarcia komory 120°; wysokości dyszy wlotowej h₁=8 mm. W takich warunkach badań symulacyjnych prędkość maksymalna strugi wodnej wpływającej do komory wirowej takiej głowicy osiąga nieco niższą wartość (598 m/s) niż z poprzedniej głowicy, natomiast jej średnia prędkość na wylocie (wynosząca 313 m/s), jest niemal identyczna z poprzednią (315 m/s).

Analizując wyniki badań rozkładów wektorów prędkości i ciśnienia w głowicach pulsacyjnych z otworami bocznymi usytuowanymi stycznie, wykazały niekorzystne ich oddziaływanie na kształt pierścieni wirowych, które zakłócają mechanizm wywoływania impulsów wodnych.

Z uwagi na powyższe w kolejnym etapie przeprowadzono symulacje komputerowe dla głowic pulsacyjnych z otworami bocznymi prostopadłymi (czyli usytuowanymi promieniowo) względem komory wirowej. Również i te badania symulacyjne przeprowadzono dla różnych modeli samowzbudnych głowic pulsacyjnych. Jednym z przykładów wyników symulacyjnych rozkładów prędkości i ciśnienia, występujących w tego rodzaju głowicach, przedstawiono na poniższym rys. 5.10.

Rys. 5.10. Wyniki badań rozkładów: a) i b) prędkości oraz c)ciśnienia wewnątrz samowzbudnej głowicy pulsacyjnej z otworami bocznymi usytuowanymi prostopadle do komory wirowej

Takie symulacje komputerowe przeprowadzono dla głowicy z otworami bocznymi usytuowanymi prostopadle do komory wirowej o następującej geometrii: wysokości komory H=25 mm; średnica komory D=32 mm; średnica otworów bocznych d₂=6 mm; średnicy dyszy wylotowej d₃=6 mm; kąt natarcia komory 110°; wysokości dyszy wlotowej h₁=6 mm. Maksymalna prędkość strugi wodnej wpływającej do komory wirowej takiej głowicy przy nominalnym ciśnieniu wody 150 MPa wynosi 593 m/s, a średnia jej prędkość na wylocie z tej głowicy wynosi 245 m/s, natomiast rozkłady wektorów prędkości oraz ciśnienia, kształtujące się wewnątrz komory wirowej, zostały zilustrowane na wcześniejszym rys. 5.10.

Zbliżone wyniki takich badań symulacyjnych przedstawione na przykładowym rys. 5.11 w postaci analogicznych rozkładów prędkości i ciśnienia, uzyskano przy zastosowaniu bardzo podobnej głowicy pulsacyjnej, która różni się głównie kątem natarcia komory wirowej λ =120° i dwukrotnie wyższą dyszą wlotową (h₁=12 mm). Dla takiej głowicy przy nominalnym ciśnieniu wody równym 150 MPa, maksymalna prędkość strugi wodnej wpływającej do komory wirowej wynosi 555 m/s, a średnia prędkość wody na wylocie z tej głowicy wynosi 250 m/s.

Rys. 5.11. Wyniki badań rozkładów: a) i b) prędkości oraz c) ciśnienia wewnątrz samowzbudnej głowicy pulsacyjnej z otworami bocznymi usytuowanymi prostopadle do komory wirowej

Analiza wyników rozkładu prędkości oraz ciśnienia kształtującego się wewnątrz samowzbudnej głowicy pulsacyjnej z otworami bocznymi prostopadłymi do komory wirowej wykazała najbardziej korzystny wpływ tych rozkładów na kształt pierścieni wirowych oraz rozkład ciśnienia, mających największy wpływ na kształtowanie impulsów wodnych.

Spośród wielu wariantów geometrycznego usytuowania otworów bocznych pod kątem 120° do osi głowicy, dokonano wyboru najlepszych modeli samowzbudnej głowicy pulsacyjnej pod względem rozkładów prędkości i ciśnienia kształtującego się w ich wnętrzu. Dodatkowym ważnym kryterium była również możliwość zasysania czynnika zewnętrznego przez otwory boczne podczas pracy takiej głowicy. Dzięki temu wytypowano trzy modele głowicy pulsacyjnej (rys. 5.12) z otworami bocznymi usytuowanymi pod kątem 120°, które charakteryzują się korzystnym rozkładem wektorów prędkości i możliwością zasysania czynnika zewnętrznego przez otwory boczne.

Rys. 5.12. Charakterystyka najkorzystniejszych modeli samowzbudnej głowicy pulsacyjnej z otworami bocznymi usytuowanymi pod kątem 120°: a) d₁=2,5 mm; λ=100°; D=30 mm; H=25 mm; d₃=6 mm; d₂=2 mm; h₁=8 mm, b) d₁=2,5 mm; λ=120°; D=32 mm; H=25 mm; d₃=6 mm; d₂=6 mm; d₂=6 mm; h₁=12 mm, c) d₁=2,5 mm; λ=100°; D=30 mm; H=25 mm; d₃=6 mm; d₂=3 mm; h₁=8 mm

Zestawienie wyników charakteryzujących geometrię najkorzystniejszych modeli samowzbudnej głowicy pulsacyjnej, z otworami bocznymi nachylonymi pod kątem 120° względem osi głowicy oraz prędkości strugi wodnej na wlocie i wylocie z takiej głowicy, przedstawiono w tabeli 5.2.

Tab. 5.2.Charakterystyka wymiarów geometrycznych i prędkości strugi wodnej wytwarzanej w najbardziej
korzystnych modelach głowic z otworami bocznymi nachylonymi pod kątem 120°do osi głowicy

		Modele głowic z otworami bocznymi nachylonymi pod kątem 120° do osi głowicy		
Wielkość charakterystyczna	Oznaczenie	a)	b)	c)
średnica dyszy wlotowej [mm]	d_1	2,5	2,5	2,5
wysokość dyszy wlotowej [mm]	h_1	8	12	8
kąt natarcia komory wirowej [°]	λ	100	120	100
średnica wlotów bocznych [mm]	d ₂	2	6	3
średnica komory wirowej [mm]	D	30	32	30
wysokość komory wirowej [mm]	Н	25	25	25
średnica dyszy wylotowej [mm]	d ₃	6	6	6
prędkość średnia na wylocie [m/s]	$\upsilon_{\acute{sr}}$	64	78	113
prędkość maksymalna na wlocie [m/s]	υ_{max}	513	517	561
stosunek prędkości [%]	$v_{\acute{sr}}/v_{max}$	12,5	15,1	20,1

W podobny sposób wytypowano trzy modele głowicy pulsacyjnej z otworami bocznymi usytuowanymi stycznie do komory wirowej, które charakteryzują się korzystnym kształtem pierścieni wirowych przyczyniających się do blokowania przepływu strugi wodnej oraz zasysaniem czynnika zewnętrznego przez otwory boczne. Charakterystykę takich trzech wybranych modeli samowzbudnej głowicy pulsacyjnej z otworami bocznymi usytuowanymi stycznie do komory wirowej, które zapewniają najkorzystniejsze rozkłady wektorów prędkości i ciśnienia, przedstawiono na rys. 5.13.

Rys. 5.13. Charakterystyka najkorzystniejszych modeli samowzbudnej głowicy pulsacyjnej z otworami bocznymi usytuowanymi stycznie do komory wirowej: a) $d_1=2,5$ mm; $\lambda=100^\circ$; D=40 mm; H=40 mm; $d_3=4$ mm; $d_2=2$ mm; $h_1=10$ mm, b) $d_1=2,5$ mm; $\lambda=120^\circ$; D=40 mm; H=40 mm; $d_3=4$ mm; $d_2=2$ mm; $h_1=10$ mm, c) $d_1=2,5$ mm; $\lambda=120^\circ$; D=30 mm; H=30 mm; $d_3=4$ mm; $d_2=2$ mm; $h_1=6$ mm

Zestawienie wyników charakteryzujących geometrię tych najkorzystniejszych modeli samowzbudnej głowicy pulsacyjnej, z otworami bocznymi umiejscowionymi stycznie do komory wirowej, wraz z prędkościami strugi wodnej na wlocie i wylocie z takiej głowicy, zaprezentowano w tabeli 5.3.

Tab. 5.3. Charakterystyka wymiarów geometrycznych i prędkości strugi wodnej wytwarzanej w najbardziej korzystnych modelach głowic z otworami bocznymi umiejscowionymi stycznie do komory wirowej

		Modele głowic z otworami bocznymi umiejscowionymi stycznie do komory wirowej		
Wielkość charakterystyczna	Oznaczenie	a)	b)	c)
średnica dyszy wlotowej [mm]	d_1	2,5	2,5	2,5
wysokość dyszy wlotowej [mm]	h_1	10	10	6
kąt natarcia komory wirowej [°]	λ	100	120	120
średnica wlotów bocznych [mm]	d ₂	2	2	2
średnica komory wirowej [mm]	D	40	40	30
wysokość komory wirowej [mm]	Н	40	40	30
średnica dyszy wylotowej [mm]	d ₃	4	4	4
prędkość średnia na wylocie [m/s]	$\upsilon_{ m sr}$	204	202	279
prędkość maksymalna na wlocie [m/s]	v_{max}	559	560	589
stosunek prędkości [%]	v_{sr}/v_{max}	36,5	36,1	47,4

W kolejnym etapie badano wpływ usytuowania otworów bocznych prostopadłych do komory wirowej. Spośród modeli głowic pulsacyjnych wytypowano najkorzystniejsze rozwiązania głowicy pod względem rozkładów prędkości oraz ciśnienia kształtującego się wewnątrz głowicy. Rozważano również zasysanie czynnika zewnętrznego przez otwory boczne podczas pracy głowicy. Wybrano trzy najkorzystniejsze modele głowic pulsacyjnych, które charakteryzowały się korzystnym rozkładem wektorów prędkości oraz ciśnienia i zasysaniem czynnika przez otwory boczne zaprezentowano na rys. 5.14.

Rys. 5.14. Charakterystyka najkorzystniejszych modeli samowzbudnej głowicy pulsacyjnej z otworami bocznymi usytuowanymi stycznie do komory wirowej: a) d₁=2,5 mm; λ=120°; D=25 mm; H=15 mm; d₃=4 mm; d₂=2 mm; h₁=12 mm, b) d₁=2,5 mm; λ=110°; D=32 mm; H=25 mm; d₃=7 mm; d₂=6 mm; h₁=12 mm, c) d₁=2,5 mm; λ=120°; D=30 mm; H=20 mm; d₃=4 mm; d₂=2 mm; h₁=10 mm

Zestawienie wyników charakteryzujących geometrię najkorzystniejszych modeli samowzbudnej głowicy pulsacyjnej, z otworami bocznymi usytuowanymi prostopadle do komory wirowej, wraz z prędkościami strugi wodnej na wlocie i wylocie z takiej głowicy, zaprezentowano w tabeli 5.4.

Tab. 5.4. Charakterystyka wymiarów geometrycznych i prędkości strugi wodnej wytwarzanej w najbardziej korzystnych modelach głowic z otworami bocznymi usytuowanymi prostopadle do komory wirowej

		Modele głowic z otworami bocznymi		
		usytuowanymi prostopadle do komory wirowej		
Wielkość charakterystyczna	Oznaczenie	a)	b)	c)
średnica dyszy wlotowej [mm]	d_1	2,5	2,5	2,5
wysokość dyszy wlotowej [mm]	h_1	12	12	10
kąt natarcia komory wirowej [°]	λ	120	110	120
średnica wlotów bocznych [mm]	d_2	2	6	2
średnica komory wirowej [mm]	D	25	32	30
wysokość komory wirowej [mm]	Н	15	25	20
średnica dyszy wylotowej [mm]	d_3	4	7	4
prędkość średnia na wylocie [m/s]	$\upsilon_{ m \acute{s}r}$	264	224	242
prędkość maksymalna na wlocie [m/s]	υ_{max}	590	556	561
stosunek prędkości [%]	$\upsilon_{\acute{sr}}/\upsilon_{max}$	44,7	40,3	43,1

Z wyników symulacji komputerowych wyłonionych na podstawie badań modeli wszystkich rodzajów samowzbudnej głowicy pulsacyjnej, wytypowano po jednym najkorzystniejszym modelu głowic o różnym usytuowaniu otworów bocznych (rys. 5.15).

Rys. 5.15. Graficzna interpretacja kształtowania się rozkładów prędkości i ciśnienia dla wybranych rozwiązań głowic z różnym usytuowaniem otworów bocznych: a) otwory boczne nachylone pod kątem 120° do osi głowicy, b) otwory boczne styczne do komory wirowej, c) otwory boczne prostopadłe do komory wirowej

Spośród tych trzech analizowanych tu najkorzystniejszych wariantów głowicy pulsacyjnej, w modelu usytuowania otworów bocznych pod kątem 120° względem osi takiej głowicy wynika gęste wypełnienie wnętrza komory wirowej dość jednorodnymi wektorami prędkości, co mimo istnienia dość wyraźnie zróżnicowanych gradientów ciśnienia, nie sprzyja powstawaniu ruchów wirowych. Z kolei, w przypadku głowicy ze stycznymi otworami bocznymi do komory wirowej, występują w niej wyraźne zawirowania poszczególnych warstw wody, a ponadto pojawia się ich rotacja względem osi komory wirowej. Przez to w całej objętości komory wirowej występuje zbliżone ciśnienie, powodujące wypływanie wody na zewnątrz także przez otwory boczne utrudniając powstawanie pierścieni wirowych, co wręcz uniemożliwia inicjowanie impulsów ciśnienia w rdzeniu strugi wodnej, przepływającej wzdłuż osi takiej głowicy. Najkorzystniejsza sytuacja pojawia się w modelu samowzbudnej głowicy pulsacyjnej z otworami bocznymi prostopadłymi do komory wirowej, dla którego rozkład wyraźnych zawirowań pierścieni wodnych oraz wzrostu ciśnienia na wylocie z tej komory, sprzyjają generowaniu impulsów ciśnienia w wypływającej strudze wodnej.

Wyniki takiego wyodrębniania najbardziej przydatnych, optymalnych modeli samowzbudnej głowicy pulsacyjnej, zaprezentowano w tabeli 5.5. Zawarto w niej zróżnicowane charakterystyki wymiarów geometrycznych takich głowic i usytuowania otworów bocznych oraz dane o prędkościach strugi wodnej na wlocie i wylocie z tych głowic.

Wielkość charakterystyczna	Oznaczenie	Otwory boczne nachylone pod kątem 120° do osi głowicy	Otwory boczne styczne do komory wirowej	Otwory boczne prostopadłe do komory wirowej
średnica komory wirowej [mm]	D	25	30	25
wysokość komory wirowej [mm]	Н	30	30	15
kąt natarcia komory wirowej [°]	λ	100	120	120
wysokość dyszy wlotowej [mm]	h_1	8	6	12
średnica dyszy wlotowej [mm]	d1	2,5	2,5	2,5
średnica otworów bocznych [mm]	d ₂	3	2	2
średnica dyszy wylotowej [mm]	d3	6	4	4
prędkość średnia na wylocie [m/s]	$\upsilon_{ m \acute{sr}}$	113	279	264
prędkość maksymalna na wlocie [m/s]	υ_{max}	561	589	590
stosunek prędkości [%]	$\upsilon_{\acute{sr}}/\upsilon_{max}$	20,1	47,4	44,7

Tab. 5.5. Charakterystyka wymiarów geometrycznych i prędkości strugi wodnej wytwarzanej w głowicach optymalnych pod względem usytuowania otworów bocznych.

Z danych zawartych w tej tabeli wynika, że największą prędkość wylotową strugi wodnej zapewnia samowzbudna głowica pulsacyjna z otworami bocznymi stycznymi do komory wirowej a zaledwie o 5% mniejszą prędkość osiąga struga wodna wypływająca
z głowicy mającej otwory boczne prostopadłe do komory wirowej, natomiast prędkość strugi wodnej wytwarzanej w głowicy pulsacyjnej z otworami bocznymi usytuowanymi pod kątem 120° względem jej osi, jest aż 2,5-krotnie mniejsza. Uwzględniając zatem relacje powyższych prędkości strugi wodnej, jak również i najkorzystniejsze rozkłady wektorów prędkości i ciśnienia występujące wewnątrz komory wirowej (rys. 5.15), należy jednoznacznie stwierdzić, że najkorzystniejszy model samowzbudnej głowicy pulsacyjnej stanowi głowica z otworami bocznymi prostopadłymi do komory wirowej.

5.1.3. Symulacyjne badania oddziaływania geometrii komory wirowej na prędkość strugi wodnej wypływającej z samowzbudnej głowicy pulsacyjnej

Dla wiarygodnego określenia właściwej geometrii modelu samowzbudnej głowicy pulsacyjnej nieodzowne jest stworzenia takiego planu eksperymentu, który umożliwia kompleksowe zbadanie oddziaływania poszczególnych czynników na rzecz zwiększenia prędkości strugi wodnej wypływającej z takiej głowicy. Istotnym celem takiego planowania jest również zminimalizowanie ilości pomiarów i uzyskanie modelu matematycznego badanego obiektu w postaci samowzbudnej głowicy pulsacyjnej. Aby wykonać obliczenia statystyczne oraz wyznaczyć zależność funkcyjną wykorzystano program "Experiment Planer" z pięciopoziomowym planem rotatabilnym.

W tabeli 5.6 zaprezentowano najważniejsze geometryczne czynniki wejściowe oddziaływujące na prędkość strugi wodnej wypływającej z samowzbudnej głowicy pulsacyjnej. Badania takie zostały przeprowadzone dla ustalonej wartości ciśnienia wody na wlocie do takiej głowicy, równego 150 MPa.

Czynnik	Oznaczenie	Jednostka	Parametr geometryczny	Zakres min-max
1	D	[mm]	średnica komory wirowej	20÷50
2	Н	[mm]	wysokość komory wirowej	15÷45
3	h_1	[mm]	wysokość dyszy wlotowej	6÷12
4	λ	[°]	kąt natarcia komory wirowej	100÷120
5	d_2	[mm]	średnica otworów bocznych	2÷8
6	d ₃	[mm]	średnica dyszy wlotowej	4÷9

 Tab. 5.6.
 Zakresy zmienności geometrycznych czynników wejściowych dla różnych modeli konstrukcyjnych samowzbudnej głowicy pulsacyjnej pracującej przy ciśnieniu 150 MPa

Czynnikiem wyjściowym dla tak prowadzonych obliczeń cyfrowych jest prędkość strugi wodnej na wylocie z samowzbudnej głowicy pulsacyjnej.

Na podstawie ustalonego zakresu wartości czynników wejściowych stworzona została macierz planu badań komputerowych, której widok w postaci zakodowanej i odkodowanej zaprezentowano w tab. 5.7.

	Zakodowana							Odkodowana						
	h ₁	λ	d ₂	D	Н	d ₃			h 1	λ	d ₂	D	Н	d ₃
Lp	[mm]	[°]	[mm]	[mm]	[mm]	[mm]		Lp	[mm]	[°]	[mm]	[mm]	[mm]	[mm]
	A	B	C	D	E	F			A	B	C	D	E	F
1	-	-	-	-	-	-		1	8	110	4	30	25	6
2	+	-	-	-	-	-		2	10	110	4	30	25	6
3	-	+	-	-	-	-		3	8	120	4	30	25	6
4	+	+	-	-	-	-		4	10	120	4	30	25	6
5	-	-	+	-	-	-		5	8	110	6	30	25	6
6	+	-	+	-	-	-		6	10	110	6	30	25	6
7	-	+	+	-	-	-		7	8	120	6	30	25	6
8	+	+	+	-	-	-		8	10	120	6	30	25	6
9	-	-	-	+	-	-		9	8	110	4	40	25	6
10	+	-	-	+	-	-		10	10	110	4	40	25	6
11	-	+	-	+	-	-		11	8	120	4	40	25	6
12	+	+	-	+	-	-		12	10	120	4	40	25	6
13	-	-	+	+	-	-		13	8	110	6	40	25	6
14	+	-	+	+	-	-		14	10	110	6	40	25	6
15	-	+	+	+	-	-		15	8	120	6	40	25	6
16	+	+	+	+	-	-		16	10	120	6	40	25	6
17	-	-	-	-	+	-		17	8	110	4	30	35	6
18	+	-	-	-	+	-		18	10	110	4	30	35	6
19	-	+	-	-	+	-		19	8	120	4	30	35	6
20	+	+	-	-	+	-		20	10	120	4	30	35	6
21	-	-	+	-	+	-		21	8	110	6	30	35	6
22	+	-	+	-	+	-		22	10	110	6	30	35	6
23	-	+	+	-	+	-		23	8	120	6	30	35	6
24	+	+	+	-	+	-		24	10	120	6	30	35	6
25	-	-	-	+	+	-		25	8	110	4	40	35	6
26	+	-	-	+	+	-		26	10	110	4	40	35	6
27	-	+	-	+	+	-		27	8	120	4	40	35	6
28	+	+	-	+	+	-		28	10	120	4	40	35	6
29	-	-	+	+	+	-		29	8	110	6	40	35	6
30	+	-	+	+	+	-		30	10	110	6	40	35	6
31	-	+	+	+	+	-		31	8	120	6	40	35	6
32	+	+	+	+	+	-		32	10	120	6	40	35	6
33	-	-	-	-	-	+		33	8	110	4	30	25	7
34	+	-	-	-	-	+		34	10	110	4	30	25	7
35	-	+	-	-	-	+		35	8	120	4	30	25	7
36	+	+	-	-	-	+		36	10	120	4	30	25	7
3/	-	-	+	-	-	+		3/	8	110	6	30	25	/
38	+	-	+	-	-	+		38	0	110	0	30	25	/ 7
39	-	+	+	-	-	+		39	8	120	0	30	25	7
40	+	+	+	-	-	+		40	10	120	6	30	25	7
41	-	-	-	+	-	+		41	8	110	4	40	25	7
42	+	-	-	+	-	+		42	10 o	110	4	40	25	7
43	-	+	-	+	-	+		43	0	120	4	40	25	7
44	+	+	-	+	-	+	\vdash	44	10 8	110	-+	40	25	7
45	-	-	+	+	-	+	\vdash	45	0	110	6	40	25	7
40	T	- _	- T	- T	-	- T		40	8	120	6	40	25	7
48	-	- T	- T	- T	-	- T		48	10	120	6	40	25	7
40	T	Ŧ	T	Ŧ	- _	- T		40	8	110	4	30	35	7
50		_	-	_		г 	\vdash	50	10	110	4	30	35	7
51	- г		-	_		г 	\vdash	51	8	120	4	30	35	7
52	+	+	-	_	+	, +	\vdash	52	10	120	4	30	35	7
53	-	-	+	-	+	+		53	8	110	6	30	35	7

Tab. 5.7.Macierz planu badań komputerowych

54	+	-	+	-	+	+	54	10	110	6	30	35	7
55	-	+	+	-	+	+	55	8	120	6	30	35	7
56	+	+	+	-	+	+	56	10	120	6	30	35	7
57	-	-	-	+	+	+	57	8	110	4	40	35	7
58	+	-	-	+	+	+	58	10	110	4	40	35	7
59	-	+	-	+	+	+	59	8	120	4	40	35	7
60	+	+	-	+	+	+	60	10	120	4	40	35	7
61	-	-	+	+	+	+	61	8	110	6	40	35	7
62	+	-	+	+	+	+	62	10	110	6	40	35	7
63	-	+	+	+	+	+	63	8	120	6	40	35	7
64	+	+	+	+	+	+	64	10	120	6	40	35	7
65	2,828	0	0	0	0	0	65	12	120	5	35	30	7
66	-2,828	0	0	0	0	0	66	6	120	5	35	30	7
67	0	2,828	0	0	0	0	67	9	140	5	35	30	7
68	0	-2,828	0	0	0	0	68	9	90	5	35	30	7
69	0	0	2,828	0	0	0	69	9	120	8	35	30	7
70	0	0	-2,828	0	0	0	70	9	120	2	35	30	7
71	0	0	0	2,828	0	0	71	9	120	5	50	30	7
72	0	0	0	-2,828	0	0	72	9	120	5	20	30	7
73	0	0	0	0	2,828	0	73	9	120	5	35	45	7
74	0	0	0	0	-2,828	0	74	9	120	5	35	15	7
75	0	0	0	0	0	2,828	75	9	120	5	35	30	9
76	0	0	0	0	0	-2,828	76	9	120	5	35	30	4
77	0	0	0	0	0	0	77	9	120	5	35	30	7
78	0	0	0	0	0	0	78	9	120	5	35	30	7
79	0	0	0	0	0	0	79	9	120	5	35	30	7
80	0	0	0	0	0	0	80	9	120	5	35	30	7
81	0	0	0	0	0	0	81	9	120	5	35	30	7
82	0	0	0	0	0	0	82	9	120	5	35	30	7
83	0	0	0	0	0	0	83	9	120	5	35	30	7
84	0	0	0	0	0	0	84	9	120	5	35	30	7
85	0	0	0	0	0	0	85	9	120	5	35	30	7
86	0	0	0	0	0	0	86	9	120	5	35	30	7
87	0	0	0	0	0	0	87	9	120	5	35	30	7
88	0	0	0	0	0	0	88	9	120	5	35	30	7
89	0	0	0	0	0	0	89	9	120	5	35	30	7
90	0	0	0	0	0	0	90	9	120	5	35	30	7
91	0	0	0	0	0	0	91	9	120	5	35	30	7
-													

Badania właściwe przeprowadzono zgodnie z macierzą planu dla S=6 (czynniki wejściowe), stosując dwa powtórzenia r=2 dla poziomu ufności p=95 %. W tab. 5.8 zaprezentowano wyniki pomiarów uzyskane na podstawie symulacji komputerowych wykonanych w programie Solid Works FlowSimulstions.

T.n.	Średnia prędkość końcowa <i>v</i> śr	\mathbf{h}_1	λ	d ₂	D	Н	d3
гр	[m/s]	[mm]	[°]	[mm]	[mm]	[mm]	[mm]
1	204	8	110	4	30	25	6
2	203,5	10	110	4	30	25	6
3	205,5	8	120	4	30	25	6
4	204	10	120	4	30	25	6
5	209,5	8	110	6	30	25	6
6	209	10	110	6	30	25	6
7	210,5	8	120	6	30	25	6
8	209,5	10	120	6	30	25	6
9	199,5	8	110	4	40	25	6
10	199	10	110	4	40	25	6
11	201	8	120	4	40	25	6
12	200	10	120	4	40	25	6
13	205	8	110	6	40	25	6

Tab. 5.8. Wyniki symulacji komputerowej dla prędkości końcowej

				-			~
14	204,5	10	110	6	40	25	6
15	206,5	8	120	6	40	25	6
16	206	10	120	6	40	25	6
17	197,5	8	110	4	30	35	6
18	196	10	110	4	30	35	6
19	198	8	120	4	30	35	6
20	198	10	120	4	30	35	6
21	203	8	110	6	30	35	6
22	202	10	110	6	30	35	6
23	202	8	120	6	30	35	6
23	204,5	10	120	6	30	35	6
24	102	0	110	0	40	25	6
25	193	0	110	4	40	25	6
20	192	0	110	4	40	25	6
27	194	0	120	4	40	33	0
28	193,5	10	120	4	40	35	6
29	199	8	110	6	40	35	0
30	198	10	110	6	40	35	6
31	200	8	120	6	40	35	6
32	199	10	120	6	40	35	6
33	202,5	8	110	4	30	25	7
34	202	10	110	4	30	25	7
35	204,5	8	120	4	30	25	7
36	203	10	120	4	30	25	7
37	208	8	110	6	30	25	7
38	208	10	110	6	30	25	7
39	209,5	8	120	6	30	25	7
40	209	10	120	6	30	25	7
41	198.5	8	110	4	40	25	7
42	197.5	10	110	4	40	25	7
43	199.5	8	120	4	40	25	7
44	199	10	120	4	40	25	7
45	205	8	110	6	40	25	7
46	203	10	110	6	40	25	7
40	204	8	120	6	40	25	7
47	200	10	120	6	40	25	7
40	106	0	120	0	40	25	7
49 50	190	0	110	4	30	25	7
50	193	10	110	4	30	33	7
51	19/	8	120	4	30	35	/
52	196	10	120	4	30	35	/
53	202	8	110	6	30	35	
54	201	10	110	6	30	35	7
55	203	8	120	6	30	35	7
56	202	10	120	6	30	35	7
57	192	8	110	4	40	35	7
58	191	10	110	4	40	35	7
59	193,5	8	120	4	40	35	7
60	192	10	120	4	40	35	7
61	198	8	110	6	40	35	7
62	197,5	10	110	6	40	35	7
63	199	8	120	6	40	35	7
64	198	10	120	6	40	35	7
65	200	12	120	5	35	30	7
66	202	6	120	5	35	30	7
67	204	9	140	5	35	30	7
68	197	9	90	5	35	30	7
69	210	9	120	8	35	30	7
70	192	9	120	2	35	30	7
71	195	9	120	5	50	30	7
72	208	9	120	5	20	30	7
72	101	9	120	5	20	15	7
74	210.5	9	120	5	25	4.5	7
75	210,3	9	120	5	<u> </u>	15	/
/5	199	9	120	5	35	30	9
76	204	9	120	5	35	30	4
77	201	9	120	5	35	30	7

78	201	9	120	5	35	30	7
79	201	9	120	5	35	30	7
80	201	9	120	5	35	30	7
81	201	9	120	5	35	30	7
82	201	9	120	5	35	30	7
83	201	9	120	5	35	30	7
84	201	9	120	5	35	30	7
85	201	9	120	5	35	30	7
86	201	9	120	5	35	30	7
87	201	9	120	5	35	30	7
88	201	9	120	5	35	30	7
89	201	9	120	5	35	30	7
90	201	9	120	5	35	30	7
91	201	9	120	5	35	30	7

Dla sprawdzenia tego rodzaju badań komputerowych przeprowadzono następującą analizę statystyczną otrzymanych wyników.

W celu wyeliminowania błędów grubych przeprowadzone zostało testowanie danych przy pomocy testów Grubbs'a B oraz statystyki $B^{\pm 4}$, $B^{\pm 6}$, $B^{\pm 7}$, $B^{\pm 8}$ w których:

- Statystyka B Grubbs'a-program nie stwierdził wystąpienia wyników obarczonych błędem grubym;
- Statystyka B4 program nie stwierdził wystąpienia wyników obarczonych błędem grubym;

Statystyka B6 - wyniki tabela 5.9.

Nr doán	min/may	Wynik	Wartość	Wartość	Średnia	Odchylenie
INF dosw.	mm/max	pomiaru	testu B	kryt. testu B	z pomiarów	standardowe
2-1	(min)	203	-1	-0,941	203,5	1
2-2	(max)	204	1	0,941	203,5	1
3-1	(min)	205	-1	-0,941	205,5	1
3-2	(max)	206	1	0,941	205,5	1
5-2	(min)	209	-1	-0,941	209,5	1
5-1	(max)	210	1	0,941	209,5	1
7-2	(min)	210	-1	-0,941	210,5	1
7-1	(max)	211	1	0,941	210,5	1
8-2	(min)	209	-1	-0,941	209,5	1
8-1	(max)	210	1	0,941	209,5	1
9-1	(min)	199	-1	-0,941	199,5	1
9-2	(max)	200	1	0,941	199,5	1
14-1	(min)	204	-1	-0,941	204,5	1
14-2	(max)	205	1	0,941	204,5	1
15-2	(min)	206	-1	-0,941	206,5	1
15-1	(max)	207	1	0,941	206,5	1
17-2	(min)	197	-1	-0,941	197,5	1
17-1	(max)	198	1	0,941	197,5	1
23-2	(min)	204	-1	-0,941	204,5	1
23-1	(max)	205	1	0,941	204,5	1
28-1	(min)	193	-1	-0,941	193,5	1
28-2	(max)	194	1	0,941	193,5	1
33-2	(min)	202	-1	-0,941	202,5	1
33-1	(max)	203	1	0,941	202,5	1

Tab. 5.9. Testowanie błędów według statystyki B6

34-1	(min)	201	-1	-0,941	202	2
34-2	(max)	203	1	0,941	202	2
35-1	(min)	204	-1	-0,941	204,5	1
35-2	(max)	205	1	0,941	204,5	1
37-2	(min)	207	-1	-0,941	208	2
37-1	(max)	209	1	0,941	208	2
39-1	(min)	209	-1	-0,941	209,5	1
39-2	(max)	210	1	0,941	209,5	1
41-1	(min)	198	-1	-0,941	198,5	1
41-2	(max)	199	1	0,941	198,5	1
42-2	(min)	197	-1	-0,941	197,5	1
42-1	(max)	198	1	0,941	197,5	1
43-2	(min)	199	-1	-0,941	199,5	1
43-1	(max)	200	1	0,941	199,5	1
59-2	(min)	193	-1	-0,941	193,5	1
59-1	(max)	194	1	0,941	193,5	1
62-1	(min)	197	-1	-0,941	197,5	1
62-2	(max)	198	1	0,941	197,5	1
74-2	(min)	210	-1	-0,941	210,5	1
74-1	(max)	211	1	0,941	210,5	1

Statystyka B7 - program nie stwierdził wystąpienia wyników obarczonych błędem grubym *Statystyka B8* - program nie stwierdził wystąpienia wyników z błędem grubym

Uzyskany model matematyczny jest wielomianem pierwszego stopnia z sześcioma zmiennymi:

$$v_{sr}=216,88-0,40h_1+0,12\lambda+2,93d_2-0,41D-0,66H-1,03d_3,$$
(5.1)

natomiast model statystyczny uzyskanego wielomianu ma analogiczną postać:

$$v_{sr} = 216,88 - 0,40A + 0,12B + 2,93C - 0,41D - 0,66E - 1,03F.$$
(5.2)

Powyższy model został oceniony przez program jako adekwatny do wyników pomiaru.

W kolejnym kroku przeprowadzono analizę statystyczną modelu matematycznego. W tabeli 5.10 zaprezentowano poszczególne wartości współczynnika równania regresji.

Symbol	Wartość współczynnika	Istotność współczynnika	Wartość testu t-Studenta	Wartość krytyczna testu t-Studenta
0	216,8846	Yes	205	2,589
А	-0,40854	Yes	9,432	2,589
В	0,123977	Yes	18,03	2,589
С	2,932927	Yes	67,71	2,589
D	-0,41341	Yes	47,72	2,589
Е	-0,66585	Yes	76,86	2,589
F	-1,03609	Yes	15,07	2,589

Tab. 5.10. Wartości współczynników równania regresji:

Współczynnik korelacji:

Wartość średnia wyników prędkości strugi wodnej na wylocie z samowzbudnej głowicy pulsacyjnej: 200,98;

Wartość średnia wyników modelu matematycznego: 200,98; Wartość współczynnika korelacji: R=0,9984; Wartość testu F: 4248,1053; Wartość krytyczna testu F: 2,206; Istotność funkcji regresji: istotna; Wariancja adekwatności: 13,5395; Liczba stopni swobody: 84; Wariancja wyników pomiaru: 14; Liczba stopni swobody: 91; Wartość badana F: 1,0477; Krytyczna wartość: F 1,438.

Fkr>F – a więc model matematyczny jest adekwatny do wyników pomiarów.

Przykładowe wyniki badań prędkości strugi wodnej o nominalnym ciśnieniu 150 MPa, wypływającej z samowzbudnej głowicy pulsacyjnej z otworami bocznymi prostopadłymi do komory wirowej, określone przy wykorzystaniu wielomianu pierwszego stopnia z sześcioma zmiennymi przedstawiono na rys. 5.16.

Przestrzenne wykresy prędkości, określone przez wybrane parametry wymiarowe będące czynnikami wejściowymi programu symulacyjnego, najkorzystniej jest rozpatrywać parami rysunków umieszczonych obok siebie. Analiza tych wyników wykazała co następuje:

Porównanie dwóch pierwszych rysunków wskazuje, że wzrostowi kąta natarcia komory wirowej towarzyszy jedynie nieznaczne zwiększenie prędkości strugi wodnej wypływającej z samowzbudnej głowicy pulsacyjnej z intensywnością około 0,08 % na każdy stopień tego kąta, podczas gdy zwiększanie wysokości komory wirowej i wysokości dyszy wlotowej oddziałują wprost przeciwnie. Zwiększanie wysokości tej komory powoduje zmniejszanie się prędkości wypływu strugi wodnej z intensywnością 0,33 % na 1 mm wzrostu jej wysokości a zwiększanie dyszy wlotowej wywołuje obniżenie prędkości wypływu strugi wodnej przebiegające z intensywnością około 0,24 % na 1 mm wzrostu jej wysokości.

Z porównania drugiej pary wykresów wynika, że zwiększanie średnicy otworów bocznych i kąta natarcia komory wirowej zwiększa prędkość wypływu strugi wodnej, która z kolei jest obniżana wskutek zwiększania wysokości dyszy wlotowej. Prędkość strugi wodnej ze wzrostem średnicy otworów bocznych zwiększa się z bardzo dużą intensywnością 1,52 %/mm a także z nieznaczną intensywnością 0,056 % na każdy stopień kąta natarcia komory wirowej, natomiast intensywność obniżania tej prędkości wynosi 0,3 % na każdy milimetr wzrostu wysokości dyszy wlotowej.

Rys. 5.16. Wyniki kształtowania się prędkości strugi wodnej o nominalnym ciśnieniu 150 MPa, wypływającej z samowzbudnej głowicy pulsacyjnej z otworami bocznymi prostopadłymi do komory wirowej, pod wpływem oddziaływania różnych czynników wejściowych

Analiza trzeciej pary wykresów przestrzennych wykazuje zmniejszanie się prędkości strugi wodnej wypływającej z samowzbudnej głowicy pulsacyjnej pod wpływem: zwiększania średnicy dyszy wypływowej z intensywnością 0,46 %/mm oraz z intensywnością

ok. 0,3 % na każdy milimetr zwiększenia wysokości komory wirowej a także z intensywnością 0,19 %/mm przyrostu średnicy tej komory wirowej.

Z porównawczej analizy ostatniej pary rysunków wykresowych wynika jednoznacznie, że prędkość strugi wodnej wypływającej z samowzbudnej głowicy pulsacyjnej ulega obniżeniu wraz ze wzrostem wysokości komory wirowej (z intensywnością 0,43%/mm) i nieco intensywniej, po 0,55 % na każdy milimetr wzrostu średnicy dyszy wylotowej, natomiast prędkość tej strugi wodnej jest wspomagana z dużą intensywnością (po 1,41 %), przypadającą na każdy milimetr zwiększenia średnicy otworów bocznych komory wirowej.

Analiza otrzymanych wyników oddziaływania poszczególnych parametrów geometrycznych samowzbudnej głowicy pulsacyjnej na prędkość wypływającej strugi wodnej wykazała, że jest ona zależna od badanych parametrów a otrzymany model jest adekwatny do wyników badań komputerowych w badanym zakresie. Dzięki ustalonemu w ten sposób modelowi samowzbudnej głowicy pulsacyjnej można określić przybliżone wyniki prędkości strugi wodnej wytwarzanej w każdym rozwiązaniu konstrukcyjnym takiej głowicy o parametrach geometrycznych wybranych spośród wartości zawartych w analizowanych zakresach ich zmienności.

5.1.4. Wnioski

Analiza wyników przeprowadzonych komputerowych badań modelu samowzbudnej głowicy pulsacyjnej o różnych rozwiązaniach usytuowania otworów bocznych pozwoliła na sformułowanie następujących wniosków:

- Zastosowanie oprogramowania komputerowego Solid Works FlowSimulation pozwoliło na pozytywne zweryfikowanie wyników badań samowzbudnej głowicy pulsacyjnej o charakterystyce identycznej z głowicą opracowaną w chińskim Instytucie Ropy Naftowej, co równocześnie jest świadectwem trafności zastosowanej własnej metody symulacji cyfrowej.
- 2. Zastosowanie własnej metody symulacji cyfrowej umożliwia przeprowadzanie analogicznych badań symulacyjnych wpływu usytuowania otworów bocznych i parametrów geometrycznych samowzbudnej głowicy pulsacyjnej na rozkłady ciśnienia i wektorów prędkości wewnątrz takiej głowicy oraz na prędkość wypływającej z niej strugi wodnej.
- Mechanizm generowania hydrodynamicznych impulsów ciśnienia w strudze wodnej przepływającej przez komorę wirową samowzbudnej głowicy pulsacyjnej polega na modulacji takiej strugi, wywołującej na wylocie z głowicy okresowy wzrost ciśnienia,

do którego w głównym stopniu przyczynia się oddziaływanie hydraulicznych pierścieni wirowych odpowiednio ukształtowanych w komorze wirowej.

- 4. Rozkłady wektorów prędkości oraz ciśnień występujących wewnątrz samowzbudnej głowicy pulsacyjnej zależą od wszystkich jej parametrów geometrycznych, przy czym największe oddziaływanie wykazują średnice otworów bocznych oraz dyszy wylotowej i wlotowej a wysokość i średnica komory wirowej wpływają w mniejszym stopniu, natomiast wysokość dysz i kąt natarcia komory wirowej oddziałują jedynie minimalnie.
- Największy wpływ na zwiększenie prędkości strugi wodnej wypływającej z samowzbudnej głowicy pulsacyjnej wykazuje wzrost średnicy otworów bocznych oraz zmniejszanie średnicy dyszy wylotowej.
- 6. W grupie parametrów geometrycznych mających średni wpływ na prędkość strugi wodnej wypływającej z samowzbudnej głowicy pulsacyjnej występuje wysokość komory wirowej, której wymiar stanowi zwykle 55÷80 % jej średnicy.
- 7. Zwiększanie wysokości dyszy wlotowej przy niezmiennych pozostałych parametrach wymiarowych, ułatwia powstawanie wirowych ruchów warstw wody w komorze wirowej, wywołujących korzystniejszą modulację pulsacyjną rdzenia strugi wodnej przy jedynie nieznacznym zmniejszaniu prędkości jej wypływu (po około 2% przypadających na każde 2 mm zwiększenia wysokości takiej dyszy).
- 8. W równie nieznacznym stopniu na powstawanie ruchów wirowych wody wpływa zwiększenie kąta natarcia komory wirowej a ponadto, przy zwiększeniu tego kąta w całym zakresie (od 100° do 120°), nieznacznie wzrasta prędkość strugi wodnej (o około 2 %).
- 9. W wariancie modelu samowzbudnej głowicy pulsacyjnej, mającym otwory boczne usytuowane pod kątem 120° względem osi tej głowicy, występuje gęste "wypełnienie" wnętrza komory wirowej dość jednakowymi wektorami prędkości, co mimo istnienia wyraźnie zróżnicowanego ciśnienia, nie sprzyja powstawaniu wirowych ruchów wody.
- 10. W przypadku modelu samowzbudnej głowicy pulsacyjnej ze stycznymi otworami bocznymi do komory wirowej, występują w niej wyraźne zawirowania poszczególnych warstw wody, a ponadto pojawia się ich rotacja względem osi komory wirowej. Przez to w całej objętości komory wirowej występuje zbliżone ciśnienie, powodujące wypływanie wody na zewnątrz także przez otwory boczne utrudniając powstawanie hydraulicznych pierścieni wirowych, co wręcz uniemożliwia inicjowanie

hydrodynamicznych impulsów ciśnienia w rdzeniu strugi wodnej, przepływającej wzdłuż osi takiej głowicy.

- 11. Zwykle największa prędkość wypływu strugi wodnej występuje przy użyciu głowicy z otworami stycznymi do komory wirowej. Dla najkorzystniejszego modelu głowicy wynosi ona v_{sr} =279 m/s, przewyższając 2,5÷3 krotnie prędkość uzyskiwaną w głowicach pulsacyjnych z otworami bocznymi umieszczonymi pod kątem 120° do komory wirowej. Jednak w głowicy z otworami stycznymi wskutek niemal równomiernego rozkładu ciśnienia, występuje szkodliwy wypływ wody także przez otwory boczne, co wręcz uniemożliwia wytwarzanie hydrodynamicznych pulsacji w strudze wodnej.
- 12. Nieznacznie mniejsza (o 5÷9 %) jest prędkość strugi wodnej wypływającej z samowzbudnej głowicy pulsacyjnej o prostopadłym (promieniowym) rozmieszczeniu otworów bocznych, która dla najkorzystniejszego modelu takiej głowicy wynosi v_{sr} =264 m/s.
- 13. Najkorzystniejsze efekty pod względem rozkładów ciśnienia i wektorów prędkości występujących wewnątrz samowzbudnej głowicy pulsacyjnej, jakie determinują warunki tworzenia się zawirowań warstw wody w komorze wirowej, umożliwiających generowanie impulsów w strudze wodnej wypływającej z niemal najwyższą prędkością, zapewnia prostopadłe (promieniowe) usytuowanie otworów bocznych względem komory wirowej.
- 14. Najbardziej korzystny model samowzbudnej głowicy pulsacyjnej ma dwa otwory boczne o średnicy 2 mm prostopadłe (usytuowane promieniowo) względem komory wirowej o średnicy 25 mm, wysokości 15 mm i kącie natarcia 120°, dla którego rozkłady wyraźnych zawirowań pierścieni wodnych oraz wzrostu ciśnienia przy wylocie z tej komory, sprzyjają generowaniu hydrodynamicznych impulsów ciśnienia w wypływającej strudze wodnej. Taki model głowicy pracujący przy ciśnieniu nominalnym 150 MPa, posiada także dyszę wlotową o średnicy 2,5 mm i wysokości 12 mm oraz dyszę wylotową o średnicy 4 mm, dzięki czemu maksymalna prędkość strugi wodnej na wlocie do komory wirowej wynosi 590 m/s natomiast średnia prędkość wylotowa strugi pulsacyjnej z takiej głowicy jest równa 264 m/s.
- 15. Dla uniknięcia błędów niezbędne stało się sprawdzenie funkcjonowania wybranego modelu samowzbudnej głowicy pulsacyjnej w całym zakresie zmiennych warunków. Dla wyznaczenia modelu matematycznego opisującego takie zależności, występujące

pomiędzy tymi zmiennymi, zastosowano analizę danych statystycznych z wykorzystaniem planu pięciopoziomowego rotatabilnego (PS/DS-P:λ).

- 16. W celu zminimalizowania ilości pomiarów i uzyskania modelu matematycznego powyższego modelu samowzbudnej głowicy pulsacyjnej, wykorzystano program "Experiment Planer" z pięciopoziomowym planem rotatabilnym, który wykonując odpowiednie obliczenia statystyczne umożliwił wyznaczenie następującego wielomianu: v_{sr} = 216,88 0,40 h_1 + 0,12 λ + 2,93 d_2 0,41 D 0,66 H 1,03 d_3 .
- 17. Prędkość strugi wodnej wypływającej z samowzbudnej głowicy pulsacyjnej jest wspomagana przez zwiększanie kąta natarcia komory wirowej (z intensywnością około 0,08 % na każdy stopień tego kąta), natomiast hamująco wpływa: zwiększanie wysokości komory wirowej (z intensywnością 0,33 %/mm) i wzrost wysokości dyszy wlotowej (z intensywnością około 0,24 %/m m).
- 18. Korzystnie na prędkość wypływu strugi wodnej oddziałuje zwiększanie średnicy otworów bocznych (z bardzo dużą intensywnością 1,52 %/mm) i kąta natarcia komory wirowej (z nieznaczną intensywnością 0,056 % na każdy stopień tego kąta), natomiast intensywność obniżania tej prędkości wskutek wzrostu wysokości dyszy wlotowej wynosi 0,3 %/mm.
- 19. Na prędkość strugi wodnej wypływającej z samowzbudnej głowicy pulsacyjnej hamująco wpływa zwiększanie: średnicy dyszy wypływowej (z intensywnością 0,46 %/mm), wysokości komory wirowej (z intensywnością ok. 0,3 %/mm) i jej średnicy (z intensywnością 0,19 %/mm).
- 20. Prędkość strugi wodnej wypływającej z samowzbudnej głowicy pulsacyjnej ulega obniżeniu wraz ze wzrostem: wysokości komory wirowej (z intensywnością 0,43%/mm) i średnicy dyszy wylotowej (z intensywnością 0,55 %/mm), natomiast prędkość tej strugi jest wspomagana przez zwiększanie średnicy otworów bocznych (z intensywnością 1,41 %/mm).

Przeprowadzone własne badania symulacji komputerowej podstawowych zjawisk występujących w modelu samowzbudnej głowicy pulsacyjnej umożliwiły weryfikację dotychczasowych dokonań w zakresie konstrukcji takiej głowicy, jak również poznanie efektów oddziaływania jej istotnych parametrów geometrycznych na mechanizm wywoływania pulsacji w strudze wodnej o ciśnieniu nominalnym 150 MPa i funkcjonowanie takiej głowicy.

5.2. Badania modelu głowicy pulsacyjnej przeznaczonej do drążenia otworów

Optymalizację geometrii modelu samowzbudnej głowicy pulsacyjnej przeprowadzono z wykorzystaniem programu Solid Works FlowSimulation. Celem tych badań było poszukiwanie optymalnego modelu głowicy pulsacyjnej ze względu na maksymalizację prędkości wylotowej strugi wodnej, przy uwzględnieniu zasysania czynnika zewnętrznego przez otwory boczne i odpowiednim ukształtowaniu pierścieni wirowych oraz możliwości zastosowania głowicy przy ciśnieniach wody od 15 MPa do 150 MPa. W tym celu przeprowadzono kolejne badania samowzbudnej głowicy pulsacyjnej przy zmiennych parametrach geometrycznych zaprezentowanych w tabeli 5.11.

Lp	Nazwa parametru	Oznaczenie	Jednostka	Zakres zmienności
1	Szerokość powierzchni pierścieniowych komory wirowej	SP	[mm]	1÷6
2	Wysokość dyszy wylotowej	h ₃	[mm]	4÷24
3	Średnica komory wirowej	D	[mm]	25÷50
4	Wysokość komory wirowej	Н	[mm]	15÷35
5	Wysokość dyszy wlotowej	h_1	[mm]	6÷12
6	Kąt natarcia komory wirowej	λ	[°]	100÷120
7	Średnica dyszy wylotowej	d ₃	[mm]	4÷9
8	Średnica otworów bocznych	d ₂	[mm]	2÷5
9	Średnica dyszy wlotowej	d ₁	[mm]	2÷3,2

 Tab. 5.11.
 Parametry geometryczne samowzbudnej głowicy pulsacyjnej uwzględnione podczas procesu optymalizacji wybranego rozwiązania

W każdym kolejnym etapie badań symulacyjnych dla zakresu zmienności jednego czynnika, przy stałych wartościach pozostałych parametrów, przeprowadzano poszukiwania rozwiązania, dla którego przy uzyskiwaniu najkorzystniejszych prędkości strugi wodnej i kształtu pierścieni wirowych, występowało zasysanie czynnika przez otwory boczne. Badania takie przeprowadzono w zakresie ciśnień nominalnych 15÷150 MPa.

5.2.1. Oddziaływanie kształtu wlotowej i wylotowej części komory wirowej

Istotnymi czynnikami w tym zakresie badań jest szerokość powierzchni pierścieniowych, występujących w górnej i dolnej części komory wirowej (rys. 5.17), gdyż wpływają one na kształt pierścieni wirowych powstających w tej komorze.

Badania oddziaływania szerokości powierzchni pierścieniowych (SP) na rozkłady ciśnień i wektorów prędkości, decydujących o kształcie pierścieni wirowych powstających w komorze wirowej samowzbudnej głowicy pulsacyjnej, przeprowadzono w zakresie od 1÷6 mm.

Rys. 5.17. Widok przekroju samowzbudnej głowicy pulsacyjnej z zaznaczonymi szerokościami powierzchni pierścieniowych komory wirowej

Poza analizowanym zakresem kształt pierścieni wirowych uniemożliwiał prawidłowe generowanie impulsów hydraulicznych. Dla takich założeń przeprowadzono komputerowe badania wpływu parametrów geometrycznych głowicy na proces zasysania czynnika zewnętrznego przez otwory boczne, a także na związany z tym, kształt pierścieni wirowych oraz rozkład prędkości i ciśnienia wewnątrz komory.

Poniżej, w tabeli 5.12, zaprezentowano zakresy badanych zmienności szerokości powierzchni pierścieniowych (SP) występujących w górnej (wlotowej) i dolnej (wylotowej) części komory wirowej, przy zachowaniu stałych wartości pozostałych zmiennych.

2									
Zakres zmienności szerokości powierzchni pierścieniowych komory wirowej SP [mm]									
1	2	3	3 4 5				6		
NAZWA	PARAMETRU	OZNACZ	ZENIE	JEDI	JEDNOSTKA		ARTOŚĆ		
Średnica komory wirowej		D	D		[mm]		25		
Wysokość komory wirowej		Н		[[mm]		15		
Wysokość	dyszy wlotowej	h ₁	h_1		mm]		12		
Kąt natarcia	komory wirowej	λ		[°]			120		
Średnica dyszy wylotowej		d ₃		[mm]			4		
Średnica otworów bocznych		d ₂		[[mm]		2		
Średnica d	łyszy wlotowej	d ₁		[mm]			2,5		

 Tab. 5.12.
 Zakres badanych zmiennych kształtów wlotowej i wylotowej części komory wirowej (pierścieni) dla stałych wartości pozostałych wyników

Przykładowe rozkłady prędkości wewnątrz głowicy pulsacyjnej dla zmiennych kształtów wlotowej i wylotowej części komory wirowej, tj. szerokości powierzchni pierścieniowych (SP) równych odpowiednio 2 mm i 6 mm, przy ciśnieniu 150 MPa zilustrowano na rys. 5.18.

Rys. 5.18. Rozkłady wektorów prędkości kształtujących się wewnątrz samowzbudnej głowicy pulsacyjnej dla zmiennych kształtów wlotowej i wylotowej części komory wirowej, tj. szerokości powierzchni pierścieniowych (SP), dla: a) SP=2 mm, b) SP=6 mm, przy nominalnym ciśnieniu 150 MPa

Z kolei przykładowe rozkłady ciśnienia wewnątrz głowicy pulsacyjnej dla zmiennych szerokości powierzchni pierścieniowych (SP) komory wirowej, równych odpowiednio 2 mm i 6 mm, przy ciśnieniu nominalnym 150 MPa przedstawiono na rys. 5.19.

Rys. 5.19. Rozkłady ciśnienia kształtujące się wewnątrz samowzbudnej głowicy pulsacyjnej dla zmiennych kształtów wlotowej i wylotowej części komory wirowej, tj. szerokości powierzchni pierścieniowych (SP), dla: a) SP=2 mm, b) SP=6 mm, przy nominalnym ciśnieniu 150 MPa

Podciśnienie powstające w komorze wirowej umożliwia kształtowanie się wodnych pierścieni wirowych, jednak przy stosunkowo małej szerokości powierzchni pierścieniowych (np. SP=2 mm), takie zawirowania powstają głównie w dolnej części tej komory. Przeciwnie, przy względnie większej szerokości powierzchni pierścieniowych (np. SP=6 mm) zawirowania takie są znacznie intensywniejsze, wypełniając ³/₄ objętości komory wirowej, przez co oddziałują one na przepływ strugi w komorze na całej jej długości.

Wyniki wpływu szerokości powierzchni pierścieniowych (SP) 2 i 6 mm na rozkłady ciśnień i wektorów prędkości, które decydują o kształcie pierścieni wirowych powstających

w komorze wirowej samowzbudnej głowicy pulsacyjnej, przeprowadzono stosując zakres zmienności ciśnień nominalnych od 15 MPa do 150 MPa. Przykładowe rozkłady ciśnień oraz wektorów prędkości dla szerokości powierzchni pierścieniowych 2 mm, przy nominalnym ciśnieniu 15 MPa, 60 MPa i 120 MPa zaprezentowano na poniższym rys. 5.20.

Rys. 5.20. Rozkłady ciśnienia oraz wektorów prędkości kształtujące się wewnątrz samowzbudnej głowicy pulsacyjnej dla szerokości powierzchni pierścieniowych (SP=2 mm), przy nominalnych ciśnieniach: a) 15 MPa, b) 60 MPa oraz c) 120 MPa

Dla porównania przedstawiono przykłady zastosowania szerokości powierzchni pierścieniowych 6 mm przy ciśnień nominalnych (15 MPa, 60 MPa i 120 MPa), które zaprezentowano na rys. 5.21.

Rys. 5.21. Rozkłady ciśnienia oraz wektory prędkości kształtujące się wewnątrz samowzbudnej głowicy pulsacyjnej dla szerokości powierzchni pierścieniowych (SP=6 mm), przy nominalnych ciśnieniach: a) 15 MPa, b) 60 MPa oraz c) 120 MPa

Analiza otrzymanych wyników wykazała, że rozkład ciśnień i kształt pierścieni wirowych powstających wewnątrz komory wirowej są korzystne dla większej szerokości powierzchni pierścieniowych, równej 6 mm, dla której to zarówno rozkłady prędkości, jak i ciśnienia oraz kształt pierścieni wirowych, powodował proces zasysania czynnika przez otwory boczne. Również wstępne badania prowadzone dla kolejnych parametrów geometrycznych wykazały analogiczną zależność, dlatego we wszystkich kolejnych badaniach taką wartość (SP=6 mm) przyjęto jako stałą.

5.2.2. Rola wysokości dyszy wylotowej

W kolejnym kroku badawczym, dla określenia prędkości wypływu strugi wodnej z samowzbudnej głowicy pulsacyjnej, zmieniano (w zakresie 4÷24 mm) wysokość dyszy wylotowej. Badania takie przeprowadzono dla stałych wartości pozostałych wymiarów geometrycznych komory wirowej (tab. 5.13).

Nazwa parametru	Oznaczenie	Jednostka	Wartość
Średnica komory wirowej	D	[mm]	25
Wysokość komory wirowej	Н	[mm]	15
Wysokość dyszy wlotowej	h ₁	[mm]	12
Kąt natarcia komory wirowej	λ	[°]	120
Średnica dyszy wylotowej	d ₃	[mm]	4
Średnica otworów bocznych	d ₂	[mm]	2
Średnica dyszy wlotowej	d_1	[mm]	2,5

Tab. 5.13. Parametry geometryczne samowzbudnej głowicy pulsacyjnej

Symulacje takie przeprowadzono dla sześciu różnych wartości wysokości dyszy wylotowej (h₃) stanowiących wielokrotność średnicy dyszy wylotowej. Wyniki prędkości wypływu strugi wodnej w funkcji wysokości dyszy wylotowej przyjmują postać zbliżoną do paraboli, jak to przedstawiono na rys. 5.22.

Rozkłady końcowej prędkości kształtującej się na wypływie z samowzbudnej głowicy pulsacyjnej przy ciśnieniach nominalnych: 15 MPa, 30 MPa, 45 MPa, 60 MPa, 75 MPa, 90 MPa, 105 MPa, 120 MPa, 135 MPa i 150 MPa przeprowadzono dla 6 różnych wartości wysokości dyszy wylotowej. Badania wysokość dyszy wylotowej przy różnych ciśnieniach nominalnych w zakresie od 15 MPa do 150 MP przedstawiono na rys. 5.23.

Rys. 5.23. Porównanie końcowych prędkości strugi wodnej w zależności od wysokości dyszy wylotowej przy ciśnieniach a) 15÷75 MPa oraz b) 90÷150 MPa

Wysokociśnieniowa struga wodna osiąga największą prędkość dla dyszy wylotowej o wysokości 12 mm, przy każdym ciśnieniu nominalnym co dokładnie odpowiada stosunkowi h₃/d₃=3. Natomiast najniższe prędkości końcowych w stosunku do dyszy o wysokości 12 mm struga osiąga przy najmniejszej oraz największej analizowanej wysokości dyszy, tj. 4 mm oraz 24 mm uzyskując kilku (2÷9 %) spadek prędkości. Dlatego też w dalszych badaniach symulacyjnych i analizach wysokość dyszy wylotowej h₃=12 mm przyjęto jako stałą.

5.2.3. Wpływ średnicy komory wirowej

W kolejnym kroku symulacyjnych badań komputerowych przeprowadzono weryfikację wpływu średnicy komory (D) na proces zasysania czynnika przez otwory boczne. Badania przeprowadzono w zakresie D= $25 \div 50$ mm, dla stałych wartości pozostałych parametrów. Badając wpływ parametrów geometrycznych głowicy pulsacyjnej na proces zasysania czynnika przez otwory boczne mierzono prędkości: maksymalną v_{max} , średnią $v_{śr}$ oraz końcową v_{ko} , przy zapewnieniu odpowiedniej relacji pomiędzy wysokością a średnicą dyszy wylotowej h₃/d₃=3. Miejsca pomiaru prędkości przepływu strugi przedstawiono na rys. 5.24.

Rys. 5.24. Miejsca określania poszczególnych prędkości przepływu strugi wodnej

W tabeli 5.14 zaprezentowano wyniki średnich wartości uzyskanych prędkości strugi w poszczególnych miejscach przepływu strugi, przy ciśnieniu nominalnym 150 MPa.

Z	Prędkość [m/s]							
25	30	35	40	45		50		
365	335	305	295	295 288		280	średnia $\upsilon_{\mathrm{śr}}$	
264	250	243	241	233	3	231	końcowa υ _{ko}	
590	585	582	575	574		573	maksymalna υ_{max}	
NAZV	NAZWA PARAMETRU			OZNACZENIE		DNOSTKA	WARTOŚĆ	
Wysokość komory wirowej			Н			[mm]	15	
Wysokość dyszy wlotowej			h_1		[mm]		12	
Kąt natarcia komory wirowej			λ [°]		[°]	120		
Średnica dyszy wylotowej			d ₃		[mm]		4	
Średnica otworów bocznych			d ₂			[mm]	2	
Średni	ica dyszy wło	otowej	d1			[mm]	2,5	

 Tab. 5.14.
 Wartości prędkości strugi dla badanych średnic komory wraz z wartościami pozostałych stałych parametrów

Porównanie wyników średnich prędkości strugi dla badanego zakresu zmienności średnicy komory, przy ciśnieniu nominalnym 150 MPa, zaprezentowano na rys. 5.25.

Rys. 5.25. Przebiegi maksymalnych, średnich i końcowych prędkości przepływu pulsującej strugi wodnej w funkcji średnicy komory wirowej (dla p=150 MPa)

Analiza otrzymanych wyników oddziaływania średnicy komory wirowej samowzbudnej głowicy pulsacyjnej na prędkość strugi w charakterystycznych miejscach jej przepływu wykazały, że wraz ze wzrostem tej średnicy następuje kilkuprocentowy spadek prędkości strugi wodnej.

W kolejnym kroku badań przeprowadzono pomiary wpływu średnicy komory wirowej na prędkość strugi przy różnych ciśnieniach nominalnych w zakresie 15÷150 MPa. Wybrane wyniki dla D=25 mm, 40 mm oraz 50 mm zaprezentowano na rys. 5.26.

Otrzymane wyniki wpływu nominalnego ciśnienia wody na prędkość średnią strugi wodnej, badaną przy różnych średnicach komory wirowej, wskazują na zwiększenie średniej prędkości strugi wodnej ze wzrostem nominalnego ciśnienia. Określono również, że każdorazowe zwiększenie średnicy komory wirowej o 5 mm przyczynia się do kilkuprocentowego spadku prędkości strugi, dlatego też najbardziej optymalnym rozwiązaniem okazuje się być najmniejsza średnica komory wirowej, równa jest D=25 mm.

5.2.4. Oddziaływanie wysokości komory wirowej

W następnym etapie badań analizowano oddziaływanie wysokości komory wirowej na prędkości strugi wodnej w charakterystycznych miejscach samowzbudnej głowicy pulsacyjnej. Tego rodzaju badania komputerowe przeprowadzano, dla różnych wysokości komory wirowej H=15÷35 mm, przy stałych wartościach pozostałych parametrów. Ich wyniki

zaprezentowane w tabeli 5.15 ilustrując średnie, końcowe oraz maksymalne prędkości strugi wodnej określane przy ciśnieniu równym 150 MPa w miejscach wskazanych na rys. 5.24.

7	Prędkość [m/s]					
15	20	25	30		35	
365	286	218	217		185	średnia υ _{śr}
264	233	213	204		183	końcowa u _{ko}
590	581	579	576		571	maksymalna υ_{max}
NAZWA	PARAMETRU	OZN.	ACZENIE	IE JEDNOSTKA		WARTOŚĆ
Średnica k	Średnica komory wirowej			D		25
Wysokość		h1 [[mm]	12	
Kąt natarcia	ej	λ		[°]	120	
Średnica d		d ₃	[mm]		4	
Średnica ot	1	d ₂		[mm]	2	
Średnica o	łyszy wlotowej		d_1		[mm]	2,5

Tab. 5.15.Zestawienie wyników poszczególnych prędkości strugi wodnej określanej we wskazanych
miejscach głowicy pulsacyjnej przy zmianie wysokości komory wirowej w zakresie 15÷35 mm

Graficzny obraz wyników badań oddziaływania zmiany wysokości komory wirowej na prędkość strugi wodnej w analizowanych miejscach przepływu zaprezentowano na rys. 5.27.

Rys. 5.27. Przebiegi maksymalnych, średnich i końcowych prędkości przepływu pulsującej strugi wodnej w funkcji wysokości komory mieszania (dla p=150 MPa)

Na podstawie otrzymanych wyników stwierdzono, że wraz ze wzrostem wysokości komory wirowej samowzbudnej głowicy pulsacyjnej, następuje kilkuprocentowy spadek prędkości strugi w analizowanych miejscach jej przepływu.

Porównanie wybranych wyników wpływu nominalnego ciśnienia (w zakresie 15÷150 MPa) na kształtowanie się średniej, końcowej oraz maksymalnej prędkości strugi przy wysokości komory 25 mm i 35 mm przedstawiono na rys. 5.28.

Rys. 5.28. Przebiegi maksymalnych, średnich i końcowych prędkości przepływu pulsującej strugi wodnej w funkcji nominalnego ciśnienia wody dla wysokości komory wirowej: a) 25 mm i b) 35 mm

Wyniki otrzymanych pomiarów maksymalnej prędkości strugi wodnej przy wzroście ciśnienia nominalnego od 15 MPa do 150 MPa wykazały około 3,5-krotny jej wzrost dla każdej z analizowanych wysokości komory w analizowanym zakresie (np. dla H=25 mm wzrost ten wynosi odpowiednio 3,37, gdyż dla ciśnienia 15 MPa prędkość wynosi 172 m/s; natomiast dla ciśnienia 150 MPa \rightarrow 579 m/s), z kolei dla prędkości średnich oraz końcowych taki wzrost jest nieco mniejszy i wynosi około 3 krotność ilorazu tych prędkości. Uwzględniając spadek prędkości strugi wraz ze wzrostem wysokości komory wirowej (H) oraz względnie stały stosunek jej wzrostu wraz ze wzrostem ciśnienia nominalnego, najbardziej korzystne rozwiązanie stanowi głowica, której wysokość komory wirowej jest równa H=15 mm.

5.2.5. Oddziaływanie wysokości dyszy wlotowej

W kolejnym kroku badawczym analizowano oddziaływanie wysokości dyszy wlotowej na prędkość strugi wodnej w analizowanych miejscach. Takie badania komputerowe wykonano dla różnych wysokości dyszy wlotowej $h_1=6\div12$ mm przy nominalnym ciśnieniu wody od 15 MPa do150 MPa.

Wyniki średnich, końcowych oraz maksymalnych prędkości strugi wodnej, ulegającej zmianie pod wpływem zmian wysokości dyszy wlotowej, przycienieniu nominalnym150 MPa przedstawiono w tabeli 5.16.

Tab. 5.16. Zestawienie wyników poszczególnych prędkości strugi wodnej określanej we wskazanych miejscach głowicy pulsacyjnej pod wpływem zmian wysokości dyszy wlotowej w zakresie 6÷12 mm

Zakres				
6	8	10	12	Prędkość [m/s]
294	293	325	365	średnia v _{śr}
214	229	245	264	końcowa υ _{ko}
562	575	580	590	maksymalna υ_{max}
NA 7WA DAD	DAMETDI	OZNACZENIE	IEDNOSTKA	WADTOŚĆ
NAZWA FAKAMEIKU		OZNACZENIE	JEDNOSTKA	WARTOSC
Średnica komory wirowej		D	[mm]	25
Wysokość komory wirowej		Н	[mm]	15
Kąt natarcia komory wirowej		λ	[°]	120
Średnica dyszy wylotowej		d ₃	[mm]	4
Średnica otworo	ów bocznych	d_2	[mm]	2
Średnica dysz	y wlotowej	d ₁	[mm]	2,5

Graficzną postać wyników oddziaływania wysokości dyszy wlotowej na prędkość strugi wodnej w analizowanych miejscach przepływu ukazano na rys. 5.29.

Rys. 5.29. Przebiegi maksymalnych, średnich i końcowych prędkości przepływu pulsującej strugi wodnej w funkcji wysokości dyszy wlotowej (dla p=150 MPa)

Otrzymane wyniki takich badań wykazują, że ze wzrostem wysokości dyszy wlotowej następuje zwiększenie prędkości strugi wodnej w wybranych miejscach samowzbudnej głowicy pulsacyjnej.

Na rys. 5.30 przedstawiono wybrane wyniki wpływu ciśnienia na średnią prędkość strugi wodnej w analizowanych miejscach przepływu przy wysokości dyszy wlotowej 6 mm i 8 mm.

Rys. 5.30. Przebiegi maksymalnych, średnich i końcowych prędkości przepływu pulsującej strugi wodnej w funkcji nominalnego ciśnienia wody dla wysokości dyszy wlotowej: a) 6 mm i b) 10 mm

Otrzymane wyniki prędkości strugi wodnej w badanych przekrojach pomiarowych zwiększają się wraz ze wzrostem jej ciśnienia nominalnego. Zwiększenie tego ciśnienia z 15 MPa do 150 MPa dla każdej z analizowanych wysokości dyszy wlotowej $h_1=6\div12$ mm powoduje około 2,8-krotny wzrost maksymalnej oraz końcowej prędkości strugi oraz około 3,2-krotne zwiększenie średniej prędkości strugi. Zwiększanie się prędkości strugi wraz ze wzrostem wysokości dyszy wlotowej wykazał, że wysokość ta powinna wynosić $h_1=12$ mm.

5.2.6. Wpływ kąta natarcia komory wirowej

Komputerowe badania oddziaływania kąta natarcia komory wirowej na prędkości strugi wodnej w określonych miejscach samowzbudnej głowicy pulsacyjnej, przeprowadzono w zakresie zmienności λ =100÷120°. Wyniki tych badań, wykonanych przy nominalnym ciśnieniu wody równym 150 MPa, zestawiono w tabeli 5.17.

pulsacyjnej					
Zakres zmienno	Predkość [m/s]				
100		110		120	T i çukose [m/s]
213		290	365		średnia u _{śr}
228		234		264	końcowa υ _{ko}
554		572 590		590	maksymalna v _{max}
ΝΑΖΨΑ ΒΑΒΑΜΕ'	NA 7WA DADAMETDI		OZNACZENIE		WARTOŚĆ
	INU	OZNACZEN		JEDNOSTKA	WARIOSC
Średnica komory wir	owej	D		[mm]	25
Wysokość komory wi	Wysokość komory wirowej		Н		15
Wysokość dyszy wlot	owej	h ₁		[mm]	12
Średnica dyszy wylotowej		d ₃		[mm]	4
Średnica otworów bocznych		d ₂		[mm]	2
Średnica dyszy wloto	owej	d1		[mm]	2,5

Tab. 5.17. Zestawienie wyników poszczególnych prędkości strugi przy zmianie kąta natarcia komory w zakresie 100÷120° i stałych wartościach pozostałych wymiarów samowzbudnej głowicy pulsacyjnej

Porównanie wyników badań wpływu zmiany kąta natarcia komory wirowej na prędkość strugi w tych szczególnych miejscach przepływu przez głowicę zaprezentowano na rys. 5.31.

Rys. 5.31. Przebiegi maksymalnych, średnich i końcowych prędkości przepływu pulsującej strugi wodnej w funkcji kąta natarcia komory wirowej (dla p=150 MPa)

Na podstawie uzyskanych wyników stwierdzono, że ze wzrostem kąta natarcia komory wirowej następuje wyraźne zwiększenie średniej prędkości strugi wodnej, przy zaledwie kilkuprocentowym wzroście maksymalnej prędkości strugi, jaki występuje w rozpatrywanych miejscach jej przepływu przez samowzbudną głowicę pulsacyjną.

Wyniki wpływu ciśnienia nominalnego na prędkość strugi wodnej w badanych przekrojach głowicy samowzbudnej przy zmiennym kącie natarcia komory rys. 5.32.

Rys. 5.32. Przebiegi maksymalnych, średnich i końcowych prędkości przepływu pulsującej strugi wodnej w funkcji ciśnienia nominalnego dla różnych kątów natarcia komory wirowej: a) 110° oraz b) 100°

Analiza wpływu ciśnienia na prędkości strugi w rozpatrywanych obszarach głowicy wykazała znacznie mniejszy (bo tylko około 2,5-krotny) wzrost prędkości średniej i końcowej dla najniższych wartości kątów natarcia komory wirowej.

5.2.7. Oddziaływanie średnicy dyszy wylotowej

Badania wpływu średnicy dyszy wylotowej na prędkości strugi wodnej w analizowanych miejscach wykonano dla różnych średnic dyszy wylotowej $d_3=4\div9$ mm przy stałych wartościach pozostałych parametrów. Powody zmniejszania się średnich prędkości strugi wodnej, wskutek wzrostu średnicy dyszy wylotowej są zrozumiałe, natomiast konkretne wyniki ich komputerowych symulacji przedstawiono w tabeli 5.18.

Tab. 5.18. Zestawienie wyników poszczególnych prędkości strugi wodnej przy zmianie średnicy dyszy wylotowej w zakresie 4÷9 mm oraz stałych wartościach pozostałych wymiarów głowicy pulsacyjnej

7								
L	akres zmieni	iosci srea	nicy dyszy wy	lotowej	a3[mm		Drodlzość [m/s]	
4	5	6	7 8		8 9		T TÇUKUSC [III/S]	
365	221	153	117		90	84	średnia v _{śr}	
264	179	132	93	:	83	72	końcowa υ _{ko}	
590	588	586	584	34 581		580	maksymalna υ_{max}	
NAZWA PARAMETRU			OZNACZENIE		JEDNOSTKA		WARTOŚĆ	
Średnica komory wirowej			D		[mm]		25	
Wysokość komory wirowej		Н		[mm]		15		
Wysokość dyszy wlotowej			h ₁		[mm]		12	
Kąt natarcia komory wirowej			λ		[°]		120	
Średnica otworów bocznych			d ₂		[mm]		2	
Średnic	a dyszy wloto	owej	d ₁		[mm]		2,5	

Na podstawie wyników takich badań konkretne przebiegi prędkości przepływów strugi wodnej w analizowanych miejscach (rys. 5.24) samowzbudnej głowicy pulsacyjnej w funkcji wzrostu średnicy dyszy wylotowej, przedstawiono na rys. 5.33.

Rys. 5.33. Przebiegi maksymalnych, średnich i końcowych prędkości przepływu pulsującej strugi wodnej w funkcji średnicy dyszy wylotowej (dla p= 150 MPa)

Na podstawie otrzymanych wyników wpływu średnicy dyszy wylotowej samowzbudnej głowicy pulsacyjnej stwierdzono, że jej wzrost powoduje gwałtowny spadek średniej i końcowej prędkości strugi wodnej, natomiast maksymalna prędkość strugi wodnej w całym badanym zakresie, kształtowała się praktycznie na niezmiennym poziomie około 600 m/s.

Wybrane wyniki prędkości strugi wodnej przy zmiennym ciśnieniu nominalnym dla średnicy dyszy wylotowej 6 mm i 9 mm przedstawiono na rys. 5.34.

Rys. 5.34. Przebiegi maksymalnych, średnich i końcowych prędkości przepływu pulsującej strugi wodnej w funkcji ciśnienia nominalnego dla różnych średnic dyszy wylotowej: a) 6 mm oraz b) 9 mm

Z przedstawionych powyżej wykresów wynika, że wzrost nominalnego ciśnienia wody z 15 MPa do 150 MPa w analizowanych przekrojach samowzbudnej głowicy pulsacyjnej wywołuje około 3-krotne zwiększenie prędkości maksymalnej oraz około 1,8-krotny wzrost prędkości średniej i końcowej. Podobne stosunki występują także dla innych analizowanych średnic dyszy wylotowej. Gwałtowny spadek prędkości strugi przy wzroście średnicy dyszy wylotowej oraz nieznaczne różnice wzrostu prędkości strugi przy różnych ciśnieniach nominalnych wskazują, że najbardziej optymalną średnicą dyszy wylotowej jest d₃=4 mm.

5.2.8. Oddziaływanie średnicy otworów bocznych

W tego rodzaju badaniach prędkości przepływów strugi wodnej w wybranych miejscach samowzbudnej głowicy pulsacyjnej przeprowadzono komputerowe analizy istotnego oddziaływania średnicy otworów bocznych. Tego rodzaju badania wykonano dla różnych średnic otworów bocznych $d_2=2\div5$ mm, przy stałych wartościach pozostałych parametrów.

Wyniki rozpatrywanych prędkości strugi wodnej w funkcji zmiennej średnicy otworów bocznych takiej głowicy zestawiono w tabeli 5.19.

Tab. 5.19. Zestawienie wyników poszczególnych prędkości strugi wodnej przy zmianie średnicy otworów bocznych w zakresie 2÷5 mm oraz stałych wartościach pozostałych wymiarów głowicy pulsacyjnej

Zakres zm	Prędkość [m/s]			
2	3	4	5	
365	314	271	271	średnia u _{śr}
264	255	249	242	końcowa u _{ko}
590	547	542	545	maksymalna u _{max}
NAZWA PARAMETRU		OZNACZENIE	JEDNOSTKA	WARTOŚĆ
Średnica komory wirowej		D	[mm]	25
Wysokość komory wirowej		Н	[mm]	15
Wysokość dyszy wlotowej		h_1	[mm]	12
Kąt natarcia komory wirowej		λ	[°]	120
Średnica dysz	zy wylotowej	d ₃	[mm]	4
Średnica dys	szy wlotowej	d ₁	[mm]	2,5

Graficzną postać wyników badań oddziaływania średnicy otworów bocznych samowzbudnej głowicy pulsacyjnej na prędkości przepływu strugi wodnej, występujące w rozpatrywanych miejscach tej głowicy, zaprezentowano na rys. 5.35.

Rys. 5.35. Przebiegi maksymalnych, średnich i końcowych prędkości przepływu pulsującej strugi wodnej w funkcji średnicy otworów bocznych (dla p=150 MPa)

Wykresy te ukazują, że ze wzrostem średnicy otworów bocznych następuje spadek prędkości przepływu strugi. Intensywność tych zmian w całym zakresie zmienności otworów bocznych powoduje: ponad 8 % spadek maksymalnej prędkości strugi wodnej i ponad 25 % spadek prędkości średniej oraz ponad 8 % spadek końcowej prędkości tejże strugi.

Wpływ nominalnego ciśnienia wody na prędkość strugi wodnej w analizowanych miejscach przepływu przy wybranych średnicach otworów bocznych zostały zaprezentowane na rys. 5.36.

Rys. 5.36. Przebiegi maksymalnych, średnich i końcowych prędkości przepływu pulsującej strugi wodnej w funkcji ciśnienia nominalnego dla różnych średnic otworów bocznych a) 4 mm oraz b) 5 mm

Analiza wartości takich prędkości strugi wodnej dla zmiennych średnic otworów bocznych, przy wzroście ciśnienia nominalnego z 15 MPa do 150 MPa, wykazała około 3-krotny wzrost prędkości maksymalnej oraz około 1,5-krotny wzrost prędkości średnich i końcowych. Dlatego też uwzględniając dodatkowo spadek prędkości strugi wodnej przy większych średnicach otworów bocznych, należy stwierdzić, że ich średnica w optymalnym rozwiązaniu głowicy pulsacyjnej powinna wynosić d₂=2 mm.

5.2.9. Wpływ średnicy dyszy wlotowej

W ostatniej kolejności przeprowadzono komputerową analizę wpływu średnicy dyszy wlotowej na prędkości strugi wodnej w wybranych miejscach samowzbudnej głowicy pulsacyjnej. Badania te wykonano dla średnicy dyszy wlotowej zróżnicowanej w zakresie $d_1=2\div3,2$ mm, przy ustalonych wartościach pozostałych jej parametrów wymiarowych.

Wyniki wartości poszczególnych prędkości strugi wodnej, określone dla zmiennej średnicy dyszy wlotowej, zestawiono w tabeli 5.20.

Zakr							
2	2,2	2	2,5	3		3,2	Prędkość [m/s]
297	322	365		360		363	średnia v _{śr}
211	241	2	64	321		342	końcowa υ _{ko}
583	586	5	90	591		592	maksymalna u _{max}
NAZWA PARAMETRU			OZN	ACZENI E		JEDNOSTKA	WARTOŚĆ
Średnica komory wirowej				D [mm]		[mm]	25
Wysokość komory wirowej		Н			[mm]	15	
Wysokość dyszy wlotowej				h ₁ [mm]		[mm]	12
Kąt natarcia komory wirowej			λ			[°]	120
Średnica dyszy wylotowej				d ₃		[mm]	4
Średnica o	tworów boczny	/ch		d ₂		[mm]	2

 Tab. 5.20.
 Zestawienie wyników poszczególnych prędkości strugi przy zmianie średnicy dyszy wlotowej w zakresie 2÷3,2 mm oraz stałych wartościach pozostałych wymiarów głowicy pulsacyjnej

Wyniki badań wpływu średnicy dyszy wlotowej na prędkość strugi wodnej w analizowanych miejscach jej przepływu przez głowicę, zaprezentowano na rys. 5.37.

Rys. 5.37. Przebiegi maksymalnych, średnich i końcowych prędkości przepływu pulsującej strugi wodnej w funkcji średnicy dyszy wlotowej, dla p=150 MPa

Uzyskane wyniki takich badań wykazały, że ze wzrostem średnicy dyszy wlotowej, przy ustalonych pozostałych wymiarach samowzbudnej głowicy pulsacyjnej, następuje wzrost poszczególnych prędkości przepływu strugi wodnej. Przy zastosowaniu dyszy wlotowej o średnicy 2 mm średnia prędkość strugi wodnej wynosi 297 m/s i wzrasta do wartości 363 m/s przy średnicy dyszy równej 3,2 mm. Taki wzrost średnicy dyszy wlotowej powoduje zwiększenie prędkości końcowej o koło 20 %. Z kolei prędkość maksymalna strugi wodnej w całym rozpatrywanym zakresie zmienności średnicy dyszy wlotowej, ulega jedynie nieznacznemu wzrostowi, kształtując się praktycznie na stałym poziomie niespełna 600 m/s.

Graficzną postać wyników wpływu ciśnienia na prędkość średnią strugi wodnej przy badanych ciśnieniach nominalnych, w zakresie od 15 MPa do 150 MPa, dla przykładowych wartości średnicy dyszy wlotowej (2 oraz 3,2 mm) przedstawiono na rys. 5.38.

Rys. 5.38. Przebiegi maksymalnych, średnich i końcowych prędkości przepływu pulsującej strugi wodnej w funkcji ciśnienia nominalnego dla różnych średnic otworów bocznych a) 2 mm oraz b) 3,2 mm

Otrzymane wyniki oddziaływania średnicy dyszy wlotowej na maksymalną, średnią i końcową prędkość strugi wodnej, wykazały, podobnie jak i w poprzednio przeprowadzanych analizach, kilkukrotne zwiększenie tych prędkości wraz ze wzrostem ciśnienia nominalnego z 15 MPa do 150 MPa. Jednakże największy wzrost (około 5,5-krotny) średniej prędkości strugi wodnej uzyskano dla średnicy wlotowej $d_1=2,5$ mm.

5.2.10. Charakterystyka modelu głowicy pulsacyjnej przeznaczonej do drążenia otworów

Na podstawie przeprowadzonych powyższych badań określono parametry wymiarowe modelu samowzbudnej głowicy pulsacyjnej, przeznaczonej do drążenia otworów strugą wodną w zakresie ciśnień 15÷150 MPa. Wybrane na podstawie przeprowadzanych badań oraz analiz geometryczne wymiary optymalne głowicy zaprezentowano w tabeli 5.21.

 Tab. 5.21.
 Wybrane parametry wymiarowe wybranego modelu samowzbudnej głowicy pulsacyjnej przeznaczonej do drążenia otworów strugą wodną dla ciśnień od 15 MPa do 150 MPa

Parametr wymiarowy	Oznaczenie	Wartości
średnica komory wirowej [mm]	D	25
wysokość komory wirowej [mm]	Н	15
wysokość dyszy wlotowej [mm]	h_1	12
kąt natarcia komory wirowej [°]	λ	120
średnica dyszy wylotowej [mm]	d ₃	4
średnica otworów bocznych [mm]	d_2	2
średnica dyszy wlotowej [mm]	d_1	2,5
Szerokość powierzchni pierścieniowych komory wirowej [mm]	SP	6

Rozkłady wektorów prędkości i ciśnienia wewnątrz wybranego modelu samowzbudnej głowicy pulsacyjnej przedstawiono na rys. 5.39.

Rys. 5.39. Rozkłady wektorów prędkości: (a) i ciśnienia (b) kształtującego się wewnątrz wybranego modelu samowzbudnej głowicy pulsacyjnej przy ciśnieniu nominalnym 150 MPa

Analiza rozkładów wektorów prędkości jednoznacznie wskazuje na występowanie symetrycznych wirów hydraulicznych obejmujących niemal całą objętość komory wirowej, co przy zasysaniu czynnika zewnętrznego i strefowo-symetrycznym rozkładzie ciśnienia panującego w tej komorze, zapewnia warunki do tworzenie się hydrodynamicznych impulsów ciśnienia w rdzeniu strugi wodnej przepływającej przez samowzbudną głowicę pulsacyjną.

5.2.11. Wnioski

Przeprowadzenie kompleksowych badań w szerokim zakresie zmienności parametrów wymiarowych, mających wpływ na funkcjonowanie samowzbudnej głowicy pulsacyjnej, umożliwiło opracowanie optymalnego modelu konstrukcyjnego takiej głowicy przeznaczonej do drążenia otworów strugą wodną o ciśnieniu zawierającym się w zakresie 15÷150 MPa.

Analiza wyników komputerowych badań symulacyjnych, ilustrujących oddziaływania poszczególnych parametrów wymiarowych na kształtowanie się zwartych pierścieni wirowych, oraz osiągnięcie maksymalnej prędkości strugi wodnej wraz z zasysaniem czynnika zewnętrznego przez otwory boczne samowzbudnej głowicy pulsacyjnej, umożliwiła sformułowanie następujących wniosków:

- Wybrany model samowzbudnej głowicy pulsacyjnej przeznaczonej do drążenia otworów strugą wodną, przebadany w zakresie ciśnień nominalnych od 15 MPa do 150 MPa, mający komorę wirową o średnicy 25 mm, wysokości 15 mm i kącie natarcia równym 120° oraz szerokość powierzchni pierścieniowych 6 mm, posiada: dyszę wlotową o średnicy 2,5 mm i wysokości 12 mm, prostopadłe umiejscowienie dwóch otworów bocznych o średnicy 2 mm oraz dyszę wylotową o średnicy 4 mm.
- Rozkłady prędkości i ciśnienia wewnątrz modelu takiej głowicy zależą od wszystkich analizowanych tu parametrów wymiarowych, wśród których najistotniejsze oddziaływanie wykazują: wysokość i kąt natarcia komory wirowej oraz średnice dyszy wylotowej i otworów bocznych.
- 3. Najkorzystniejsze rozkłady prędkości i ciśnienia występujące wewnątrz wybranego modelu samowzbudnej głowicy pulsacyjnej, które inicjują powstawanie ruchów wirowych umożliwiających tworzenie się impulsów ciśnienia w rdzeniu strugi wodnej przepływającej przez komorę wirową, uzyskuje się przy szerokości powierzchni pierścieniowych tejże komory, równych 6 mm.

Analiza wyników badań wpływu poszczególnych parametrów konstrukcyjnych samowzbudnej głowicy pulsacyjnej na prędkości przepływu strugi wodnej w poszczególnych przekrojach tej głowicy, wykazała w szczególności, że:

- Najwyższe prędkości końcowe strugi wodnej uzyskano przy wysokości dyszy wylotowej h₃=12 mm, co odpowiada stosunkowi h₃/d₃=3.
- 5. Zwiększenie średnicy dyszy wylotowej powyżej 4 mm powoduje gwałtowny spadek średniej i końcowej prędkości strugi wodnej, przy praktycznie niezmiennej, kształtującej się na poziomie około 600 m/s prędkości maksymalnej strugi wodnej badanej w całym analizowanym zakresie zmienności tej średnicy (d₃=4÷9 mm).
- 6. Także wzrost ciśnienia nominalnego w analizowanym zakresie zmienności od 15 MPa do 150 MPa powoduje podobne, około 3-krotne zwiększenie prędkości maksymalnej strugi wodnej oraz około 1,8-krotny wzrost prędkości średniej i końcowej dla każdej analizowanej średnicy dyszy wylotowej.
- 7. Niezależnie od średnicy komory wirowej w analizowanym zakresie (D=25÷50 mm) wzrost ciśnienia wody (p=15÷150 MPa) zwiększa prędkość przepływu strugi wodnej w każdym z charakterystycznych punktów samowzbudnej głowicy pulsacyjnej. Każdorazowe zwiększenie średnicy komory wirowej o 5 mm powoduje kilkuprocentowy spadek maksymalnej, średniej i końcowej prędkości, określanych w takiej głowicy pulsacyjnej. Dlatego też w analizowanym zakresie wymiarów optymalna średnica komory wirowej jest równa D=25 mm.
- 8. Wraz ze wzrostem wysokości komory wirowej (H=15÷35 mm) samowzbudnej głowicy pulsacyjnej następuje kilkuprocentowy spadek każdej prędkości strugi wodnej. Uwzględniając więc taki ujemny trend prędkości strugi oraz jej zwiększanie ze wzrostem ciśnienia nominalnego (w zakresie 15÷150 MPa), najbardziej korzystnym rozwiązaniem dla głowicy pulsacyjnej jest komora wirowa o wysokości H=15 mm.
- 9. Wzrost nominalnego ciśnienia wody i wysokości dyszy wlotowej (h₁=6÷12 mm) powodują zwiększanie się prędkości strugi w charakterystycznych miejscach samowzbudnej głowicy pulsacyjnej. Taki wzrost prędkości strugi zarówno przy zwiększaniu ciśnienia nominalnego jak i wysokości dyszy wlotowej potwierdził, że jej optymalna wysokość powinna wynosić h₁=12 mm.
- 10. Zwiększanie kąta natarcia komory wirowej (λ=100÷120°) wyraźnie zwiększa średnią prędkość strugi wodnej przy zaledwie kilkuprocentowym wzroście wlotowej prędkości maksymalnej. Najwyższe prędkości strugi wodnej uzyskuje się dla λ=120° przy maksymalnym ciśnieniu nominalnym równym 150 MPa.
- 11. Wzrost średnicy otworów bocznych samowzbudnej głowicy pulsacyjnej, w badanym zakresie (d₂=2÷5 mm), wywołuje spadek prędkości strugi wodnej. Uwzględniając taki

spadek prędkości strugi wodnej, jak również brak wyraźnego oddziaływania nominalnego ciśnienia wody, optymalne średnice otworów bocznych takiej głowicy powinny posiadać średnicę $d_2=2$ mm.

12. Wyniki wpływu zamiany średnicy dyszy wlotowej głowicy w zakresie d₁=2÷3,2 mm wykazały, że wraz z jej wzrostem następuje zwiększenie średniej i końcowej prędkości strugi wodnej przy praktycznie niezmiennej prędkości maksymalnej kształtującej się na poziomie niespełna 600 m/s. Wyniki badań oddziaływania tej średnicy przy zmiennym ciśnieniu nominalnym wykazały, że największy (około 5,5-krotny) wzrost prędkości średniej uzyskano dla średnicy dyszy wlotowej równej d₁=2,5 mm.

Przeprowadzone badania i analiza ich wyników zaprezentowanych w postaci rozkładów wektorów prędkości i strefowo-symetrycznych rozkładów ciśnienia, umożliwiły ustalenia mechanizmu wywołującego okresowe pulsacje strugi wodnej, wytwarzanej w analizowanym rozwiązaniu konstrukcyjnym samowzbudnej głowicy pulsacyjnej przeznaczonej do drążenia otworów, potwierdziły występowanie hydraulicznych zawirowań pierścieniowych warstw wody w jej komorze wirowej, które wraz z strefowo-symetrycznymi rozkładami ciśnienia stwarzają odpowiednie warunki do wytwarzania hydrodynamicznych impulsów w rdzeniu strugi wodnej wypływającej z takiej głowicy pulsacyjnej.

5.3. Badania modelu głowicy pulsacyjnej przeznaczonej do obróbki powierzchni

W poszukiwaniu skutecznego narzędzia do hydrostrumieniowej obróbki i czyszczenia powierzchni technicznych podjęto próbę opracowania modelu samowzbudnej głowicy pulsacyjnej. Wymaga to przeprowadzenia badań oddziaływania ilości otworów bocznych i ich usytuowania względem komory wirowej tejże głowicy na generowanie pulsacji wysokociśnieniowej strugi wodnej. Nieodzowne są przy tym badania wpływu wymiarów geometrycznych takiej głowicy pulsacyjnej na wytwarzanie i prędkość wypływu pulsującej strugi wodnej, a także na zasysanie i prędkość przepływu czynnika zewnętrznego przez otwory boczne takiej głowicy.

5.3.1. Podstawowe cechy modeli samowzbudnej głowicy pulsacyjnej

Z uwagi na potrzebę opracowania efektywnego narzędzia przeznaczonego do hydrostrumieniowej obróbki powierzchni rozpoczęto badania nad odpowiednim modelem samowzbudnej głowicy pulsacyjnej. Badania samowzbudnej głowicy pulsacyjnej przeznaczonej do drążenia otworów wykazały, że najbardziej korzystne jest prostopadłe usytuowanie otworów bocznych względem komory wirowej. Jest to zasada dotycząca wszystkich tego rodzaju głowic, niezależnie od ich zastosowania. Dlatego w pierwszym etapie badań, głowicę do obróbki powierzchni przeanalizowano pod względem liczby otworów bocznych. Takie badania symulacyjne przeprowadzono dla jednakowego zakresu zmienności średnicy (0,6÷1,2 mm) obydwu rodzajów dysz: wlotowej d_1^{II} i wylotowej d_3^{II} przy zachowaniu niezmiennych wartości pozostałych parametrów wymiarowych samowzbudnej głowicy pulsacyjnej przedstawionej na rys. 5.40.

Rys. 5.40. Schemat: a) samowzbudnej głowicy pulsacyjnej do obróbki powierzchni wraz z b) parametrami konstrukcyjnymi

Zasadniczym zadaniem tych badań jest wytypowanie modelu głowicy pulsacyjnej charakteryzującej się odpowiednimi parametrami geometrycznymi i zweryfikowanie jego przydatności do wytwarzania pulsującej strugi wodnej o jak najwyższej prędkości wypływu z głowicy, przy zapewnieniu odpowiednich rozkładów wektorów prędkości i ciśnienia, które wpływają na kształt powstających pierścieni wirowych. Ponadto ze względu na technologiczne możliwości wykonania takiej głowicy dokonano wyboru zasadniczych wymiarów charakterystycznych takiej głowicy, co zostało przedstawione na rys. 5.40b.

Dla realizacji programu takich badań symulacyjnych zastosowano geometryczne modele samowzbudnych głowic pulsacyjnych z 2, 3 i 4 otworami bocznymi prostopadłymi do komory wirowej. Otwory te rozmieszczono równomiernie w płaszczyźnie prostopadłej do osi głowicy zachowując pomiędzy nimi podziałkę kątową, odpowiednio: 180°, 120° i 90°. Dla każdego badanego modelu analizowano prędkości przepływu wody w przekrojach zaznaczonych na rys. 5.41a także kształt zawirowań wodnych generowanych w komorze wirowej takiej głowicy.

Rys. 5.41. Geometria modelu samowzbudnej głowicy pulsacyjnej z różną liczbą otworów bocznych umiejscowionych prostopadle do komory wirowej, z zaznaczonymi przekrojami pomiarowymi: a) z dwoma otworami bocznymi, b) z trzema otworami bocznymi, c) z czterema otworami bocznymi

W tabeli 5.22 ukazano zakresy zmienności parametrów geometrycznych głowicy do obróbki powierzchni, wybranych do badań na podstawie wcześniejszych przeprowadzonych badań symulacyjnych a częściowo także badań laboratoryjnych.

 Tab. 5.22.
 Zakres zmienności badanych parametrów geometrycznych modelu samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni

Lp.	Nazwa parametru geometrycznego	Oznaczenie	Jednostka	Zakres zmienności
1	szerokość powierzchni pierścieniowych komory wirowej	SP ^{II}	[mm]	0,6; 0,8; 1; 1,2; 1,4; 2
2	średnica komory wirowej	D^{II}	[mm]	4,6; 5; 5,4; 5,8; 6,2; 7,4
3	wysokość komory wirowej	H^{II}	[mm]	1,4; 2,2; 3,2; 4,2; 5,2; 6,2
4	wysokość dyszy wlotowej	$\mathbf{h}_1^{\mathrm{II}}$	[mm]	0,5; 0,8; 1,5; 1,8; 2,5; 3; 3,5
5	średnica dyszy wylotowej	d_3^{II}	[mm]	0,6; 0,7; 0,8; 0,9; 1,0; 1,2
6	średnica otworów bocznych	d_2^{II}	[mm]	0,4; 0,6; 0,8; 1; 1,2; 1,4
7	średnica dyszy wlotowej	d_1^{II}	[mm]	0,6; 0,7; 0,8; 0,9; 1,0; 1,2

Jak wynika z danych zawartych w tej tabeli, większość wymiarów tej głowicy jest wyraźnie zmniejszona w porównaniu z wcześniej przebadaną głowicą do drążenia otworów. Wynika to z konieczności miniaturyzacji głowicy przeznaczonej do obróbki powierzchni, wymagającej często obsługi manualnej. Skorzystano tu jednak z tych wcześniejszych badań zachowując obecnie odpowiedniejsze proporcje pomiędzy wymiarami powiązanych ze sobą parametrów geometrycznych takich głowic. Przykładowo, wysokość komory wirowej dobierano odpowiednio do jej średnicy zaś średnicę otworów bocznych głowicy dobierano ze względu na wysokość i średnicę komory wirowej, natomiast relację pomiędzy średnicami dyszy wlotowej i wylotowej a ich wysokościami starano się utrzymywać z uwzględnieniem praktycznej proporcji d^{II}:h^{II}=1:3, przy której uzyskuje się najwyższe prędkości przepływu strugi wodnej przez dysze. Ponadto na podstawie poprzednich badań wybrano stałą wartość kąta natarcia komory wirowej λ^{II} =120°, kierując się tym, że zarówno niższe jak i wyższe wartości tego kąta powodowały niekorzystne ukształtowanie pierścieniowych zawirowań wody w komorze wirowej.

5.3.2. Badania wpływu ilości otworów bocznych samowzbudnej głowicy pulsacyjnej

Aby ocenić oddziaływanie ilości otworów bocznych na funkcjonowanie samowzbudnej głowicy pulsacyjnej przeprowadzono stosowne badania symulacyjne oddziaływania geometrii takiej głowicy na prędkość przepływu strugi wodnej w wybranych przekrojach pomiarowych każdego analizowanego tu modelu konstrukcyjnego takiej głowicy. Wyniki badań prędkości strugi wodnej dla głowicy z dwoma otworami bocznymi prostopadłymi do komory wirowej przedstawiono w tabeli 5.23. Analogiczne wyniki badań prędkości strugi wodnej dla głowicy z trzema otworami bocznymi przedstawiono w tabeli 5.25.

Badania oddziaływania ilości otworów bocznych w takich głowicach pulsacyjnych przeprowadzano według metody zaprezentowanej we wcześniejszym podrozdziale 5.1.2, przy wykorzystaniu następujących zmiennych parametrów geometrycznych: średnica dyszy wlotowej o zakresie zmienności $d_1^{II}=0,6\div1,2$ mm i średnica dyszy wylotowej – zmienna w przedziale $d_3^{II}=0,6\div1,2$ mm. Pozostałe parametry geometryczne badanej głowicy mają następujące wartości stałe: szerokość powierzchni pierścieniowych komory wirowej SP^{II}=0,6 mm, średnica komory wirowej D^{II}=5 mm, wysokość tej komory wirowej H^{II}=2,2 mm, wysokość dyszy wlotowej $h_1^{II}=1,5$ mm, średnica otworów bocznych $d_2^{II}=0,6$ mm i kąt natarcia komory wirowej $\lambda^{II}=120^\circ$.

Wyniki symulacji modelu głowicy z dwoma prostopadłymi otworami bocznymi

Wyniki symulacji takiego modelu głowicy pulsacyjnej z dwoma otworami bocznymi prostopadłymi do komory wirowej zaprezentowano w tabeli 5.23. Kolorem czerwonym oznaczono takie wyniki prędkości strugi wodnej, w których nie zachodziło zasysanie czynnika zewnętrznego przez otwory boczne. Zjawisko takie występuje zawsze dla przypadków, w których średnica dyszy wlotowej jest równa lub większa od średnicy dyszy wylotowej ($d_1^{II} \ge d_3^{II}$).

		510					<i>y</i>	DOVI	
			DYSZA W	LOIOWA	DYSZA WI			BORI	
			prędkość na	prędkość na	prędkość na	prędkość na	nr	edkość	na
			wejściu do dyszy	wyjściu z dyszy	wejściu do dyszy	wyjściu z dyszy	ofwor	şanose ach hoc	znvch
			wlotowej	wlotowej	wylotowej	wylotowej	00000	uch bot	Zingen
Lp.	d_1^{II}	d3 ^{II}	V wej1	υ wej2	υ wyj1	$oldsymbol{v}_{ m wyj2}$	V bok1	Ubok2	V śr. boki
Ŷ	[mm]	[mm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]
1	0,6	1,2	149,1	156,7	79,7	61,0	42,4	42,4	42,4
2	0,6	1,1	147,8	153,4	88,2	70,5	37,1	37,2	37,2
3	0,6	1,0	146,4	152,1	98,1	82,4	32,0	32,9	32,4
4	0,6	0,9	145,0	150,6	101,8	91,8	22,4	22,4	22,4
5	0,6	0,8	143,8	149,4	108,8	98,5	12,3	12,3	12,3
6	0,6	0,7	143,0	149,3	107,8	105,1	-8,7	-8,7	-8,7
7	0,6	0,6	140,4	146,6	106,3	107,2	-16,7	-16,7	-16,7
8	0,7	1,2	148,8	156,2	102,4	82,9	44,2	44,2	44,2
9	0,7	1,1	147,1	155,6	109,6	92,2	36,1	36,2	36,2
10	0,7	1,0	144,9	152,6	113,0	101,7	25,8	25,9	25,8
11	0,7	0,9	143,5	149,8	118,6	108,4	11,9	11,9	11,9
12	0,7	0,8	142,4	148,7	119,4	112,8	-9,3	-9,8	-9,5
13	0,7	0,7	139,4	146,7	119,1	120,0	-18	-17,8	-17,9
14	0,7	0,6	130	133	118	132	-27	-27	-27
15	0,8	1,2	157,0	161,6	113,1	94,6	39,4	39,4	39,4
16	0,8	1,1	154,8	160,0	121,5	103,1	27,8	27,8	27,8
17	0,8	1,0	152,9	158,5	125,1	109,5	11,5	11,5	11,5
18	0,8	0,9	151,2	156,8	128,6	113,6	-12,7	-12,8	-12,7
19	0,8	0,8	146,2	151,6	129,2	116,8	-23,7	-23,6	-23,6
20	0,8	0,7	138,4	144,4	132,5	138,5	-41,1	-41,3	-32,2
21	0,8	0,6	131	137	133	140	-46,2	-46,4	-46,3
22	0,9	1,2	153,9	150,1	123,0	108,6	31,0	31,0	31,0
23	0,9	1,1	152,4	149,6	135,5	115,4	12,0	12,0	12,0
24	0,9	1,0	150,6	147,9	133,2	117,7	-13,4	-13,2	-13,3
25	0,9	0,9	144,7	142,1	131,3	121,1	-27,5	-27,3	-27,4
26	0,9	0,8	132,1	133	131,8	139	-39	-39	-39
27	0,9	0,7	129	135	132	141	-68,2	-68,2	-68,2
28	0,9	0,6	122	128,1	133,2	139,8	-53	-53	-53
29	1,0	1,2	150,7	155,9	139,7	121,2	18,2	18,2	18,2
30	1,0	1,1	148,5	154,0	148,2	124,0	-14,4	-14,5	-14,4
31	1,0	1,0	142,0	147,9	134,7	128,4	-27,9	-27,8	-27,8
32	1,0	0,9	132,2	135,8	134,8	137,2	-39	-39	-39
24	1,0	0,8	126,2	134,3	133,3	145,2	-07	-07	-07
34	1,0	0,7	120,2	124,5	132,1	141,1	-70	-70	-70
36	1.0	1.2	155.3	1515	155	142	-09,7	-07,7	-09,7
30	1,1	1,2	1/10	171,5	1/1,5	120,0	-10,0	-10,0	-10,0
38	11	1,1	130.2	132.3	130.2	127,3	-29,0 _41	-29,5	-29,5
30	1,1 11	0.0	174.0	132,3	135,2	152,5	-65	-65	-65
40	1 1	0.8	111 2	113.4	132,5	140 2	-03	-03	-03
41	11	0.7	103.6	107.9	132,5	147	-82	-82	-82
42	11	0.6	94 3	98.0	122.5	144.4	-102.2	-102.4	-102.3
43	1.2	1.2	148.4	155.2	144.6	132.2	-33.2	-24.7	-28.9
44	1.2	1.1	139.4	143.6	149.0	164.5	-52	-52	-52
45	1.2	1.0	126.6	131.1	141.8	152.6	-72.2	-72.2	-72.2
46	1.2	0.9	114.7	118.9	136.3	157.1	-75	-75	-75
47	1.2	0.8	103	107	132.5	144.7	-84	-84	-84
48	1.2	0.7	98.2	102.1	130.5	142.1	-83	-83	-83
49	1.2	0.6	84.2	86.8	121	141	-108	-108	-108
<u> </u>	,-	-) ~						~ ~	

Tab. 5.23. Wyniki badań prędkości strugi wodnej przy różnych relacjach średnic d₁^{II}/d₃^{II} dla samowzbudnej głowicy pulsacyjnej z dwoma otworami bocznymi prostopadłymi do komory wirowej

Wykres zależności oddziaływania średnicy dyszy wlotowej d_1^{II} i średnicy dyszy wylotowej d_3^{II} na średnią prędkość strugi wodnej i kierunek jej przepływu w otworach bocznych komory wirowej, dla modelu geometrycznego samowzbudnej głowicy pulsacyjnej z dwoma otworami bocznymi prostopadłymi do komory wirowej, przedstawiono na rys. 5.42.

Rys. 5.42. Zależność wpływu średnicy dyszy wlotowej d₁^{II} i wylotowej d₃^{II} na średnią prędkość strugi w otworach bocznych modelu głowicy z dwoma otworami bocznymi prostopadłymi do komory wirowej

Otrzymane wyniki wykazały, że dla geometrycznego modelu głowicy z dwoma otworami bocznymi prostopadłymi do komory wirowej zasysanie czynnika przez otwory boczne występuje w przypadkach, gdy średnica dyszy wlotowej jest mniejsza od średnicy dyszy wylotowej ($d_1^{II} < d_3^{II}$). Najwyższą prędkość zasysania czynnika przez otwory boczne zarejestrowano dla d_3^{II} =1,2 mm oraz d_1^{II} =0,6 mm. Natomiast wypychanie czynnika przez takie otwory boczne występuje w przypadku gdy średnica dyszy wlotowej d_1^{II} jest większa bądź równa średnicy dyszy wylotowej d_3^{II} .

Przykładowe rozkłady wektorów prędkości w głowicy pulsacyjnej, w której komorze wirowej nie tworzą się pierścieniowe zawirowania hydrauliczne, przedstawiono na rys. 5.43.

Rys. 5.43. Przykłady niewłaściwych rozkładów wektorów prędkości wewnątrz modelu głowicy z dwoma otworami bocznymi prostopadłymi do komory wirowej dla przypadków: a) d₁^{II}=1,2 mm i d₃^{II}=0,6 mm; b) d₁^{II}=0,6 mm i d₃^{II}=0,6 mm

To właśnie w takich warunkach nie występuje zasysanie czynnika przez otwory boczne, natomiast brak takiego ssania prowadzi do zaniku pierścieni wirowych w komorze, powodując niewłaściwy rozkład wektorów prędkości w komorze wirowej. W takich okolicznościach nie ma warunków do wytworzenia impulsów hydrodynamicznych w rdzeniu strugi wodnej przepływającej wzdłuż osi głowicy.

Wyniki symulacji modelu głowicy z trzema prostopadłymi otworami bocznymi

Wyniki pomiarów prędkości strugi, dla głowicy z trzema otworami bocznymi prostopadłymi do komory przedstawiono w tab. 5.24. Również i tu kolorem czerwonym oznaczono wyniki, w których nie zachodzi zasysanie czynnika zewnętrznego przez otwory boczne. Efekt taki występuje zawsze, podobnie jak dla rozwiązania z dwoma otworami bocznymi, dla przypadków, w których średnica dyszy wlotowej jest większa od średnicy dyszy wylotowej d_1^{II} > d_3^{II} .

		g10v	DYSZA WLOTOWA DYSZA WY		aurynn do komor	y wirowe	j	-	
			DYSZA W	LOTOWA	DYSZA WY	YLOTOWA	BOK1	BOK2	BOK3
			prędkość na	prędkość na	prędkość na	prędkość na	prodkoj	tá na at	worach
			wejściu do	wyjściu z dyszy	wejściu do	wyjściu z dyszy	pi çukos h		worach
			dyszy wlotowej	wlotowej	dyszy wylotowej	wylotowej	U	ocznyc	11
In	d ₁ ^{II}	d ₃ ^{II}	$v_{ m wej1}$	$v_{ m wej2}$	$v_{ m wyj1}$	$oldsymbol{v}_{ m wyj2}$	$v_{ m bok1}$	$v_{ m bok2}$	$v_{ m bok3}$
ւր	[mm]	[mm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]
1	0,6	1,2	161,1	169,2	100,1	79,1	41,9	42,2	42,1
2	0,6	1,1	159,9	168,1	108,4	85,2	36,4	36,3	36,0
3	0,6	1	159,0	166,6	112,8	92,9	29,5	29,5	29,4
4	0,6	0,9	156,5	167,0	123,5	110,5	20,8	20,7	20,8
5	0,6	0,8	155,5	166,1	136,5	122,5	10,3	10,2	10,3
6	0,6	0,7	155,0	165,3	140,5	131,7	2,6	2,8	2,6
7	0,6	0,6	153,8	163,9	133,6	139,2	-15,6	-15,4	15,4
8	0,7	1,2	158,1	171,0	113,3	92,3	40,0	40,7	40,5
9	0,7	1,1	156,7	169,9	121,8	100,5	32,3	33,0	33,2
10	0,7	1	157,6	168,1	125,7	123,1	24,6	24,5	24,5
11	0,7	0,9	157,6	166,4	139,1	131,7	14,5	14,5	14,5
12	0,7	0,8	156,0	165,6	145,5	138,3	2,4	2,3	2,4
13	0,7	0,7	154,1	163,9	148,3	145,4	-17,2	-17,3	-17,3
14	0,7	0,6	143,7	151,2	129,0	128,5	-35,2	-35,2	-35,2
15	0,8	1,2	157,3	172,1	127,8	113,7	36,5	36,5	36,5
16	0,8	1,1	155,9	170,3	134,8	129,1	26,3	26,1	26,7
17	0,8	1	156,8	168,5	147,8	137,5	15,9	16,1	16,0
18	0,8	0,9	153,4	167,4	146,6	145,8	4,8	5,0	4,6
19	0,8	0,8	151,5	165,5	148,0	149,1	-19,8	-19,7	-19,9
20	0,8	0,7	148,3	152,4	144,2	145,1	-31,7	-31,2	-31,3
21	0,8	0,6	138,5	144,2	138,8	140,2	-46,1	-46,1	-46,1
22	0,9	1,2	162,3	171,5	139,3	131,5	29,8	29,7	29,4
23	0,9	1,1	160,9	169,8	145,8	142,0	17,6	17,9	17,4
24	0,9	1	159,7	168,5	158,7	146,1	2,4	2,5	2,6
25	0,9	0,9	157,3	166,1	152,9	150,8	-21,5	-21,2	-21,0
26	0,9	0,8	148,1	154,3	142,3	148,7	-35,6	-34,9	-35,1
27	0,9	0,7	135,2	141,3	129,8	144,1	-52,6	-52,2	-51,7
28	0,9	0,6	128,4	132,3	117,8	131,2	-67,2	-67,3	-67,1
29	1	1,2	159,9	169,0	146,1	143,9	19,8	20,0	19,9

Tab. 5.24. Wyniki badań prędkości strugi wodnej przy różnych relacjach średnic d₁^{II}/d₃^{II} dla samowzbudnej głowicy pulsacyjnej z trzema otworami bocznymi prostopadłymi do komory wirowej

30	1	1,1	159,2	167,7	150,0	149,4	3,2	3,1	3,1
31	1	1	156,5	164,9	152,2	153,6	-19,8	-19,4	-19,6
32	1	0,9	145,2	152,1	143,2	153,4	-32,2	-32,4	-32,1
33	1	0,8	135,3	140,9	136,5	155,1	-55,1	-55,2	-54,9
34	1	0,7	127,4	134,2	135,1	149,2	-62,1	-62,3	-62,4
35	1	0,6	119,9	124,9	135,2	144,9	-73,2	-73,1	-72,8
36	1,1	1,2	156,4	167,5	150,9	137,1	3,0	3,0	2,9
37	1,1	1,1	153,1	163,9	149,3	139,8	-22,5	-22,5	-22,4
38	1,1	1	143,2	151,4	144,3	140,1	-39,1	-39,2	-39,0
39	1,1	0,9	132,3	139,4	140,5	141,7	-57,2	-75,4	-57,0
40	1,1	0,8	122,4	128,1	135,2	141,8	-61,2	-62,0	-61,4
41	1,1	0,7	114,8	120,6	126,5	142,1	-79,4	-79,1	-79,3
42	1,1	0,6	111,3	117,5	118,3	142,3	-84,5	-84,6	-84,2
43	1,2	1,2	154,5	163,8	152,9	141,6	-22,9	-23,1	-22,8
44	1,2	1,1	148,2	151,1	146,7	162,5	-35,2	-35,6	-36,0
45	1,2	1	129,8	138,4	141,3	162,7	-60,2	-59,8	-60,4
46	1,2	0,9	120,1	125,4	135,3	159,0	-72,1	-72,5	-72,4
47	1,2	0,8	112,4	117,5	131,2	158,1	-80,2	-80,6	-80,3
48	1,2	0,7	107,2	112,0	131,3	152,3	-85,1	-85,4	-85,2
49	1,2	0,6	96,9	100,7	132,0	144,5	-92,4	-92,8	-92,5

Wykres oddziaływania średnicy dyszy wlotowej d_1^{II} i średnicy dyszy wylotowej d_3^{II} na średnią prędkość strugi w otworach bocznych, modelu głowicy z trzema otworami bocznymi prostopadłymi do komory wirowej, przedstawiono na rys. 5.44.

Rys. 5.44. Zależność wpływu średnicy dyszy wlotowej d₁^{II} i wylotowej d₃^{II} na średnią prędkość strugi w otworach bocznych modelu głowicy z trzema otworami bocznymi prostopadłymi do komory wirowej

Analizując takie wyniki pod względem zasysania czynnika przez otwory boczne można stwierdzić, że również i dla modelu głowicy z trzema otworami bocznymi, zasysanie występuje w przypadkach, kiedy średnica dyszy wlotowej jest mniejsza od średnicy dyszy wylotowej, czyli gdy: $d_1^{II} < d_3^{II}$. Natomiast wypychanie czynnika (wody) przez otwory boczne następuje, gdy średnica dyszy wlotowej jest większa bądź lub równa względem dyszy wylotowej. Najwyższą prędkość zasysania przez otwory boczne zarejestrowano, gdy średnica

dyszy wlotowej wynosi $d_1^{II}=0,6$ mm, tak samo jak średnice otworów bocznych ($d_2^{II}=0,6$ mm), natomiast średnica dyszy wylotowej była dwukrotnie większa ($d_3^{II}=1,2$ mm).

Dla kontrastu, na rys. 5.45 zaprezentowano dwa przykłady rozkładów wektorów prędkości w modelu głowicy z trzema prostopadłymi otworami bocznymi, w którym nie występuje zasysanie czynnika zewnętrznego przez otwory boczne, gdyż nie powstają wówczas hydrodynamiczne pierścienie wirowe.

Rys. 5.45. Przykłady niewłaściwych rozkładów wektorów prędkości wewnątrz modelu głowicy z trzema otworami bocznymi prostopadłymi do komory wirowej, dla przypadków: a) d₁^{II}=1,2 mm i d₃^{II}=0,6 mm; b) d₁^{II}=1,1 mm i d₃^{II}=0,7 mm,

Podobnie, jak w przypadku modelu głowicy z dwoma otworami bocznymi, na tworzenie się impulsów hydrodynamicznych w strudze wodnej ma wpływ zasysanie czynnika zewnętrznego przez otwory boczne oraz właściwy kształt tworzących się wirujących pierścieni wodnych. Takie niekorzystne tworzenie się pierścieni wirowych występuje zawsze gdy średnica dyszy wlotowej d_1^{II} będzie większa bądź równa średnicy dyszy wylotowej d_3^{II} , tj. w przypadku w którym nie następuje zasysanie czynnika przez otwory boczne.

Wyniki symulacji modelu głowicy z czterema prostopadłymi otworami bocznymi

W kolejnym kroku symulacyjnych badań komputerowych przeanalizowano prędkości przepływu wody w wybranych przekrojach modelu głowicy z czterema otworami bocznymi prostopadłymi do komory wirowej. Takie wyniki określonych prędkości przepływu strugi wodnej, uzyskane przy jednakowej zmienności średnicy dysz: wlotowej i wylotowej

w zakresie $d_1^{II}=d_3^{II}=0,6\div1,2$ mm, przy pozostałych stałych parametrach wymiarowych, zaprezentowano w tabeli 5.25.

	C	• 1	DYSZA W	/LOTOWA	DYSZA W	YLOTOWA	BOK1	BOK2	BOK3	BOK4
			Prędkość	prędkość na	prędkość	prędkość na				
			na wejściu	wyjściu	na wejściu	wyjściu	pro	edkość	na otwo	rach
			do dyszy	z dyszy	do dyszy	z dyszy	-	boc	znych	
			wlotowej	wlotowej	wylotowej	wylotowej			·	
-	d ₁ II	d3 ^{II}	vwej1	v _{wej2}	v _{wyj1}	v _{wyj2}	$\boldsymbol{v}_{\mathrm{bok1}}$	$v_{\rm bok2}$	$v_{\rm bok3}$	$v_{ m bok4}$
Lp.	[mm]	[mm]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]	[m/s]
1	0,6	1,2	160,675	170,311	89,906	83,278	30,2	30,2	30,4	30,6
2	0,6	1,1	160,126	169,661	104,484	97,541	27,8	28,2	28,0	28,3
3	0,6	1	159,413	168,775	107,723	104,828	22,3	22,3	22,2	22,2
4	0,6	0,9	158,609	168,144	114,503	112,647	15,3	15,2	15,2	15,1
5	0,6	0,8	158,001	167,427	130,94	121,333	7,6	8,1	7,3	7,9
6	0,6	0,7	157,097	167,329	135,368	129,213	-2,8	-2,6	-2,0	-3,1
7	0,6	0,6	156,789	166,216	134,09	135,269	-10,8	-10,6	-10,6	-10,6
8	0,7	1,2	166,058	173,239	102,484	95,493	27,9	27,9	27,9	28,0
9	0,7	1,1	165,623	172,815	125,178	116,146	24,5	24,6	24,5	24,6
10	0,7	1	164,709	172,118	129,765	123,665	17,2	17,2	17,3	17,1
11	0,7	0,9	163,938	171,471	132,651	128,855	7,6	7,5	7,1	8,1
12	0,7	0,8	163,634	171,165	144,825	137,553	-3,5	-3,2	-3,6	-3,2
13	0,7	0,7	162,235	169,575	143,243	142,264	-13,5	-13,5	-13,6	-13,4
14	0,7	0,6	160,2	158,2	146,3	150,4	-19,3	-19,3	-19,3	-19,3
15	0,8	1,2	167,018	169,467	114,878	107,33	25,1	25,2	25,3	25,2
16	0,8	1,1	165,876	168,332	126,85	124,257	17,8	17,9	17,8	18,0
17	0,8	1	165,145	167,624	128,239	130,896	8,3	8,6	8,4	8,6
18	0,8	0,9	164,45	166,898	130,234	136,73	-12,4	-12,8	-13,0	-12,8
19	0,8	0,8	161,687	164,083	143,471	144,852	-19,1	-19,1	-19,3	-18,7
20	0,8	0,7	158,2	158,1	150,7	157,2	-24,4	-24,4	-24,4	-24,4
21	0,8	0,6	151,/	149,2	144,2	100,3	-32,2	-32,2	-32,2	-32,2
22	0,9	1,2	161,857	165,14	124,8	118	18,7	18,9	18,8	18,9
23	0,9	1,1	160.018	164 402	130,173	134,017	10,0	10,4	9,9	00
24	0,9	1	158 053	162 3/1	136,241	140,41	-9,4	-9,0	-0,9	-0,0
25	0,9	0,9	1/7 3	158.2	152.2	140,024	-17,9	-10,0	-17,0	-10,1
20	0,9	0,0	144.2	155.3	150.3	161.2	-22,5	-29,5	-32.1	-20,5
28	0.9	0.6	142.2	149.2	151.4	160.1	-43.5	-43.5	-43.5	-43.5
29	1	1.2	164.712	174.418	144.864	135.07	9.8	10.2	9.6	9.8
30	1	1.1	163,977	173.642	156.08	152.017	-8.1	-6.9	-7.9	-6.6
31	1	1	161,896	171,428	151,333	153,759	-18,4	-18,3	-18,3	-18,1
32	1	0,9	146,7	155,7	151,7	158,1	-27,2	-27,2	-27,2	-27,2
33	1	0,8	144,2	150,7	152,2	161,2	-49,4	-49,4	-49,4	-49,4
34	1	0,7	142,3	148,3	151,2	160,7	-58,2	-58,2	-58,2	-58,2
35	1	0,6	140,7	142,7	144,7	160,9	-69,3	-69,3	-69,3	-69,3
36	1,1	1,2	164,367	171,012	150,949	141,429	3,8	3,9	3,7	3,8
37	1,1	1,1	161,353	167,907	153,322	155,407	-19,5	-19,8	-19,2	-19,8
38	1,1	1	144,7	158,4	147,8	171,2	-30,9	-30,9	-30,9	-30,9
39	1,1	0,9	142,8	149,1	146,2	174,1	-44,3	-44,3	-44,3	-44,3
40	1,1	0,8	138,2	140,8	144,3	169,2	-58,2	-58,2	-58,2	-58,2
41	1,1	0,7	129,7	132,4	143,8	167,3	-68,2	-68,2	-68,2	-68,2
42	1,1	0,6	119,4	119,7	133,7	160,8	-70,7	-70,7	-70,7	-70,7
43	1,2	1,2	162,576	169,509	154,73	146,159	-20,0	-20,1	-20,5	-20,1
44	1,2	1,1	147,2	158,3	151,2	180,3	-42,3	-42,3	-42,3	-42,3
45	1,2		140,3	150,2	149,6	1/3,1	-6/,8	-6/,8	-0/,8	-6/,8
40	1,2	0,9	132,7	141,2	14/,1	1/7,2	-09,2	-69,2	-09,2	-09,2
4/	1,2	0,8	124,2	128,/	144,5	102,3	-12,1	-12,1	-12,1	-12,1
4ð 40	1,2	0,7	110,4	121,2	130,1	144.2	-12,2	-12,2	-12,2	-74.2

 Tab. 5.25.
 Wyniki badań prędkości strugi wodnej przy różnych relacjach średnic d1^{II}/d3^{II} dla samowzbudnej głowicy pulsacyjnej z czterema otworami bocznymi prostopadłymi do komory wirowej

Przestrzenny wykres oddziaływania średnicy dyszy wlotowej d_1^{II} i dyszy wylotowej d_3^{II} na średnią prędkość strugi w otworach bocznych modelu głowicy z czterema otworami bocznymi prostopadłymi do komory wirowej, przedstawiono na przykładowym rys. 5.46.

Rys. 5.46. Zależność wpływu średnicy dyszy wlotowej d₁^{II} i wylotowej d₃^{II} na średnią prędkość strugi w otworach bocznych modelu głowicy z czterema otworami bocznymi prostopadłymi do komory wirowej

Otrzymane wyniki dla głowicy z czterema otworami bocznymi prostopadłymi do komory wirowej wskazują, że podobnie, jak i w poprzednich przypadkach, zasysanie czynnika zewnętrznego przez otwory boczne występuje dla modeli głowicy charakteryzujących się mniejszą średnicą dyszy wlotowej niż średnica dyszy wylotowej $(d_1^{II} < d_3^{II})$. Przy tym najwyższa prędkość zasysania czynnika przez otwory boczne wynosi v^{II} =30,35 m/s dla modelu, w którym: średnica dyszy wlotowej, d_1^{II} =0,6 mm, tak jak i średnica otworów bocznych, natomiast średnica dyszy wylotowej jest równa d_3^{II} =1,2 mm.

Analiza rozkładów wektorów prędkości w takiej głowicy wykazuje, że zwiększanie średnicy dyszy wlotowej przy stałej średnicy dyszy wylotowej prowadzi do zaniku zasysania czynnika zewnętrznego, a przez to i zawirowań wodnych wewnątrz komory wirowej. Przykładowe rozkłady wektorów prędkości w głowicy z czterema otworami bocznymi prostopadłymi do komory wirowej, w której nie występuje zasysanie czynnika przez otwory boczne, przez co nie tworzą się hydrodynamiczne pierścienie wirowe, zaprezentowano na rys. 5.47.

Rys. 5.47. Przykładowe rozkłady wektorów prędkości dla głowicy z czterema otworami bocznymi, w których nie zachodzi zasysanie czynnika przez otwory boczne oraz nie występują pierścienie wirowe: a) $d_1^{II}=0.6 \text{ mm i } d_3^{II}=0.6 \text{ mm; b}) d_1^{II}=1.2 \text{ mm i } d_3^{II}=0.6 \text{ mm}$

Zatem, tylko właściwy dobór wszystkich parametrów geometrycznych głowicy pulsacyjnej może zagwarantować, że wypływająca z niej woda będzie miała strukturę strugi pulsującej.

Wybór najkorzystniejszego wariantu głowicy z prostopadłymi otworami bocznymi

Analiza różnych modeli samowzbudnej głowicy pulsacyjnej wykazała, że w głowicach z trzema i czterema otworami bocznymi, w większości rozpatrywanych przypadków nie następuje korzystne kształtowanie się wyrazistych pierścieni wirowych, które decydują o generowaniu hydrodynamicznych impulsów w strudze wodnej. Ponadto głowice z czterema i z trzema otworami bocznymi prostopadłymi do komory wirowej charakteryzują się mniejszą, w stosunku do głowicy z dwoma otworami, prędkością zasysania czynnika zewnętrznego w postaci wody, przez otwory boczne. Z uwagi na powyższe, takie modele z czterema i trzema otworami bocznymi, zostały pominięte w dalszej analizie tego zagadnienia, w której skupiono się głównie na modelu głowicy z dwoma otworami bocznymi

Spośród przebadanej grupy pozostałych modeli samowzbudnej głowicy pulsacyjnej z dwoma otworami bocznymi prostopadłymi do komory wirowej, dokonano wyboru najkorzystniejszych rozwiązań pod względem kształtowania się wyrazistych zawirowań wodnych oraz prędkości zasysania ciekłego czynnika zewnętrznego przez otwory boczne.

Przykładowe wyniki badania korzystnych modeli głowicy pulsacyjnej z dwoma otworami bocznymi prostopadłymi do komory wirowej, zawierające rozkłady wektorów prędkości i ciśnień wewnątrz głowicy, zaprezentowano na rys. 5.48.

Rys. 5.48. Rozkład wektorów prędkości oraz ciśnień wewnątrz analizowanej samowzbudnej głowicy pulsacyjnej z dwoma otworami bocznymi prostopadłymi do komory wirowej, dla wariantów: a) $d_1^{II}=0,6 \text{ mm i } d_3^{II}=0,8 \text{ mm; b) } d_1^{II}=0,9 \text{ mm i } d_3^{II}=1,1 \text{ mm}$

Analiza wyników wartości średnich prędkości strugi na wejściach otworów bocznych d_2^{II} wykazała, że są one wyższe względem głowicy z czterema prostopadłymi otworami bocznymi o około 30% dla samowzbudnej głowicy pulsacyjnej z dwoma otworami bocznymi. Ze względu na korzystny kształt hydrodynamicznych pierścieni wirowych oraz zasysanie czynnika przez otwory boczne, średnica dyszy wlotowej d_1^{II} powinna być mniejsza od średnicy dyszy wylotowej d_3^{II} .

Na podstawie przeprowadzonych badań komputerowych stwierdzono, że różnica pomiędzy średnicą dyszy wylotowej a średnicą dyszy wlotowej powinna wynosić około 30%. Zaprezentowane na rys. 5.49 wyniki wskazują rozkłady wektorów prędkości dla głowic spełniających ten warunek $(d_3^{II} - d_1^{II}) : d_3^{II} > 30\%$.

Rys. 5.49. Rozkład wektorów prędkości wewnątrz analizowanej samowzbudnej głowicy pulsacyjnej z dwoma otworami bocznymi prostopadłymi do komory wirowej, dla wariantów: a) d₁^{II}=0,7 mm i d₃^{II}=1,1 mm; b) d₁^{II}=0,6 mm i d₃^{II}=1,1 mm

Tylko dla przypadków o odpowiednich średnicach dyszy wejściowej i wyjściowej następuje zasysanie czynnika przez otwory boczne oraz powstają odpowiednie pierścienie wirowe, które wpływają na wytworzenie w strudze wodnej cyklicznych impulsów hydrodynamicznych. Z powyższych względów dalsze analizy przeprowadzano wyłącznie na modelu samowzbudnej głowicy pulsacyjnej z dwoma otworami bocznymi prostopadłymi do komory wirowej.

5.3.3. Wpływ geometrii samowzbudnej głowicy pulsacyjnej na prędkość strugi wodnej

W celu weryfikacji wpływu poszczególnych czynników na prędkość strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej nieodzownym staje się stworzenie odpowiedniego planu eksperymentu. Aby wykonać niezbędne obliczenia i analizy wykorzystano program Experiment Planer z pięciopoziomowym planem rotatabilnym.

W tabeli 5.26 zaprezentowano czynniki wejściowe wpływające na prędkość strugi wytwarzaną przy wykorzystaniu samowzbudnej głowicy pulsacyjnej. Badania wykonano przy stałym ciśnieniu strugi wynoszącym 15 MPa oraz przy stałym kącie natarcia komory wynoszącym 120°, i wysokości dyszy wylotowej spełniającej warunek h₃^{II}/d₃^{II}=3, które wytypowano na podstawie cyfrowych badań modelu głowicy pulsacyjnej przeznaczonej do drążenia otworów (rozdział 5.2).

Prędkość strugi wodnej wypływającej z głowicy pulsacyjnej jest ważnym czynnikiem oddziaływującym na efektywność erodowania materiałów. Z powyższych względów średnia prędkość wypływu strugi wodnej stała się jednym czynnikiem wyjściowym przeprowadzonych symulacji komputerowych.

Lp.	Nazwa parametru wymiarowego	Oznaczenie	Jednostka	Zakres
1	szerokość powierzchni pierścieniowych komory wirowej	SP ^{II}	[mm]	0,6; 0,8; 1; 1,2; 1,4; 2
2	średnica komory	D^{II}	[mm]	4,6; 5; 5,4; 5,8; 6,2; 7,4
3	wysokość komory	H^{II}	[mm]	1,4; 2,2; 3,2; 4,2; 5,2; 6,2
4	wysokość dyszy wlotowej	$h_1{}^{II}$	[mm]	0,5; 0,8; 1,5; 1,8; 2,5; 3; 3,5
5	średnica dyszy wylotowej	d_3^{II}	[mm]	0,6; 0,7; 0,8; 0,9; 1,0; 1,1;1,2
6	średnica otworów bocznych	d_2^{II}	[mm]	0,4; 0,6; 0,8; 1; 1,2; 1,4
7	średnica dyszy wlotowej	d_1^{II}	[mm]	0,6; 0,7; 0,8; 0,9; 1,0; 1,1;1,2

Tab. 5.26. Zakresy zmienności badanych czynników wejściowych modelu samowzbudnej głowicy pulsacyjnej, przeznaczonej do obróbki powierzchni

Na podstawie ustalonego zakresu wartości czynników wejściowych stworzona została macierz planu eksperymentu, której widok w postaci zakodowanej i odkodowanej zaprezentowano w tab. 5.27.

	$\begin{array}{c c} \hline \\ \hline $										Odkod	owana			
т.,	d ₁ II	d ₂ ^{II}	d ₃ ^{II}	h ₁ II	HII	DII	SPII	Т	dıII	d ₂ ^{II}	d ₃ ^{II}	h ₁ II	HII	DII	SPII
Lp.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	. гр.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	Α	В	С	D	Е	F	G		Α	В	С	D	Е	F	G
1	-	-	-	-	-	-	-	1	0,8	0,8	0,8	1,5	3,2	5,4	1
2	+	-	-	-	-	-	-	2	1	0,8	0,8	1,5	3,2	5,4	1
3	-	+	-	-	-	-	-	3	0,8	1	0,8	1,5	3,2	5,4	1
4	+	+	-	-	-	-	-	4	1	1	0,8	1,5	3,2	5,4	1
5	-	-	+	-	-	-	-	5	0,8	0,8	1	1,5	3,2	5,4	1
6	+	-	+	-	-	-	-	6	1	0,8	1	1,5	3,2	5,4	1
7	-	+	+	-	-	-	-	7	0,8	1	1	1,5	3,2	5,4	1
8	+	+	+	-	-	-	-	8	1	1	1	1,5	3,2	5,4	1
9	-	-	-	+	-	-	-	9	0,8	0,8	0,8	2,5	3,2	5,4	1
10	+	-	-	+	-	-	-	10	1	0,8	0,8	2,5	3,2	5,4	1
11	-	+	-	+	-	-	-	11	0,8	1	0,8	2,5	3,2	5,4	1
12	+	+	-	+	-	-	-	12	1	1	0,8	2,5	3,2	5,4	1
13	-	-	+	+	-	-	-	13	0,8	0,8	1	2,5	3,2	5,4	1
14	+	-	+	+	-	-	-	14	1	0,8	1	2,5	3,2	5,4	1
15	-	+	+	+	-	-	-	15	0,8	1	1	2,5	3,2	5,4	1
16	+	+	+	+	-	-	-	16	1	1	1	2,5	3,2	5,4	1
17	-	-	-	-	+	-	-	17	0,8	0,8	0,8	1,5	4,2	5,4	1
18	+	-	-	-	+	-	-	18	1	0,8	0,8	1,5	4,2	5,4	1
19	-	+	-	-	+	-	-	19	0,8	1	0,8	1,5	4,2	5,4	1
20	+	+	-	-	+	-	-	20	1	1	0,8	1,5	4,2	5,4	1
21	-	-	+	-	+	-	-	21	0,8	0,8	1	1,5	4,2	5,4	1
22	+	-	+	-	+	-	-	22	1	0,8	1	1,5	4,2	5,4	1
23	-	+	+	-	+	-	-	23	0,8	1	1	1,5	4,2	5,4	1
24	+	+	+	-	+	-	-	24	1	1	1	1,5	4,2	5,4	1
25	-	-	-	+	+	-	-	25	0,8	0,8	0,8	2,5	4,2	5,4	1
26	+	-	-	+	+	-	-	26	1	0,8	0,8	2,5	4,2	5,4	1
27	-	+	-	+	+	-	-	27	0,8	1	0,8	2,5	4,2	5,4	1
28	+	+	-	+	+	-	-	28	1	1	0,8	2,5	4,2	5,4	1
29	-	-	+	+	+	-	-	29	0,8	0,8	1	2,5	4,2	5,4	1
30	+	-	+	+	+	-	-	30	1	0,8	1	2,5	4,2	5,4	1
31	-	+	+	+	+	-	-	31	0,8	1	1	2,5	4,2	5,4	1
32	+	+	+	+	+	-	-	32	1	1	1	2,5	4,2	5,4	1
33	-	-	-	-	-	+	-	33	0,8	0,8	0,8	1,5	3,2	6,2	1
34	+	-	-	-	-	+	-	34	1	0,8	0,8	1,5	3,2	6,2	1
35	-	+	-	-	-	+	-	35	0,8	1	0,8	1,5	3,2	6,2	1

Tab. 5.27. Macierz planu badan komputerowych dla głowicy do obróbki powierzchni

36	+	+	-	-	-	+	-		36	1	1	0.8	1.5	3.2	6.2	1
37	-	-	+	-	-	+	-		37	0.8	0.8	1	1.5	3.2	6.2	1
38	-	_	· -	_	_	· -	_		38	1	0.8	1	1,5	3.2	6.2	1
20	т	-	-	-	-	- T	-		20	1	0,0	1	1,5	3,2	6.2	1
39	-	- T	- -	-	-	- -	-		40	0,0	1	1	1,5	3,2	6.2	1
40	+	+	+	-	-	+	-		40	1	1	1	1,5	3,2	0,2	1
41	-	-	-	+	-	+	-		41	0,8	0,8	0,8	2,5	3,2	6,2	1
42	+	-	-	+	-	+	-		42	1	0,8	0,8	2,5	3,2	6,2	1
43	-	+	-	+	-	+	-		43	0,8	1	0,8	2,5	3,2	6,2	1
44	+	+	-	+	-	+	-		44	1	1	0,8	2,5	3,2	6,2	1
45	-	-	+	+	-	+	-		45	0,8	0,8	1	2,5	3,2	6,2	1
46	+	-	+	+	-	+	-		46	1	0,8	1	2,5	3,2	6,2	1
47	-	+	+	+	-	+	-		47	0,8	1	1	2,5	3,2	6,2	1
48	+	+	+	+	-	+	-		48	1	1	1	2,5	3,2	6,2	1
49	-	-	-	-	+	+	-		49	0,8	0,8	0,8	1,5	4,2	6,2	1
50	+	-	-	-	+	+	-		50	1	0,8	0,8	1,5	4,2	6,2	1
51	-	+	-	-	+	+	-		51	0.8	1	0.8	1.5	4.2	6.2	1
52	+	+	-	-	+	+	-		52	1	1	0.8	15	4.2	62	1
53	_	-	+	_	+	+	_		53	0.8	0.8	1	1,5	4.2	6.2	1
54	+	_	+	_			_		54	1	0.8	1	1,5	4.2	6.2	1
55	1	-	1	_	1	1	_		55	0.8	0,0	1	1,5	4.2	6.2	1
56	-	- T	+	-	- T	- T	-		56	1	1	1	1,5	4,2	6.2	1
57	+	+	+	-	+	+	-	Н	57	1	1	1	1,3	4,2	6.2	1
50	-	-	-	+	+	+	-	\vdash	51	0,8	0,8	0,8	2,3	4,2	6.2	1
58	+	-	-	+	+	+	-	Н	58	1	0,8	0,8	2,5	4,2	0,2	
39	-	+	-	+	+	+	-	Н	39	0,8	1	0,8	2,5	4,2	0,2	1
60	+	+	-	+	+	+	-		60	l	1	0,8	2,5	4,2	6,2	1
61	-	-	+	+	+	+	-		61	0,8	0,8	1	2,5	4,2	6,2	1
62	+	-	+	+	+	+	-		62	l	0,8	l	2,5	4,2	6,2	1
63	-	+	+	+	+	+	-		63	0,8	1	1	2,5	4,2	6,2	1
64	+	+	+	+	+	+	-		64	1	1	1	2,5	4,2	6,2	1
65	-	-	-	-	-	-	+		65	0,8	0,8	0,8	1,5	3,2	5,4	1,4
66	+	-	-	-	-	-	+		66	1	0,8	0,8	1,5	3,2	5,4	1,4
67	-	+	-	-	-	-	+		67	0,8	1	0,8	1,5	3,2	5,4	1,4
68	+	+	-	-	-	-	+		68	1	1	0,8	1,5	3,2	5,4	1,4
69	-	-	+	-	-	-	+		69	0,8	0,8	1	1,5	3,2	5,4	1,4
70	+	-	+	-	-	-	+		70	1	0,8	1	1,5	3,2	5,4	1,4
71	-	+	+	-	-	-	+		71	0,8	1	1	1,5	3,2	5,4	1,4
72	+	+	+	-	-	-	+		72	1	1	1	1,5	3,2	5,4	1,4
73	-	-	-	+	-	-	+		73	0,8	0,8	0,8	2,5	3,2	5,4	1,4
74	+	-	-	+	-	-	+		74	1	0,8	0,8	2,5	3,2	5,4	1,4
75	-	+	-	+	-	-	+		75	0,8	1	0,8	2,5	3,2	5,4	1,4
76	+	+	-	+	-	-	+		76	1	1	0,8	2,5	3,2	5,4	1,4
77	-	-	+	+	-	-	+		77	0,8	0,8	1	2,5	3,2	5,4	1,4
78	+	-	+	+	-	-	+		78	1	0,8	1	2,5	3,2	5,4	1,4
79	-	+	+	+	-	-	+		79	0,8	1	1	2,5	3,2	5,4	1,4
80	+	+	+	+	-	-	+		80	1	1	1	2,5	3.2	5,4	1,4
81	-	-	-	-	+	-	+	П	81	0.8	0.8	0.8	1.5	4.2	5.4	1.4
82	+	-	-	-	+	-	+	h	82	1	0.8	0.8	1.5	4.2	5.4	1.4
83	-	+	-	-	+	-	+	П	83	0.8	1	0.8	1.5	4.2	5.4	1.4
84	+	+	_	_	+	_	+	Π	84	1	1	0.8	1.5	4.2	5.4	1.4
85	-	-	+	_	+	_	+	\vdash	85	0.8	0.8	1	15	4.2	54	14
86	+	-	+	-	+	-	+	Ħ	86	1	0.8	1	1.5	4.2	5.4	1.4
87	-	+	+	_	+	_	+	Η	87	0.8	1	1	15	4.2	54	14
88	+	+	+	_	+	_	+	\square	88	1	1	1	1,5	4.2	54	1 4
80	-	-	_	-	- ·	_	- -	\vdash	80	0.8	0.8	0.8	2.5	4.2	54	1 4
90	+	_	_	+	+	_	+	\vdash	90	1	0.8	0.8	2,5	4.2	54	1.4
01		-	_		 -	_	- -	Η	91	0.8	1	0.8	2,5	<u> </u>	5.4	1.4
02	-	г 		г 	г 		г 	\vdash	92	1	1	0.8	2,5	4.2	5.4	1 /
02	-	- T	-	- T - L	- T - L	-	+ +	\vdash	03	0.8	0.8	1	2,5	1,2 1 2	5,4	1,4
0/	-	-	 -	 -	- T		- T	Н	93	1	0,0	1	2,5	+,2 1 2	5,4	1,4
94	+	-	+	+	+	-	+	Н	94	1	0,0	1	2,3	4,2	5.4	1,4
93	-	+	+	+	+	-	+	\vdash	93	1	1	1	2,3	4,2	5.4	1,4
90	+	+	+	+	+	-	+	\mathbb{H}	90	1	1	1	2,3	4,2	5,4	1,4
9/	-	-	-	-	-	+	+	Н	97	0,8	0,8	0,8	1,5	3,2	0,2	1,4
98	+	-	-	-	-	+	+		98	1	0,8	0,8	1,5	3,2	0,2	1,4
99	-	+	-	-	-	+	+	1	99	0,8	1	0,8	1,5	3,2	6,2	1,4

	+	+	-	-	-	+	+		100	1	1	0,8	1,5	3,2	6,2	1,4
101	-	-	+	-	-	+	+		101	0,8	0,8	1	1,5	3,2	6,2	1,4
102	+	-	+	-	-	+	+		102	1	0,8	1	1,5	3.2	6,2	1,4
103	-	+	+	-	-	+	+		103	0.8	1	1	1.5	3.2	6.2	1.4
104	+	+	+	-	-	+	+		104	1	1	1	1,5	3,2	6,2	1,4
105	-	-	-	+	-	+	+		105	0,8	0,8	0,8	2,5	3,2	6,2	1,4
106	+	-	-	+	-	+	+		106	1	0,8	0,8	2,5	3,2	6,2	1,4
107	-	+	-	+	-	+	+		107	0,8	1	0,8	2,5	3,2	6,2	1,4
108	+	+	-	+	-	+	+		108	1	1	0.8	2.5	3.2	6.2	1.4
109	-	-	+	+	-	+	+		109	0.8	0.8	1	2.5	3.2	6.2	1.4
110	+	-	+	+	-	+	+		110	1	0.8	1	2.5	3.2	6.2	1.4
111	-	+	+	+	-	+	+		111	0.8	1	1	2.5	3.2	6.2	1.4
112	+	+	+	+	-	+	+		112	1	1	1	2.5	3.2	6.2	1.4
113	-	-	-	-	+	+	+		113	0.8	0.8	0.8	1.5	4.2	6.2	1.4
114	+	-	-	_	+	+	+		114	1	0.8	0.8	15	4.2	6.2	14
115	-	+	-	-	+	+	+		115	0.8	1	0.8	1,5	4.2	6.2	1.4
116	+	+	-	_	+	+	+		116	1	1	0.8	1.5	4.2	6.2	1.4
117	-	-	+	-	+	+	+		117	0.8	0.8	1	1,5	4.2	6.2	1.4
118	+	_	+	_	+	+	+		118	1	0.8	1	1.5	4.2	6.2	1.4
119	-	+	+	_	+	+	+	\vdash	119	0.8	1	1	15	4.2	6.2	1 4
120	+	+	+	_	+	+	+		120	1	1	1	1.5	4.2	6.2	1.4
121	-	-	-	+	+	+	+		120	0.8	0.8	0.8	2.5	4.2	6.2	1.4
122	+	_	-	+	+	+	+		122	1	0.8	0.8	2.5	4.2	6.2	1.4
123	-	+	-	+	+	+	+		123	0.8	1	0.8	2.5	4.2	6.2	1.4
124	+	+	-	+	+	+	+		124	1	1	0.8	2.5	4.2	6.2	1.4
125	-	-	+	+	+	+	+		125	0.8	0.8	1	2,5	4.2	6.2	1.4
126	+	-	+	+	+	+	+		125	1	0.8	1	2,5	4.2	6.2	1.4
120	-	+	+	+	+	+	, +		120	0.8	1	1	2,5	4.2	6.2	1.1
127	+	+	+	+	+	+	, +		127	1	1	1	2,5	4.2	6.2	1.1
120	3 364	0	0	0	0	0	0		120	12	0.8	0.9	1.8	4.2	6.2	1.7
130	-3 364	0	0	0	0	0	0		130	0.6	0,0	0,9	1.8	4.2	6.2	1,2
131	-5,50+	3 364	0	0	0	0	0		131	0,0	14	0,9	1.8	4.2	6.2	1,2
132	0	-3 364	0	0	0	0	0		132	0,9	0.4	0,9	1,0	4 2	6.2	1,2
132	0	0	3 364	0	0	0	0		132	0,9	0.8	1.2	1.8	4.2	6.2	1,2
134	0	0	-3 364	0	0	0	0		134	0,9	0,8	0.6	1,0	4 2	6.2	1,2
135	0	0	0	3 364	0	0	0		135	0,9	0,0	0,0	3.5	4.2	6.2	1,2
136	0	0	0	-3 364	0	0	0		136	0,9	0,0	0,9	0.5	4.2	6.2	1,2
137	0	0	0	5,501	0	0	0		150	0,7	0,0	0,9	0,5			
157	0	0	0	0	3 364	0	0		137	0.9	0.8	09	18	62	6.2	1.2
138	0	0	0	0	3,364	0	0		137	0,9	0,8	0,9	1,8	6,2 1.4	6,2 6,2	1,2
138 139	0 0 0	0 0 0	0 0 0	0 0 0	3,364 -3,364 0	0 0 3 364	0		137 138 139	0,9 0,9 0,9	0,8 0,8 0.8	0,9 0,9 0,9	1,8 1,8 1.8	6,2 1,4 4,2	6,2 6,2 7,4	1,2 1,2 1,2 1,2
138 139 140	0 0 0	0 0 0	0 0 0	0 0 0	3,364 -3,364 0	0 0 3,364 -3 364	0 0 0		137 138 139 140	0,9 0,9 0,9	0,8 0,8 0,8 0,8	0,9 0,9 0,9 0,9	1,8 1,8 1,8	6,2 1,4 4,2 4,2	6,2 6,2 7,4 4 6	1,2 1,2 1,2 1,2 1,2 1,2
138 139 140 141	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	3,364 -3,364 0 0	$ \begin{array}{r} 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \end{array} $			137 138 139 140 141	0,9 0,9 0,9 0,9 0,9	0,8 0,8 0,8 0,8 0,8	0,9 0,9 0,9 0,9 0,9	1,8 1,8 1,8 1,8 1,8	$ \begin{array}{r} 6,2\\ 1,4\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ \end{array} $	6,2 6,2 6,2 7,4 4,6 6,2	$ \begin{array}{r} 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 2 \end{array} $
138 139 140 141 142	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	3,364 -3,364 0 0 0	$ \begin{array}{r} 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \end{array} $	$ \begin{array}{r} 0 \\ 0 \\ 0 \\ 3,364 \\ -3,364 \end{array} $		137 138 139 140 141 142	0,9 0,9 0,9 0,9 0,9 0,9	0,8 0,8 0,8 0,8 0,8 0,8	$ \begin{array}{c} 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\$	1,8 1,8 1,8 1,8 1,8 1,8 1,8	$ \begin{array}{r} 6,2\\ 1,4\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4$	6,2 6,2 7,4 4,6 6,2	$ \begin{array}{r} 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 2 \\ 0.6 \\ \end{array} $
138 139 140 141 142 143	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0	0 0 3,364 -3,364 0 0 0	0 0 3,364 -3,364 0		$ \begin{array}{r} 137 \\ 138 \\ 139 \\ 140 \\ 141 \\ 142 \\ 143 \\ 143 \end{array} $	0,9 0,9 0,9 0,9 0,9 0,9 0,9	0,8 0,8 0,8 0,8 0,8 0,8 0,8	0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9	1,8 1,8	6,2 1,4 4,2 4,2 4,2 4,2 4,2 4,2	$\begin{array}{c} 6,2 \\ 6,2 \\ 7,4 \\ 4,6 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ \end{array}$	$ \begin{array}{r} 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 2 \\ 0,6 \\ 1,2 \\ \end{array} $
138 139 140 141 142 143 144	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0	0 0 3,364 -3,364 0 0 0 0	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \end{array} $		137 138 139 140 141 142 143 144	0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 0,9 \\$	1,8 1,8	$ \begin{array}{r} 6,2\\ 1,4\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4$	$\begin{array}{c} 6,2 \\ 6,2 \\ 7,4 \\ 4,6 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ 6,2 \\ \end{array}$	$ \begin{array}{r} 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 2 \\ 0,6 \\ 1,2 $
138 139 140 141 142 143 144 145	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0 0 0	0 0 3,364 -3,364 0 0 0 0 0	$ \begin{array}{c} 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $		$ \begin{array}{r} 137 \\ 138 \\ 139 \\ 140 \\ 141 \\ 142 \\ 143 \\ 144 \\ 145 \\ \end{array} $	0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9 0,9	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 0,9 \\$	1,8 1,8	$ \begin{array}{r} 6,2\\ 1,4\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4$	$\begin{array}{c} 6,2 \\ 6,2 \\ 7,4 \\ 4,6 \\ 6,2 \\$	$ \begin{array}{r} 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 0,6 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ \end{array} $
138 139 140 141 142 143 144 145 146	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0 0 0 0 0	0 0 3,364 -3,364 0 0 0 0 0 0 0	0 0 3,364 -3,364 0 0 0 0		$ \begin{array}{r} 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ \end{array} $	$\begin{array}{c} 0,9 \\$	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 0,9 \\$	1,8 1,8	$\begin{array}{c} 6,2 \\ 1,4 \\ 4,2 \\$	$\begin{array}{c} 6,2 \\ 6,2 \\ 7,4 \\ 4,6 \\ 6,2 \\$	$\begin{array}{c} 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 2 \\ 0,6 \\ 1,2 \\ 1$
138 139 140 141 142 143 144 145 146 147	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0	0 0 3,364 -3,364 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$		$ \begin{array}{r} 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ \end{array} $	$\begin{array}{c} 0,9 \\$	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 0,9 \\$	$ \begin{array}{r} 1,8 \\ $	$\begin{array}{c} 6,2 \\ 1,4 \\ 4,2 \\$	$\begin{array}{c} 6,2 \\ 6,2 \\ 6,2 \\ 7,4 \\ 4,6 \\ 6,2 \\$	$\begin{array}{c} 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 2 \\ 0,6 \\ 1,2 \\ 1$
138 139 140 141 142 143 144 145 146 147 148	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		$ \begin{array}{r} 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ \end{array} $	$\begin{array}{c} 0,9 \\$	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 0,9 \\$	$ \begin{array}{r} 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\$	$\begin{array}{c} 6,2 \\ 1,4 \\ 4,2 \\$	$\begin{array}{c} 6,2 \\ 6,2 \\ 6,2 \\ 7,4 \\ 4,6 \\ 6,2 \\$	$\begin{array}{c} 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 2 \\ 0,6 \\ 1,2 \\ 1$
138 139 140 141 142 143 144 145 146 147 148 149	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		$\begin{array}{r} 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ \end{array}$	$\begin{array}{c} 0,9 \\$	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 0,9 \\$	$ \begin{array}{r} 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\$	$\begin{array}{c} 6,2 \\ 1,4 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \end{array}$	$\begin{array}{c} 6,2 \\ 6,2 \\ \hline 6,2 \\ \hline 7,4 \\ 4,6 \\ \hline 6,2 \\ \hline 6,2$	$\begin{array}{c} 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 2 \\ 0,6 \\ 1,2 \\ 1$
138 139 140 141 142 143 144 145 146 147 148 149 150	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		$\begin{array}{r} 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ \end{array}$	$\begin{array}{c} 0,9 \\$	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 0.9 \\ 0.9 \end{array}$	$ \begin{array}{r} 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\$	$\begin{array}{c} 6,2 \\ 1,4 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \end{array}$	$\begin{array}{c} 6,2 \\ 6,2 \\ 7,4 \\ 4,6 \\ 6,2 \\$	$\begin{array}{c} 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 2 \\ 0,6 \\ 1,2 \\ 1$
$\begin{array}{r} 138 \\ 139 \\ 140 \\ 141 \\ 142 \\ 143 \\ 144 \\ 145 \\ 146 \\ 147 \\ 148 \\ 149 \\ 150 \\ 151 \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		$\begin{array}{r} 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ \end{array}$	$\begin{array}{c} 0,9 \\$	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 0.9 \\$	$ \begin{array}{r} 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\$	$\begin{array}{c} 6.2 \\ 1.4 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \end{array}$	$\begin{array}{c} 6,2 \\ 6,2 \\ 7,4 \\ 4,6 \\ 6,2 \\$	$\begin{array}{c} 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 1,2 \\ 2 \\ 0,6 \\ 1,2 \\ 1$
$\begin{array}{c} 138 \\ 139 \\ 140 \\ 141 \\ 142 \\ 143 \\ 144 \\ 145 \\ 146 \\ 147 \\ 148 \\ 149 \\ 150 \\ 151 \\ 152 \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		$\begin{array}{r} 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ \end{array}$	$\begin{array}{c} 0,9 \\$	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\$	$\begin{array}{c} 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\$	$\begin{array}{c} 6.2 \\ 1.4 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \\ 4.2 \end{array}$	$\begin{array}{c} 6,2 \\ 6,2 \\ 7,4 \\ 4,6 \\ 6,2 \\$	$\begin{array}{c} 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 2\\ 0,6\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2$
$\begin{array}{r} 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		$\begin{array}{r} 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 152\\ 153\\ \end{array}$	$\begin{array}{c} 0.9 \\$	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 0,9 \\$	$\begin{array}{c} 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\$	$\begin{array}{c} 6,2 \\ 1,4 \\ 4,2 \\$	$\begin{array}{c} 6,2 \\ 6,2 \\ 7,4 \\ 4,6 \\ 6,2 \\$	$\begin{array}{c} 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 2\\ 0,6\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2$
$\begin{array}{c} 138 \\ 139 \\ 140 \\ 141 \\ 142 \\ 143 \\ 144 \\ 145 \\ 146 \\ 147 \\ 148 \\ 149 \\ 150 \\ 151 \\ 152 \\ 153 \\ 154 \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		$\begin{array}{r} 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ \end{array}$	$\begin{array}{c} 0.9 \\$	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\$	$\begin{array}{c} 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\$	$\begin{array}{c} 6.2 \\ 1.4 \\ 4.2 \end{array}$	$\begin{array}{c} 6,2 \\ 6,2 \\ 6,2 \\ 7,4 \\ 4,6 \\ 6,2 \\$	$\begin{array}{c} 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 2\\ 0,6\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2$
$\begin{array}{c} 138 \\ 139 \\ 140 \\ 141 \\ 142 \\ 143 \\ 144 \\ 145 \\ 146 \\ 147 \\ 148 \\ 149 \\ 150 \\ 151 \\ 152 \\ 151 \\ 152 \\ 153 \\ 154 \\ 155 \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		$\begin{array}{r} 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ \end{array}$	$\begin{array}{c} 0.9 \\$	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\$	$\begin{array}{c} 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\$	$\begin{array}{c} 6.2 \\ 1.4 \\ 4.2 \end{array}$	$\begin{array}{c} 6,2 \\ 6,2 \\ 6,2 \\ 7,4 \\ 4,6 \\ 6,2 \\$	$\begin{array}{c} 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 2\\ 0,6\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2$
$\begin{array}{c} 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		$\begin{array}{r} 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ \end{array}$	$\begin{array}{c} 0.9 \\$	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\$	$\begin{array}{c} 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\$	$\begin{array}{c} 6,2\\ 1,4\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4$	$\begin{array}{c} 6,2 \\ 6,2 \\ 6,2 \\ 7,4 \\ 4,6 \\ 6,2 \\$	$\begin{array}{c} 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 2\\ 0,6\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2$
$\begin{array}{c} 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 157\\ \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		$\begin{array}{r} 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 157\\ \end{array}$	$\begin{array}{c} 0.9 \\$	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\ 0,9\\$	$\begin{array}{c} 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\$	$\begin{array}{c} 6,2\\ 1,4\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4$	$\begin{array}{c} 6,2 \\ 6,2 \\ 6,2 \\ 7,4 \\ 4,6 \\ 6,2 \\$	$\begin{array}{c} 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 0,6\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2$
$\begin{array}{c} 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		$\begin{array}{r} 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ \end{array}$	$\begin{array}{c} 0.9 \\$	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 0.9 \\$	$\begin{array}{c} 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\$	$\begin{array}{c} 6,2\\ 1,4\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4$	$\begin{array}{c} 6,2 \\ 6,2 \\ 6,2 \\ 7,4 \\ 4,6 \\ 6,2 \\$	$\begin{array}{c} 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 2\\ 0,6\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2$
$\begin{array}{c} 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ 159\\ \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		$\begin{array}{r} 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ 159\\ \end{array}$	$\begin{array}{c} 0.9 \\$	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 0.9 \\$	$\begin{array}{c} 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\$	$\begin{array}{c} 6,2\\ 1,4\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4$	$\begin{array}{c} 6,2 \\ 6,2 \\ 6,2 \\ 7,4 \\ 4,6 \\ 6,2 \\$	$\begin{array}{c} 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 2\\ 0,6\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2$
$\begin{array}{c} 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		$\begin{array}{r} 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ \end{array}$	$\begin{array}{c} 0.9 \\$	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 0.9 \\$	$\begin{array}{c} 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\$	$\begin{array}{c} 6,2\\ 1,4\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4$	$\begin{array}{c} 6,2\\ 6,2\\ 6,2\\ 7,4\\ 4,6\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6$	$\begin{array}{c} 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 0,6\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2$
$\begin{array}{c} 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ 161\\ \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		$\begin{array}{r} 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ 161\\ \end{array}$	$\begin{array}{c} 0.9 \\$	0,8 0,8	$\begin{array}{c} 0.9 \\$	$\begin{array}{c} 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\$	$\begin{array}{c} 6,2\\ 1,4\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4$	$\begin{array}{c} 6,2\\ 6,2\\ 6,2\\ 7,4\\ 4,6\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6$	$\begin{array}{c} 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 2\\ 0,6\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2$
$\begin{array}{c} 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ 161\\ 162\\ \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		$\begin{array}{r} 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ 161\\ 162\\ \end{array}$	$\begin{array}{c} 0.9 \\$	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 0.9 \\$	$\begin{array}{c} 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\$	$\begin{array}{c} 6,2\\ 1,4\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4$	$\begin{array}{c} 6,2\\ 6,2\\ 6,2\\ 7,4\\ 4,6\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6$	$\begin{array}{c} 1,2\\ 1,2\\ 1,2\\ 1,2\\ 2\\ 0,6\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2$
$\begin{array}{c} 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ 161\\ 162\\ 163\\ \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,364 -3,364 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 3,364 \\ -3,364 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		$\begin{array}{c} 137\\ 138\\ 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ 161\\ 162\\ 163\\ \end{array}$	$\begin{array}{c} 0.9 \\$	0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 0.9 \\$	$\begin{array}{c} 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\ 1,8\\$	$\begin{array}{c} 6,2\\ 1,4\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4$	$\begin{array}{c} 6,2\\ 6,2\\ 6,2\\ 7,4\\ 4,6\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6$	$\begin{array}{c} 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 2\\ 0,6\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2$

Badania przeprowadzono zgodnie z macierzą planu dla S = 7 (czynniki wejściowe), stosując dwa powtórzenia r = 2 dla poziomu ufności p = 95%. W tabeli 5.28 zestawiono wyniki pomiarów uzyskane na podstawie przeprowadzonych symulacji komputerowych.

	Srednia							
	prędkość	лΠ	лΠ	лП	ьΠ	ттП	ъШ	CDII
Lp	końcowa	a 1 ^m	a 2 ¹¹	a 3 ¹¹	n 1 ^m	H"	D"	5P"
-r	11							
	[m/a]	[]	[]	[]	[]	[]	[]	[]
1								
1	127	0,8	0,8	0,8	1,5	3,2	5,4	1
2	137,5	l	0,8	0,8	1,5	3,2	5,4	I
3	126	0,8	1	0,8	1,5	3,2	5,4	1
4	136,5	1	1	0,8	1,5	3,2	5,4	1
5	127	0,8	0,8	1	1,5	3,2	5,4	1
6	138	1	0,8	1	1,5	3,2	5,4	1
7	126	0,8	1	1	1,5	3,2	5,4	1
8	137	1	1	1	1,5	3,2	5,4	1
9	127,5	0,8	0,8	0,8	2,5	3,2	5,4	1
10	138	1	0,8	0,8	2,5	3,2	5,4	1
11	126	0.8	1	0.8	2.5	3.2	5.4	1
12	137	1	1	0.8	2.5	3.2	54	1
13	127	0.8	0.8	1	2,5	3.2	5.4	1
14	138.5	1	0,0	1	2,5	3.2	5.4	1
15	136,5	0.9	0,0	1	2,5	2.2	5.4	1
15	123,5	0,8	1	1	2,5	3,2	5.4	1
10	137,5	1	1	1	2,5	3,2	5,4	1
17	124,5	0,8	0,8	0,8	1,5	4,2	5,4	1
18	134,5	1	0,8	0,8	1,5	4,2	5,4	1
19	123	0,8	1	0,8	1,5	4,2	5,4	1
20	133,5	1	1	0,8	1,5	4,2	5,4	1
21	124	0,8	0,8	1	1,5	4,2	5,4	1
22	135,5	1	0,8	1	1,5	4,2	5,4	1
23	122	0,8	1	1	1,5	4,2	5,4	1
24	134	1	1	1	1,5	4,2	5,4	1
25	124	0.8	0.8	0.8	2.5	4.2	5.4	1
26	136	1	0.8	0.8	2.5	4.2	5.4	1
27	123	0.8	1	0.8	2.5	4.2	54	1
28	135	1	1	0,0	2,5	4.2	5.4	1
20	133	0.8	0.8	0,0	2,5	4.2	5.4	1
29	124	0,0	0,0	1	2,5	4,2	5.4	1
30	135	1	0,8	1	2,5	4,2	5,4	1
31	122	0,8	1	1	2,5	4,2	5,4	1
32	134	l	1	1	2,5	4,2	5,4	l
33	128	0,8	0,8	0,8	1,5	3,2	6,2	1
34	140	1	0,8	0,8	1,5	3,2	6,2	1
35	128,5	0,8	1	0,8	1,5	3,2	6,2	1
36	139	1	1	0,8	1,5	3,2	6,2	1
37	129	0,8	0,8	1	1,5	3,2	6,2	1
38	141	1	0,8	1	1,5	3,2	6,2	1
39	127	0,8	1	1	1,5	3,2	6,2	1
40	139,5	1	1	1	1.5	3.2	6.2	1
41	129	0.8	0.8	0.8	2.5	3.2	6.2	1
42	140	1	0.8	0.8	2,5	3.2	6.2	1
43	128	0.8	1	0.8	2,5	3.2	6.2	1
41	138	1	1	0,0	2,5	3.2	6.2	1
15	100	0.0	0.8	1	2,5	3,2	62	1
43	120	1,0	0,0	1	2,3	3,2	6.2	1
40	141,5	1	0,8	1	2,5	3,2	0,2	1
4/	127	0,8	1	1	2,5	3,2	0,2	1
48	140		1	1	2,5	3,2	6,2	1
49	127	0,8	0,8	0,8	1,5	4,2	6,2	1
50	136	1	0,8	0,8	1,5	4,2	6,2	1
51	124	0,8	1	0,8	1,5	4,2	6,2	1

Tab. 5.28. Wyniki badań komputerowych prędkości na wypływie z głowicy do obróbki powierzchni

	1055						6.0	
52	135,5	1	1	0,8	1,5	4,2	6,2	1
53	125	0.8	0.8	1	15	12	62	1
55	125	0,8	0,8	1	1,5	4,2	0,2	1
54	137	1	0.8	1	1.5	4,2	6,2	1
55	104	0.0	1	1	1.5	10	60	1
- 33	124	0,8	1	1	1,5	4,2	0,2	1
56	137	1	1	1	1.5	4.2	6.2	1
50	100				1,5	1,2	6,2	1
57	128	0,8	0,8	0,8	2,5	4,2	6,2	1
58	137	1	0.8	0.8	2.5	12	62	1
50	137	1	0,0	0,0	2,5	7,2	0,2	1
59	124,5	0,8	1	0,8	2,5	4,2	6,2	1
60	126	1	1	0.0	2.5	10	60	1
60	130	1	1	0,8	2,3	4,2	0,2	1
61	126	0.8	0.8	1	2.5	4.2	6.2	1
(2)	120	1	0,0	1	2,0	1.2	6,2	1
62	138	l	0,8	1	2,5	4,2	6,2	l
63	123	0.8	1	1	25	42	6.2	1
05	123	0,0	1	1	2,5	7,2	0,2	1
64	137	1	1	1	2,5	4,2	6,2	1
65	127.5	0.8	0.8	0.8	15	37	5.4	1 /
05	127,5	0,8	0,8	0,8	1,5	5,2	5,4	1,4
66	138	1	0.8	0.8	1.5	3.2	5.4	1.4
(7	10(5	0.0	1	0.0	1.5	2,2	5 4	1.4
67	126,5	0,8	1	0,8	1,5	3,2	5,4	1,4
68	136.5	1	1	0.8	15	32	54	14
00	150,5	1	1	0,0	1,5	5,2	5,4	1,7
69	128	0,8	0,8	1	1,5	3,2	5,4	1,4
70	138.5	1	0.8	1	15	30	5 /	1 /
70	150,5	1	0,0	1	1,5	5,4	5,4	1,4
71	123	0,8	1	1	1,5	3,2	5,4	1,4
70	120 5	1	1	1	15	2.0	5 /	1 /
12	138,3	1	1	1	1,3	3,2	3,4	1,4
73	129	0.8	0.8	0.8	2.5	3.2	5.4	1.4
	100	1	0,0	0,0	,5	2,2	<i>– – – – – – – – – –</i>	-,-
/4	138	1	0,8	0,8	2,5	3,2	5,4	1,4
75	127.5	0.8	1	0.8	25	32	54	14
15	141,5	0,0	1	0,0	2,5	5,2	5,7	1,7
76	137	1	1	0,8	2,5	3,2	5,4	1,4
77	107	0.8	0.0	1	25	3.7	5.4	1.4
11	127	0,0	0,0	1	2,3	3,2	٦,4	1,4
78	138.5	1	0.8	1	2.5	3.2	5.4	1.4
70	105	0.0	1	1	2,0	2,2	5,1	1,1
79	125	0,8	1	1	2,5	3,2	5,4	1,4
80	137.5	1	1	1	25	32	54	14
00	157,5	1	1	1	2,5	5,2	5,7	1,7
81	124,5	0,8	0,8	0,8	1,5	4,2	5,4	1,4
01	125	1	0.0	0.0	1.5	4.2	5 4	1 /
02	155	1	0,8	0,0	1,5	4,2	5,4	1,4
83	123.5	0.8	1	0.8	1.5	4.2	5.4	1.4
01	122	1	1	0.9	1.5	10	5 4	1.4
84	155	1	1	0,8	1,5	4,2	5,4	1,4
85	126	0.8	0.8	1	1.5	4.2	5.4	1.4
06	120	1	0,0	1	1,0	1.2	5,1	1,1
86	136	1	0,8	1	1,5	4,2	5,4	1,4
87	123	0.8	1	1	1.5	42	54	14
07	125	0,0	1	1	1,5	7,2	5,7	1,7
88	135	1	1	1	1,5	4,2	5,4	1,4
80	125	0.8	0.8	0.8	2.5	4.2	5.4	1.4
- 69	123	0,8	0,8	0,0	2,5	4,2	5,4	1,4
90	135	1	0.8	0.8	2.5	4.2	5.4	1.4
01	102.5	0.0	1	0.0	2,5	10	5 4	1.4
91	123,5	0,8	1	0,8	2.5		N / I	1.4
92	134	1	1		_,=	4,2	5,4	-, -
	1.51			0.8	2.5	4,2	5.4	14
93		0.0	1	0,8	2,5	4,2	5,4	1,4
0/	124	0,8	0,8	0,8 1	2,5 2,5	4,2 4,2 4,2	5,4 5,4 5,4	1,4 1,4
24	124	0,8	0,8	0,8	2,5 2,5 2,5 2,5	4,2 4,2 4,2 4,2 4,2	5,4 5,4 5,4 5,4	1,4 1,4 1,4
-	124 136,5	0,8 1	0,8 0,8	0,8 1 1	2,5 2,5 2,5 2,5	4,2 4,2 4,2 4,2 4,2	5,4 5,4 5,4 5,4	1,4 1,4 1,4 1,4
95	124 136,5 122	0,8 1 0,8	0,8 0,8 1	0,8 1 1 1	2,5 2,5 2,5 2,5 2,5	$ \begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \end{array} $	5,4 5,4 5,4 5,4 5,4	$ \begin{array}{r} 1,4 \\ 1,4 \\ 1,4 \\ 1,4 \\ 1,4 \end{array} $
95 06	124 136,5 122 135	0,8 1 0,8	0,8 0,8 1	0,8 1 1 1	2,5 2,5 2,5 2,5 2,5 2,5	$ \begin{array}{r} 4,2 \\ $	5,4 5,4 5,4 5,4 5,4	$ \begin{array}{r} 1, \\$
95 96	124 136,5 122 135	0,8 1 0,8 1	0,8 0,8 1 1	0,8 1 1 1 1	2,5 2,5 2,5 2,5 2,5 2,5 2,5	$ \begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ \end{array} $	5,4 5,4 5,4 5,4 5,4 5,4 5,4	$ \begin{array}{r} 1,4 \\ $
95 96 97	124 136,5 122 135 129,5	0,8 1 0,8 1 0,8	1 0,8 0,8 1 1 0,8	0,8 1 1 1 1 0,8	2,5 2,5 2,5 2,5 2,5 2,5 2,5 1,5	$ \begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 3,2 \\ \end{array} $	5,4 5,4 5,4 5,4 5,4 5,4 5,4 6,2	$ \begin{array}{r} 1,4 \\ $
95 96 97	124 136,5 122 135 129,5	0,8 1 0,8 1 0,8	$ \begin{array}{r} 1 \\ 0,8 \\ 0,8 \\ 1 \\ 1 \\ 0,8 \\ 0.8 \\ $	0,8 1 1 1 0,8 0,8	2,5 2,5 2,5 2,5 2,5 2,5 1,5	$ \begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 3,2 \\ 2,2 \\ \end{array} $	5,4 5,4 5,4 5,4 5,4 5,4 6,2	$ \begin{array}{r} 1,4 \\ $
95 96 97 98	124 136,5 122 135 129,5 140	0,8 1 0,8 1 0,8 1	0,8 0,8 1 1 0,8 0,8	0,8 1 1 1 0,8 0,8	2,5 2,5 2,5 2,5 2,5 2,5 1,5 1,5	$ \begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 3,2 \\ 3,2 \\ 3,2 \\ \end{array} $	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $6,2$ $6,2$	$ \begin{array}{r} 1,4 \\ 1$
95 96 97 98 99	124 136,5 122 135 129,5 140 128	0,8 1 0,8 1 0,8 1 0,8	1 0,8 0,8 1 1 0,8 0,8 0,8 1	0,8 1 1 1 0,8 0,8 0,8	$\begin{array}{c} 2,5 \\ 2,5 \\ 2,5 \\ 2,5 \\ 2,5 \\ 2,5 \\ 2,5 \\ 1,5 \\ 1,5 \\ 1,5 \\ 1,5 \\ 1,5 \end{array}$	$ \begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 3,2 \\ 3,2 \\ 3,2 \\ 3,2 \\ 3,2 \\ \end{array} $	5,4 5,4 5,4 5,4 5,4 6,2 6,2 6,2	$ \begin{array}{r} 1,4 \\ 1$
95 96 97 98 99	124 136,5 122 135 129,5 140 128	0,8 1 0,8 1 0,8 1 0,8	1 0,8 0,8 1 1 0,8 0,8 1 ;	0,8 1 1 1 0,8 0,8 0,8 0,8	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$ \begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 3,3 \\ 3,2 \\ 3,3 $	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $6,2$ $6,2$ $6,2$ $6,2$	$ \begin{array}{r} 1,4 \\ $
95 96 97 98 99 100	124 136,5 122 135 129,5 140 128 138,5	0,8 1 0,8 1 0,8 1 0,8 1 0,8 1	1 0,8 0,8 1 1 0,8 0,8 1 1 1	0,8 1 1 1 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ \end{array}$	$ \begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 3,2 \\ 3,2 \\ 3,2 \\ 3,2 \\ 3,2 \\ 3,2 \\ 3,2 \\ 3,2 \\ \end{array} $	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $5,4$ $6,2$ $6,2$ $6,2$ $6,2$ $6,2$	$ \begin{array}{r} 1,4 \\ 1$
95 96 97 98 99 100	124 136,5 122 135 129,5 140 128 138,5 130	0,8 1 0,8 1 0,8 1 0,8 1 0,8 1 0,8	$ \begin{array}{r} 1 \\ 0,8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \end{array} $	0,8 1 1 1 0,8 0,8 0,8 0,8 0,8 1	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 3,2 \\$	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $5,4$ $6,2$ $6,2$ $6,2$ $6,2$ $6,2$ $6,2$ $6,2$	$ \begin{array}{r} 1,4 \\ $
95 96 97 98 99 100 101	124 136,5 122 135 129,5 140 128 138,5 130	0,8 1 0,8 1 0,8 1 0,8 1 0,8	1 0,8 0,8 1 1 0,8 0,8 1 1 0,8	0,8 1 1 1 0,8 0,8 0,8 0,8 0,8 1 1	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 3,2 \\$	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $6,2$ $7,2$	$\begin{array}{c} 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\$
95 96 97 98 99 100 101 102	124 136,5 122 135 129,5 140 128 138,5 130 141	0,8 1 0,8 1 0,8 1 0,8 1 0,8 1 0,8 1 0,8 1	$ \begin{array}{r} 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ \end{array} $	0,8 1 1 1 0,8 0,8 0,8 0,8 0,8 1 1	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 3,2 \\ 3,2 \\ 3,2 \\ 3,2 \\ 3,2 \\ 3,2 \\ 3,2 \\ 3,2 \\ 3,2 \\ 3,2 \end{array}$	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $6,2$ $6,2$ $6,2$ $6,2$ $6,2$ $6,2$ $6,2$ $6,2$ $6,2$	$\begin{array}{c} 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\$
95 96 97 98 99 100 101 102	124 136,5 122 135 129,5 140 128 138,5 130 141	0,8 1 0,8 1 0,8 1 0,8 1 0,8 1 0,8 1 0,8	$ \begin{array}{r} 1 \\ 0,8 \\ 0,8 \\ 1 \\ 1 \\ 0,8 \\ 0,8 \\ 1 \\ 1 \\ 0,8 \\ 0,8 \\ 1 \\ 1 \\ 1 \\ 0,8 \\ 0,8 \\ 1 \\ 1 \\ 0,8 \\ 0,8 \\ 1 \\ 1 \\ 0,8 \\ 0,8 \\ 1 \\ 0,8 \\ 0,8 \\ 1 \\ 0,8 \\ 0,8 \\ 1 \\ 0,8 \\ 0,8 \\ 1 \\ 0,8 \\ 0,8 \\ 1 \\ 0,8 \\ 0,8 \\ 1 \\ 0,8 \\ 0,8 \\ 1 \\ 0,8 \\ $	0,8 1 1 0,8 0,8 0,8 0,8 1 1 1	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 3,2 \\$	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $5,4$ $6,2$ $7,2$	$\begin{array}{c} 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\$
95 96 97 98 99 100 101 102 103	124 136,5 122 135 129,5 140 128 138,5 130 141 127	$\begin{array}{c} 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ \end{array}$	$ \begin{array}{c} 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ $	0,8 1 1 1 0,8 0,8 0,8 0,8 0,8 1 1 1 1	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 3,2 \\$	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $5,4$ $6,2$ $7,2$	$\begin{array}{c} 1, 4\\$
95 96 97 98 99 100 101 102 103 104	124 136,5 122 135 129,5 140 128 138,5 130 141 127 140	$\begin{array}{c} 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ \end{array}$	$ \begin{array}{c} 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$ \begin{array}{c} 0,8\\ 1\\ 1\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1 \end{array} $	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 3,2 \\$	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $6,2$	$\begin{array}{c} 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\$
95 96 97 98 99 100 101 102 103 104	124 136,5 122 135 129,5 140 128 138,5 130 141 127 140 120	$\begin{array}{c} 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.$	$ \begin{array}{c} 1 \\ 0,8 \\ 0,8 \\ 1 \\ 1 \\ 0,8 \\ 0,8 \\ 1 \\ 0,8 \\ 0,8 \\ 1 \\ 1 \\ 0,8 \\ 0,8 \\ 1 \\ 0,8 \\ 0,8 \\ 1 \\ 0,8 \\ 0,$	0,8 1 1 1 0,8 0,8 0,8 0,8 1 1 1 1 1 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 3,2 \\$	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $6,2$ $7,2$	$\begin{array}{c} 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\$
95 96 97 98 99 100 101 102 103 104 105	124 136,5 122 135 129,5 140 128 138,5 130 141 127 140 130	$\begin{array}{c} 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ \end{array}$	$ \begin{array}{c} 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 $	$\begin{array}{c} 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ \end{array}$	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 3,2 \\$	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $6,2$ $7,2$	$\begin{array}{c} 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\$
95 96 97 98 99 100 101 102 103 104 105 106	124 136,5 122 135 129,5 140 128 138,5 130 141 127 140 130 140	$\begin{array}{c} 0,8\\ 1\\ 0\\ 0,8\\ 1\\ 0\\ 0,8\\ 1\\ 0\\ 0,8\\ 1\\ 0\\ 0,8\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$ \begin{array}{r} 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8$	$\begin{array}{c} 0.8 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0$	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 3,2 \\$	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $6,2$ $7,2$	$\begin{array}{c} 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\$
95 96 97 98 99 100 101 102 103 104 105 106	$ \begin{array}{r} 124 \\ 136,5 \\ 122 \\ 135 \\ 129,5 \\ 140 \\ 128 \\ 138,5 \\ 130 \\ 141 \\ 127 \\ 140 \\ 130 \\ 140 \\ 130 \\ 140 \\ 126 \\ 140 \\ 126 \\ 140 \\ 126 \\ 140 \\ 126 \\ 126 \\ 128 \\ 138,5 \\ 130 \\ 140 \\ 126 \\ 128 \\ 128 \\ 138,5 \\ 130 \\ 141 \\ 127 \\ 140 \\ 130 \\ 140 \\ 126 \\ 128 \\ 138 \\ 128 \\ 138 \\ 128 \\ 138 \\ 128 \\ 138 \\ 128 \\ 138 \\ 130 \\ 141 \\ 127 \\ 140 \\ 130 \\ 140 \\ 128 \\ 140 \\ 128 \\ 140 \\ 128 \\ 128 \\ 138 \\ 141 \\ 127 \\ 140 \\ 130 \\ 140 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 138 \\ 127 \\ 140 \\ 130 \\ 140 \\ 128 \\ 128 \\ 127 \\ 140 \\ 128 \\ 127 \\ 128 \\ 127 \\ 128 \\ 127 \\ 128 \\ 127 \\ 140 \\ 130 \\ 140 \\ 140 \\ 128 \\ 12$	$\begin{array}{c} 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$ \begin{array}{c} 1\\ 0,8\\ 0,8\\ 1\\ 1\\ 0,8\\ 0,8\\ 1\\ 0,8\\ 0,8\\ 1\\ 1\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8$	$\begin{array}{c} 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.6 \\ 0.8 \\$	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 3,2 \\$	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $6,2$ $7,2$	$\begin{array}{c} 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\$
95 96 97 98 99 100 101 102 103 104 105 106 107	$ \begin{array}{r} 124 \\ 136,5 \\ 122 \\ 135 \\ 129,5 \\ 140 \\ 128 \\ 138,5 \\ 130 \\ 141 \\ 127 \\ 140 \\ 130 \\ 140 \\ 130 \\ 140 \\ 129 \\ \end{array} $	$\begin{array}{c} 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ \end{array}$	$ \begin{array}{c} 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 $	$\begin{array}{c} 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.8 \\$	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 3,2 \\$	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $6,2$ $7,2$ $7,2$ $7,2$ $7,2$ $7,2$ $7,2$ $7,3$ $7,4$	$\begin{array}{c} 1, 4\\$
95 96 97 98 99 100 101 102 103 104 105 106 107	$ \begin{array}{r} 124\\ 136,5\\ 122\\ 135\\ 129,5\\ 140\\ 128\\ 138,5\\ 130\\ 141\\ 127\\ 140\\ 130\\ 140\\ 129\\ 140\\ 129\\ 140\\ 129\\ 140\\ 129\\ 140\\ 120\\ 140\\ 140\\ 120\\ 140\\ 120\\ 140\\ 140\\ 120\\ 140\\ 140\\ 120\\ 140\\ 140\\ 120\\ 140\\ 140\\ 140\\ 120\\ 140\\ 140\\ 120\\ 140\\ 140\\ 120\\ 140\\ 140\\ 120\\ 140\\ 140\\ 120\\ 140\\ 140\\ 120\\ 140\\ 140\\ 120\\ 140\\ 140\\ 120\\ 140\\ 140\\ 120\\ 140\\ 140\\ 140\\ 120\\ 140\\ 140\\ 140\\ 120\\ 140\\ 140\\ 140\\ 120\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 140\\ 14$	$\begin{array}{c} 0,8\\ 1\\ 0\\ 0,8\\ 1\\ 0\\ 0,8\\ 1\\ 0\\ 0,8\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$ \begin{array}{r} 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 $	0,8 1 1 1 0,8 0,8 0,8 0,8 1 1 1 1 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 4,2 \\ 3,2 \\$	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $6,2$ $7,2$	$\begin{array}{c} 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\$
95 96 97 98 99 100 101 102 103 104 105 106 107	$ \begin{array}{r} 124 \\ 136,5 \\ 122 \\ 135 \\ 129,5 \\ 140 \\ 128 \\ 138,5 \\ 130 \\ 141 \\ 127 \\ 140 \\ 130 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 140 \\ 129 \\ 140 \\ 140 \\ 129 \\ 140 \\ 140 \\ 129 \\ 140 \\ 140 \\ 129 \\ 140 \\ 140 \\ 129 \\ 140 \\ 140 \\ 129 \\ 140 \\ 140 \\ 129 \\ 140 \\ 140 \\ 129 \\ 140 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 140 \\ 120 \\ 140 \\ 120 \\ 140 \\ 120 \\ 140 \\ 120 \\ 140 \\ 120 \\ 140 \\ 120 \\ 140 \\ 120 \\ 140 \\ 120 \\ $	$\begin{array}{c} 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0\\ 0,8\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$ \begin{array}{r} 1\\ 0,8\\ 0,8\\ 1\\ 1\\ 0,8\\ 0,8\\ 1\\ 1\\ 0,8\\ 0,8\\ 1\\ 1\\ 0,8\\ 0,8\\ 1\\ 1\\ 1\\ 1\\ 1\\ 0,8\\ 0,8\\ 1\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.8 \\$	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3$	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $6,2$ $7,2$	$\begin{array}{c} 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\$
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109	124 136,5 122 135 129,5 140 128 138,5 130 141 127 140 130 140 129 140 129 140	$\begin{array}{c} 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 0,8\\ 1\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8$	$ \begin{array}{r} 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1 \\ 0.8 \\ 1$	$\begin{array}{c} 0.8 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ \end{array}$	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3$	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $6,2$ $7,2$	$\begin{array}{c} 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\$
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109	$ \begin{array}{r} 124 \\ 136,5 \\ 122 \\ 135 \\ 129,5 \\ 140 \\ 128 \\ 138,5 \\ 130 \\ 141 \\ 127 \\ 140 \\ 130 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 141 \\ 127 \\ 140 \\ 129 \\ 141 \\ 121 \\ $	$\begin{array}{c} 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 0\\ 1\\ 0,8\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$ \begin{array}{c} 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ $	$\begin{array}{c} 0,8 \\ 1 \\ 1 \\ 1 \\ 0,8 \\ 0,8 \\ 0,8 \\ 0,8 \\ 0,8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0,8 \\ 0,8 \\ 0,8 \\ 0,8 \\ 0,8 \\ 0,8 \\ 0,8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3$	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $6,2$ $7,2$	$\begin{array}{c} 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\$
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	124 136,5 122 135 129,5 140 128 138,5 130 141 127 140 130 140 129 140 129 141	$\begin{array}{c} 0,8\\ 1\\ 0\\ 0,8\\ 1\\ 0\\ 0,8\\ 1\\ 0\\ 0,8\\ 1\\ 0\\ 0,8\\ 1\\ 0\\ 0,8\\ 1\\ 0\\ 0,8\\ 1\\ 0\\ 0,8\\ 1\\ 0\\ 0,8\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$ \begin{array}{r} 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ $	$\begin{array}{c} 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3$	$\begin{array}{r} 5,4\\ 5,4\\ 5,4\\ 5,4\\ 5,4\\ 5,4\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2$	$\begin{array}{c} 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\$
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111	124 136,5 122 135 129,5 140 128 138,5 130 141 127 140 130 140 129 140 129 140 129 141 129	$\begin{array}{c} 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 0,8\\ 1\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0\\ 0,8\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$ \begin{array}{c} 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.$	$\begin{array}{c} 0.8 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3$	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $6,2$ $7,2$	$\begin{array}{c} 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\$
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110	$ \begin{array}{r} 124 \\ 136,5 \\ 122 \\ 135 \\ 129,5 \\ 140 \\ 128 \\ 138,5 \\ 130 \\ 141 \\ 127 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 141 \\ 126 \\ 140 \\ 125 \\ 140 \\ 129 \\ 141 \\ 126 \\ 140 \\ 129 \\ 141 \\ 126 \\ 140 \\ 129 \\ 141 \\ 126 \\ 140 \\ 129 \\ 140 \\ 129 \\ 141 \\ 126 \\ 140 \\ 129 \\ 141 \\ 126 \\ 140 \\ 129 \\ 141 \\ 126 \\ 140 \\ 129 \\ 141 \\ 126 \\ 140 \\ 129 \\ 141 \\ 126 \\ 140 \\ 129 \\ 141 \\ 126 \\ 140 \\ 129 \\ 141 \\ 126 \\ 140 \\ 120 \\ 140 \\ 120 \\ $	$\begin{array}{c} 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 0,8\\ 1\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8$	$ \begin{array}{c} 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 0.8\\ 0.8\\ 1\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8$	$\begin{array}{c} 0,8\\ 1\\ 1\\ 1\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 1\\ 1\\ 1\\ 1\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3$	5,4 $5,4$ $5,4$ $5,4$ $5,4$ $6,2$ $7,2$	$\begin{array}{c} 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\$
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 112	$ \begin{array}{r} 124 \\ 136,5 \\ 122 \\ 135 \\ 129,5 \\ 140 \\ 128 \\ 138,5 \\ 130 \\ 141 \\ 127 \\ 140 \\ 130 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 141 \\ 126 \\ 140,5 \\ 126 \\ 140,5 \\ 121 \\ 122 \\ 130 \\ 140 \\ 120 \\ 140 \\ 120 \\ 140 \\ 120 \\ 140 \\ 129 \\ 141 \\ 126 \\ 140,5 \\ 140,5 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 140 \\ 120 \\ 140 \\ 120 \\ 140 \\ 120 \\ 141 \\ 126 \\ 140,5 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 141 \\ 126 \\ 140,5 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 141 \\ 126 \\ 140,5 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 120 \\ 141 \\ 126 \\ 140,5 \\ 120 \\ 12$	$\begin{array}{c} 0,8\\ 1\\ 0,8\\ 0\\ 0,8\\ 0\\ 0,8\\ 0\\ 0,8\\ 0\\ 0,8\\ 0\\ 0,8\\ 0\\ 0\\ 0,8\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	$\begin{array}{c} 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3$	$\begin{array}{r} 5,4\\ 5,4\\ 5,4\\ 5,4\\ 5,4\\ 5,4\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2$	$\begin{array}{c} 1, 4\\$
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 112	$ \begin{array}{r} 124 \\ 136,5 \\ 122 \\ 135 \\ 129,5 \\ 140 \\ 128 \\ 138,5 \\ 130 \\ 141 \\ 127 \\ 140 \\ 130 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 141 \\ 126 \\ 140,5 \\ 127 $	$\begin{array}{c} 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 0,8\\ 1\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8$	$ \begin{array}{c} 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 $	$\begin{array}{c} 0.8 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.8 \\$	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3$	$\begin{array}{c} 5,4\\ 5,4\\ 5,4\\ 5,4\\ 5,4\\ 5,4\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2$	$\begin{array}{c} 1, 4\\$
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 112 113	$\begin{array}{c} 124\\ 136,5\\ 122\\ 135\\ 129,5\\ 140\\ 128\\ 138,5\\ 130\\ 141\\ 127\\ 140\\ 130\\ 141\\ 127\\ 140\\ 129\\ 140\\ 129\\ 140\\ 129\\ 140\\ 129\\ 141\\ 126\\ 140,5\\ 127\\ \end{array}$	$\begin{array}{c} 0,8\\ 1\\ 0\\ 0,8\\ 1\\ 0\\ 0,8\\ 1\\ 0\\ 0,8\\ 1\\ 0\\ 0,8\\ 1\\ 0\\ 0,8\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 0.8 \\ 0$	$\begin{array}{c} 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0$	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3$	$\begin{array}{c} 5,4\\ 5,4\\ 5,4\\ 5,4\\ 5,4\\ 5,4\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2$	$\begin{array}{c} 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\ 1,4\\$
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 112 113 114	124 136,5 122 135 129,5 140 128 138,5 130 141 127 140 129 140 129 140 129 140 129 140 129 140 129 140 127 130 140 129 141 126 140,5 127 137	$\begin{array}{c} 0,8\\ 1\\ 0,8\\ 0\\ 0,8\\ 0\\ 0,8\\ 0\\ 0,8\\ 0\\ 0,8\\ 0\\ 0,8\\ 0\\ 0,8\\ 0\\ 0\\ 0,8\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 0.8 \\ 0$	$\begin{array}{c} 0.8 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.8 \\$	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3$	$\begin{array}{r} 5,4\\ 5,4\\ 5,4\\ 5,4\\ 5,4\\ 5,4\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2$	$\begin{array}{c} 1, 4\\$
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 112 113 114	$ \begin{array}{r} 124 \\ 136,5 \\ 122 \\ 135 \\ 129,5 \\ 140 \\ 128 \\ 138,5 \\ 130 \\ 141 \\ 127 \\ 140 \\ 130 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 140 \\ 129 \\ 141 \\ 126 \\ 140,5 \\ 127 \\ 137 \\ 125 \\ \end{array} $	$\begin{array}{c} 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 1\\ 0,8\\ 0,8\\ 1\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8\\ 0,8$	$ \begin{array}{c} 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 1\\ 0.8\\ 0.8\\ 1\\ 0.8\\ 0.8\\ 1\\ 0.8\\ 0.8\\ 1\\ 0.8\\ 0.8\\ 0.8\\ 1\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8$	$\begin{array}{c} 0.8 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.8 \\ 0.8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0.8 \\$	$\begin{array}{c} 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 2,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1$	$\begin{array}{r} 4,2\\ 4,2\\ 4,2\\ 4,2\\ 4,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3,2\\ 3$	$\begin{array}{c} 5,4\\ 5,4\\ 5,4\\ 5,4\\ 5,4\\ 5,4\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2\\ 6,2$	$\begin{array}{c} 1, 4\\$

116	137	1	1	0,8	1,5	4,2	6,2	1,4
117	126	0,8	0,8	1	1,5	4,2	6,2	1,4
118	137	1	0,8	1	1,5	4,2	6,2	1,4
119	125	0,8	1	1	1,5	4,2	6,2	1,4
120	137	1	1	1	1,5	4,2	6,2	1,4
121	127	0,8	0,8	0,8	2,5	4,2	6,2	1,4
122	137	1	0,8	0,8	2,5	4,2	6,2	1,4
123	126	0,8	1	0,8	2,5	4,2	6,2	1,4
124	136	1	1	0,8	2,5	4,2	6,2	1,4
125	126	0,8	0,8	1	2,5	4,2	6,2	1,4
126	138	1	0,8	1	2,5	4,2	6,2	1,4
127	125	0,8	1	1	2,5	4,2	6,2	1,4
128	137	1	1	1	2,5	4,2	6,2	1,4
129	146	1,2	0,8	0,9	1,8	4,2	6,2	1,2
130	109	0,6	0,8	0,9	1,8	4,2	6,2	1,2
131	130	0,9	1,4	0,9	1,8	4,2	6,2	1,2
132	135	0,9	0,4	0,9	1,8	4,2	6,2	1,2
133	130	0,9	0,8	1,2	1,8	4,2	6,2	1,2
134	131	0,9	0,8	0,6	1,8	4,2	6,2	1,2
135	131	0,9	0,8	0,9	3,5	4,2	6,2	1,2
136	132	0,9	0,8	0,9	0,5	4,2	6,2	1,2
137	128	0,9	0,8	0,9	1,8	6,2	6,2	1,2
138	144	0,9	0,8	0,9	1,8	1,4	6,2	1,2
139	133	0,9	0,8	0,9	1,8	4,2	7,4	1,2
140	128	0,9	0,8	0,9	1,8	4,2	4,6	1,2
141	132	0,9	0,8	0,9	1,8	4,2	6,2	2
142	131,5	0,9	0,8	0,9	1,8	4,2	6,2	0,6
143	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
144	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
145	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
146	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
147	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
148	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
149	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
150	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
151	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
152	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
153	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
154	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
155	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
156	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
157	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
158	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
159	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
160	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
161	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
162	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2
163	131,5	0,9	0,8	0,9	1,8	4,2	6,2	1,2

W celu weryfikacji badań komputerowych wykonanych w programie Experiment Planer przeprowadzono analizę statystyczną otrzymanych wyników.

Weryfikacja wyników została przeprowadzona przy wykorzystaniu testów Grubbs'a B oraz statystyki $B^{\pm 4}$, $B^{\pm 6}$, $B^{\pm 7}$, $B^{\pm 8}$, w których:

- 1. *Statystyka B-Grubbs'a* program nie stwierdził wystąpienia wyników obarczonych błędem grubym;
- 2. Statystyka B4 program nie stwierdził wystąpienia wyników obarczonych

błędem grubym;

3. Statystyka B6 - testuje błędy, których wyniki zostały zaprezentowane w tabeli 5.29.

Tab. 5.29. Wyniki testowania błędów według statystyki B6

Nr dośw.	min/max	Wynik	Wartość	Wartość krytyczna	Średnia z	Odchylenie
		pomiaru	testu B	testu B	pomiarow	standardowe
2-2	(min)	137	-1	-0,941	137,5	1
2-1	(max)	138	1	0,941	137,5	1
5-2	(min)	125	-1	-0,941	127	4
5-1	(max)	129	1	0,941	127	4
9-1	(min)	126	-1	-0,941	127,5	3
9-2	(max)	129	1	0,941	127,5	3
14-1	(min)	138	-1	-0,941	138,5	1
14-2	(max)	139	1	0,941	138,5	1
16-1	(min)	137	-1	-0,941	137,5	1
16-2	(max)	138	1	0,941	137,5	1
17-1	(min)	124	-1	-0,941	124,5	1
17-2	(max)	125	1	0,941	124,5	1
18-1	(min)	134	-1	-0,941	134,5	1
18-2	(max)	135	1	0,941	134,5	1
20-1	(min)	131	-1	-0,941	133,5	5
20-2	(max)	136	1	0,941	133,5	5
22-1	(min)	135	-1	-0,941	135,5	1
22-2	(max)	136	1	0,941	135,5	1
27-2	(min)	122	-1	-0,941	123	2
27-1	(max)	124	1	0,941	123	2
35-1	(min)	126	-1	-0,941	128,5	5
35-2	(max)	131	1	0,941	128,5	5
40-1	(min)	139	-1	-0,941	139,5	1
40-2	(max)	140	1	0,941	139,5	1
42-2	(min)	139	-1	-0,941	140	2
42-1	(max)	141	1	0,941	140	2
46-2	(min)	141	-1	-0,941	141,5	1
46-1	(max)	142	1	0,941	141,5	1
52-1	(min)	135	-1	-0,941	135,5	1
52-2	(max)	136	1	0,941	135,5	1
55-2	(min)	123	-1	-0,941	124	2
57.1	(max)	125	1	0,941	124	<u>Z</u>
57.2	(IIIII) (max)	120	-1	-0,941	128	4
60.1	(min)	130	1	0,941	120	4
60.2	(IIIII) (max)	134	-1	-0,941	130	4
65.1	(min)	138	1	0,941	127.5	4
65-2	(max)	127	-1	-0,941	127,5	1
67-1	(min)	126	-1	-0.941	127,5	1
67-2	(max)	120	-1	0.941	126,5	1
68-1	(min)	136	-1	-0.941	136.5	1
68-2	(max)	130	1	0.941	136,5	1
70-1	(min)	138	-1	-0.941	138,5	1
70-2	(max)	139	1	0.941	138,5	1
72-1	(min)	137	-1	-0.941	138,5	3
72-2	(max)	140	1	0.941	138,5	3
75-1	(min)	127	-1	-0.941	127.5	1
75-2	(max)	128	1	0,941	127,5	1
78-1	(min)	138	-1	-0,941	138.5	1
78-2	(max)	139	1	0,941	138.5	1
80-1	(min)	137	-1	-0,941	137.5	1
80-2	(max)	138	1	0,941	137,5	1
81-1	(min)	124	-1	-0,941	124,5	1
81-2	(max)	125	1	0,941	124,5	1

83-1	(min)	123	-1	-0,941	123,5	1
83-2	(max)	124	1	0,941	123,5	1
84-1	(min)	131	-1	-0,941	133	4
84-2	(max)	135	1	0,941	133	4
88-2	(min)	134	-1	-0,941	135	2
88-1	(max)	136	1	0,941	135	2
91-2	(min)	123	-1	-0,941	123,5	1
91-1	(max)	124	1	0,941	123,5	1
94-2	(min)	136	-1	-0,941	136,5	1
94-1	(max)	137	1	0,941	136,5	1
97-1	(min)	127	-1	-0,941	129,5	5
97-2	(max)	132	1	0,941	129,5	5
99-1	(min)	125	-1	-0,941	128	6
99-2	(max)	131	1	0,941	128	6
100-1	(min)	136	-1	-0,941	138,5	5
100-2	(max)	141	1	0,941	138,5	5
108-2	(min)	139	-1	-0,941	140	2
108-1	(max)	141	1	0,941	140	2
112-2	(min)	140	-1	-0,941	140,5	1
112-1	(max)	141	1	0,941	140,5	1
118-1	(min)	136	-1	-0,941	137	2
118-2	(max)	138	1	0,941	137	2
132-1	(min)	134	-1	-0,941	135	2
132-2	(max)	136	1	0,941	135	2
138-2	(min)	142	-1	-0,941	144	4
138-1	(max)	146	1	0,941	144	4
141-2	(min)	131	-1	-0,941	132	2
141-1	(max)	133	1	0,941	132	2
142-1	(min)	130	-1	-0,941	131,5	3
142-2	(max)	133	1	0,941	131,5	3

Statystyczny model matematyczny jest opisany przez wielomian złożony z logarytmów naturalnych siedmiu zmiennych wielkości mający następującą postać:

$v_{sr} = 128.42 + 51.09 \ln(d_1^{II}) - 4.88 \ln(d_2^{II}) - 0.26 \ln(d_3^{II}) + 0.29 \ln(h_1^{II})$ - 11.27 ln(H^{II}) + 12.85 ln(D^{II}) + 0.99 ln(SP^{II}). (5.3)

Model został oceniony przez program jako adekwatny do wyników pomiaru, dlatego też może on być dobrym narzędziem do szybkiego określania prędkości strugi na wylocie z głowicy przy określonych wartościach wejściowych parametrów geometrycznych w analizowanym zakresie ich zmienności.

W następnym kroku przeprowadzono analizę modelu matematycznego i wykonano jego analizę statystyczną a wartości współczynników regresji przedstawiono w tabeli 5.30.

Tab. 5.30.	Wartości	współczy	nników	równania	regresji

Symbol	Wartość współczynnika	Istotność współczynnika	Wartość testu t-Studenta	Wartośc krytyczna testu t-Studenta
(0)	128,425191216122784	Yes	66,88	1,976
А	51,0913565987165867	Yes	72,74	1,976
В	-4,88509266565977285	Yes	8,379	1,976
С	-0,265438995111936693	No	0,3779	1,976
D	0,297584374910077554	No	1,016	1,976
Е	-11,2759055452684756	Yes	23,62	1,976
F	12,8555027182758153	Yes	12,24	1,976
G	0,997573100975449822	Yes	2,187	1,976

Współczynnik korelacji:

Wartość średnia wyników badań komputerowych:131,63; Wartość średnia wyników modelu matematycznego: 131,63; Wartość współczynnika korelacji: R=0,9917; Wartość testu F: 1325,2481; Wartość krytyczna testu F: 2,069; Istotność funkcji regresji: istotna; Wariancja adekwatności: 182,545;

Liczba stopni swobody: 155;

Wariancja wyników pomiaru: 148;

Liczba stopni swobody: 163;

Wartość badana F:1,2971;

Krytyczna wartość Fkr:1,3099.

Fkr>F – a więc model matematyczny jest adekwatny do wyników pomiarów.

Na rys. 5.50 zaprezentowano przykładowe wyniki kształtowania się prędkości strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej przy zmiennych parametrach wejściowych (h_1^{II} – wysokości dyszy wlotowej oraz d_2^{II} – średnicy otworów bocznych) dla dwóch wybranych średnic dyszy wylotowej d_3^{II} równych 0,6 mm i 1,2 mm.

Rys. 5.50. Wpływ wybranych parametrów geometrycznych głowicy (h₁^{II}–wysokości dyszy wlotowej oraz d₂^{II}–średnicy otworów bocznych) dla dwóch wybranych średnic dyszy wylotowej (d₃^{II}=0,6 mm i 1,2 mm) na średnią prędkość strugi wodnej wypływającej z głowicy pulsacyjnej

Otrzymane wyniki średnich prędkości strugi wodnej wypływającej z głowicy wykazały, że najwyższe jej wartości uzyskuje przy najmniejszych średnicach otworów bocznych $d_2^{II}=0,4$ mm. Zauważalny jest również nieznaczny wpływ wysokości dyszy wlotowej h_1^{II} , dla której w miarę jej zmniejszania maleje również średnia prędkość strugi. Najniższą wartość prędkości strugi wodnej wypływającej z głowicy uzyskano przy $h_1^{II}=0,5$ mm oraz $d_2^{II}=0,4$ mm. Nie zaobserwowano znacznego wpływu średnicy dyszy wylotowej d_3^{II} na prędkość wypływającej z głowicy strugi.

Na kolejnej parze rysunków 5.51 przedstawiono przykładowe wyniki wpływu wysokości komory wirowej H^{II} oraz średnicy komory wirowej D^{II}, dla dwóch wybranych średnic otworów bocznych d_2^{II} (0,4 mm i 1,4 mm) na średnią prędkość strugi wodnej wypływającej z głowicy.

Rys. 5.51. Wpływ wybranych parametrów geometrycznych głowicy (H^{II}–wysokości komory wirowej oraz D^{II}–średnicy komory wirowej) dla dwóch wybranych średnic otworów bocznych (d₂^{II}=0,4 mm i 1,4 mm) na średnią prędkość strugi wodnej wypływającej z głowicy pulsacyjnej

Najniższą prędkość strugi wypływającej z głowicy (około 137 m/s) uzyskano przy najmniejszej analizowanej średnicy komory wirowej D^{II} =4,6 mm i największej wysokości komory wirowej H^{II} =4,6 mm oraz średnicy otworów bocznych d_2^{II} =1,4 mm. Struga uzyskuje prędkość najwyższą przy średnicy otworów bocznych d_2^{II} =0,4 mm oraz średnicy komory wirowej D^{II} =7,4 mm i wysokości komory wirowej H^{II} =1,4 mm. Zaobserwowano też, że dla najmniejszych średnic otworów bocznych uzyskuje się około 4 % wyższą prędkość strugi wodnej, w stosunku do największych średnic tych otworów.

Na kolejnym rysunku 5.52 zaprezentowano przykładowe wyniki porównania wpływu wybranych parametrów (średnicy otworów bocznych d_2^{II} oraz średnicy dyszy wlotowej d_1^{II}) na średnią prędkość strugi wodnej przy dwóch wybranych wysokościach dyszy wlotowej h_1^{II} (0,5 mm i 3,5 mm).

Rys. 5.52. Wpływ wybranych parametrów geometrycznych głowicy (d₂^{II}–średnicy otworów bocznych oraz d₁^{II}–średnicy dyszy wlotowej) dla dwóch wybranych wysokości dyszy wylotowej (h₁^{II}=0,5 mm i 3,5 mm) na średnią prędkość strugi wodnej wypływającej z głowicy pulsacyjnej

Nie zaobserwowano tu znacznego wpływu wysokości dyszy wlotowej h_1^{II} na prędkość strugi wodnej, natomiast największy wpływ na tą prędkość wykazuje średnica tej dyszy d_1^{II} wywołując największe prędkości strugi (około 150 m/s) dla średnicy równej 1,2 mm – czyli największej z analizowanych. Podobnie jak we wcześniejszych analizach (rys. 5.51) najwyższe prędkości strugi uzyskuje się przy najmniejszych średnicach otworów bocznych.

Kolejna para rysunków (rys. 5.53) to porównanie wpływu średnicy otworów bocznych d_2^{II} oraz szerokości powierzchni pierścieniowych komory wirowej SP^{II} na średnią prędkość wypływającej strugi wodnej przy dwóch wybranych wysokościach komory wirowej H^{II} (1,4 mm i 6,2 mm).

Rys. 5.53. Wpływ wybranych parametrów geometrycznych głowicy (d₂^{II}–średnicy otworów bocznych oraz SP^{II}–szerokości powierzchni pierścieniowych komory wirowej) dla dwóch wybranych wysokości komory wirowej (H^{II}=1,4 mm i 6,2 mm) na średnią prędkość strugi wodnej wypływającej z głowicy pulsacyjnej

Analiza otrzymanych wyników wykazała około 10 % wzrost prędkości strugi wodnej wypływającej z głowicy dla wysokości H^{II}=6,2 mm w stosunku do najmniejszej jej wysokości H^{II}=1,4 mm. Podobnie jak w dwóch wcześniejszych analizach zwiększenie średnicy otworów bocznych d₂^{II} powoduje spadek prędkości strugi. Natomiast wzrost szerokości powierzchni pierścieniowych komory wirowej SP^{II} wpływa nieznacznie na wzrost analizowanej prędkości strugi wodnej.

Na ostatniej zaprezentowanej parze rysunków (rys. 5.54) przedstawiono przykładowe kształtowanie się średniej prędkości strugi w zależności od średnicy otworów bocznych d_2^{II} oraz wysokości komory wirowej H^{II} przy dwóch wybranych średnicach komory wirowej D^{II} (4,6 mm i 7,4 mm).

Zarówno wzrost średnicy otworów bocznych d^{2^{II}} oraz wzrost wysokości komory wirowej H^{II} powodują spadek średniej prędkości strugi wodnej wypływającej z głowicy osiągając jej najwyższą wartość 165 m/s przy średnicy komory wirowej D^{II}=7,4 mm, natomiast najniższą wartość tej prędkości 135 m/s uzyskuje dla średnicy komory wirowej D^{II}=4,6 mm.

Rys. 5.54. Wpływ wybranych parametrów geometrycznych głowicy (d₂^{II}–średnicy otworów bocznych oraz H^{II}–wysokości komory wirowej) dla dwóch wybranych średnic komory wirowej (D^{II}=4,6 mm i 7,4 mm) na średnią prędkość strugi wodnej wypływającej z głowicy pulsacyjnej

Analiza wyników badań wykazała adekwatność modelu dla analizowanego czynnika wyjściowego w postaci maksymalnej prędkości wypływu z samowzbudnej głowicy pulsacyjnej. W tabeli 5.31 zaprezentowano wartości parametrów modelu głowicy pulsacyjnej wybranego na podstawie badań komputerowych, dla których występowała największa prędkość strugi na wyjściu z głowicy.

 Tab. 5.31.
 Wyniki badań komputerowych przeprowadzonych dla głowicy pulsacyjnej z dwoma otworami bocznymi prostopadłymi do komory wirowej w aspekcie maksymalizacji prędkości strugi wodnej

Oznaczenie	Wartość	Jednostka	Nazwa parametru geometrycznego
SP	2	mm	szerokość powierzchni pierścieniowych komory wirowej
D ^{II}	7,4	mm	średnica komory wirowej
H^{II}	1,4	mm	wysokość komory wirowej
$h_1{}^{II}$	3,5	mm	wysokość dyszy wlotowej
d_3^{II}	0,6	mm	średnica dyszy wylotowej
d_2^{II}	0,4	mm	średnica otworów bocznych
d_1^{II}	1,2	mm	średnica dyszy wlotowej

Wykonując symulację przepływu strugi wodnej o ciśnieniu 15 MPa przez model samowzbudnej głowicy pulsacyjnej o wymiarach geometrycznych przedstawionych w tabeli 5.31, uzyskano wyniki zapewniające największą prędkość strugi na wylocie z takiej głowicy. Ta prędkość strugi wodnej, określona według programu Solid Works Flow Simulation wynosi 155,9 m/s, natomiast uzyskana z planu eksperymentu (równanie 5.3) równa się 165,35±3,82 m/s. Różnica pomiędzy tymi wynikami w całym zakresie badanych parametrów, zawiera się w granicach 5,62÷13,27 m/s, co stanowi zaledwie 3,4÷8 %.

Rys. 5.55. Rozkład wektorów prędkości dla modelu głowicy pulsacyjnej wskazanego przez program Experiment Planer pod względem zapewnienia najwyższej prędkości wypływu strugi wodnej

Niestety w takich warunkach nie występuje zasysanie czynnika zewnętrznego przez otwory boczne, dlatego nie tworzą się pierścienie wirowe wewnątrz komory wirowej (rys. 5.55), co jest warunkiem zapewnienia efektywnej pracy takiej głowicy pulsacyjnej w warunkach rzeczywistych. Z powyższych względów niezbędne jest prowadzenie kolejnych badań komputerowych i analiz uwzględniających konieczność takiego zasysania czynnika zewnętrznego przez otwory boczne, aby doprowadzić do powstawania w komorze wirowej odpowiednich zawirowań wody

5.3.4. Wpływ geometrii samowzbudnej głowicy pulsacyjnej na zasysanie czynnika zewnętrznego przez otwory boczne

W kolejnym etapie badań symulacyjnych poszukiwano rozwiązania, które zapewni zarówno wysokie prędkości przepływu strugi wodnej, powodujące zasysanie czynnika zewnętrznego przez otwory boczne, przebiegające z określoną prędkością, jak i odpowiednio korzystny kształt zawirowań wodnych w komorze wirowej. Symulacje głowicy przeznaczonej od obróbki powierzchni przeprowadzono w programie Solid Works FlowSimulation.

Dla znalezienia rozwiązania w programie Experiment Planer opracowano plan zapewniający największą prędkość przepływu wody w otworach bocznych samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni. Badania wykonano przy takim samym zakresie zmiennych jak dla badanej prędkości końcowej na wyjściu z głowicy, przyjmując stałe: wartości ciśnienia wody (15 MPa) i kąta natarcia komory wirowej (120°) oraz relatywną wysokość dyszy wylotowej jako warunek $h_3^{II}=3 d_3^{II}$.

Przy takim samym zakresie zmiennych jak dla badanej prędkości końcowej zastosowano tę samą macierz planu eksperymentu przy badaniu wpływu parametrów geometrycznych na prędkość czynnika w otworach bocznych, której widok w postaci zakodowanej i odkodowanej przedstawiono w tab. 5.27.

Badania przeprowadzono zgodnie z wcześniejszą macierzą planu tab. 5.27 dla S = 7 (czynniki wejściowe), stosując dwa powtórzenia r = 2 dla poziomu ufności p = 95%. W tabeli 5.32 zaprezentowano uzyskane wyniki pomiarów na podstawie symulacji komputerowych. Podobnie jak w odniesieniu do tab. 5.23, także i w poniższej tab. 5.32 wyniki prędkości strugi wodnej, w których nie występowało zasysanie czynnika zewnętrznego przez otwory boczne, oznaczono kolorem czerwonym.

-	Srednia prędkość w otworach	d1 ^{II}	d2 ^{II}	d3 ^{II}	h1 ^{II}	HΠ	DII	SPII
Lp	bocznych v _{boki} n	r 1	r 1		-	r 1	r 1	Г. 1
1	[m/s]						[mm]	
2	-23,3	0,8	0,8	0,8	1,5	3,2	5.4	1
2	-32	1	0,8	0,8	1,5	3,2	5.4	1
3	-20	0,0	1	0,8	1,5	3,2	5.4	1
4	-46,5	0.8	0.8	0,0	1,5	3.2	5.4	1
6	-25	0,0	0,8	1	1,5	3,2	5.4	1
7	7	0.8	1	1	1,5	3.2	54	1
8	-21.5	1	1	1	1,5	3.2	5.4	1
9	-24	0.8	0.8	0.8	2.5	3.2	5.4	1
10	-52,5	1	0,8	0,8	2,5	3,2	5,4	1
11	-20,2	0,8	1	0,8	2,5	3,2	5,4	1
12	-49	1	1	0,8	2,5	3,2	5,4	1
13	3	0,8	0,8	1	2,5	3,2	5,4	1
14	-25,5	1	0,8	1	2,5	3,2	5,4	1
15	6,6	0,8	1	1	2,5	3,2	5,4	1
16	-22	1	1	1	2,5	3,2	5,4	1
17	-25	0,8	0,8	0,8	1,5	4,2	5,4	1
18	-54	1	0,8	0,8	1,5	4,2	5,4	1
19	-21,4	0,8	1	0,8	1,5	4,2	5,4	1
20	-50	1	1	0,8	1,5	4,2	5,4	1
21	1,8	0,8	0,8	1	1,5	4,2	5,4	1
22	-27	1	0,8	1	1,5	4,2	5,4	1
23	5,5	0,8	1	1	1,5	4,2	5,4	1
24	-23	1	1	1	1,5	4,2	5,4	1
25	-25	0,8	0,8	0,8	2,5	4,2	5,4	1
26	-54	1	0,8	0,8	2,5	4,2	5,4	1
27	-21,5	0,8	1	0,8	2,5	4,2	5,4	1
28	-30			0,8	2,5	4,2	5,4	1
29	1,4	0,8	0,8	1	2,5	4,2	5,4	1
30	-27	0.8	0,0	1	2,5	4,2	5.4	1
32		0,8	1	1	2,5	4,2	5.4	1
33	-23,5	0.8	0.8	0.8	1.5	3.2	62	1
34	-50.5	1	0,8	0,8	1,5	3.2	6.2	1
35	-17.5	0.8	1	0.8	1,5	3.2	6.2	1
36	-46.5	1	1	0.8	1.5	3.2	6.2	1
37	5.5	0.8	0.8	1	1.5	3.2	6.2	1
38	-23.5	1	0.8	1	1.5	3.2	6.2	1
39	9	0,8	1	1	1,5	3,2	6,2	1
40	-19,5	1	1	1	1,5	3,2	6,2	1
41	-22	0,8	0,8	0,8	2,5	3,2	6,2	1
42	-51	1	0,8	0,8	2,5	3,2	6,2	1
43	-18	0,8	1	0,8	2,5	3,2	6,2	1
44	-47	1	1	0,8	2,5	3,2	6,2	1
45	5	0,8	0,8	1	2,5	3,2	6,2	1
46	-24	1	0,8	1	2,5	3,2	6,2	1
47	9	0,8	1	1	2,5	3,2	6,2	1
48	-20	1	1	1	2,5	3,2	6,2	1

Tab. 5.32. Wyniki eksperymentu dla prędkości badanej na wyjściu głowicy

49	-23	0.8	0.8	0.8	1.5	4.2	6.2	1
50	-52	1	0.8	0.8	1.5	4.2	6.2	1
51	10.5	0.0	1	0,0	1,5	4.2	6.2	1
51	-19,5	0,8	1	0,8	1,5	4,2	0,2	1
52	-48	1	1	0,8	1,5	4,2	6,2	1
53	4	0,8	0,8	1	1,5	4,2	6,2	1
54	-25	1	0,8	1	1,5	4,2	6,2	1
55	7.5	0.8	1	1	1.5	4.2	6.2	1
56	-21	1	1	1	15	42	6.2	1
57	23	0.8	0.8	0.9	2.5	4.2	6.2	1
57	-23	0,0	0,0	0,0	2,5	4,2	0,2	1
58	-52	1	0,8	0,8	2,5	4,2	6,2	1
59	-20	0,8	1	0,8	2,5	4,2	6,2	1
60	-48,5	1	1	0,8	2,5	4,2	6,2	1
61	3.5	0.8	0.8	1	2.5	4.2	6.2	1
62	-25	1	0.8	1	2.5	4.2	6.2	1
63	7	0.8	1	1	2.5	4.2	6.2	1
03	/	0,0	1	1	2,5	4,2	0,2	1
64	-21	1	1	1	2,5	4,2	6,2	1
65	-22	0,8	0,8	0,8	1,5	3,2	5,4	1,4
66	-51,5	1	0,8	0,8	1,5	3,2	5,4	1,4
67	-19	0,8	1	0,8	1,5	3,2	5,4	1,4
68	-47.5	1	1	0.8	1.5	3.2	5.4	1.4
69	4 5	0.8	0.8	1	15	3.2	54	14
70	24.5	1	0,0	1	1,5	3,2	5,7	1, 1
70	-24,3	1	0,0	1	1,3	3,2	5,4	1,4
/1	8,5	0,8	1	1	1,5	3,2	5,4	1,4
72	-20,5	1	1	1	1,5	3,2	5,4	1,4
73	-23	0,8	0,8	0,8	2,5	3,2	5,4	1,4
74	-52	1	0,8	0,8	2,5	3,2	5,4	1,4
75	-19	0.8	1	0.8	2.5	3.2	5.4	1.4
76	-48	1	1	0.8	2.5	3.2	5.4	14
77	1	0.8	0.8	1	2,5	2.2	5.4	1.4
70	4	0,0	0,8	1	2,5	3,2	5,4	1,4
/8	-24,5	1	0,8	1	2,5	3,2	5,4	1,4
79	8	0,8	1	1	2,5	3,2	5,4	1,4
80	-21	1	1	1	2,5	3,2	5,4	1,4
81	-23,5	0,8	0,8	0,8	1,5	4,2	5,4	1,4
82	-53	1	0.8	0.8	1.5	4.2	5.4	1.4
83	-20	0.8	1	0.8	1.5	4.2	54	14
84	40	1	1	0.8	1,5	4.2	5.4	1.4
04	-49	1	1	0,0	1,5	4,2	5.4	1,4
85	3	0,8	0,8	1	1,5	4,2	5,4	1,4
86	-26	1	0,8	1	1,5	4,2	5,4	1,4
87	6,5	0,8	1	1	1,5	4,2	5,4	1,4
88	-22	1	1	1	1,5	4,2	5,4	1,4
89	-24	0,8	0,8	0,8	2,5	4,2	5,4	1,4
90	-53	1	0.8	0.8	2.5	4.2	5.4	1.4
91	-20	0.8	1	0.8	2.5	4.2	54	1.4
02	-20	1	1	0,0	2,5	4.2	5.4	1,4
92	-49,5	1	1	0,8	2,5	4,2	5,4	1,4
93	2,5	0,8	0,8	1	2,5	4,2	5,4	1,4
94	-26	1	0,8	1	2,5	4,2	5,4	1,4
95	6,5	0,8	1	1	2,5	4,2	5,4	1,4
96	-22,5	1	1	1	2,5	4,2	5,4	1,4
97	-20	0.8	0.8	0.8	1.5	3.2	6.2	1.4
98	-49.5	1	0.8	0.8	1.5	3.2	6.2	14
00	_16.5	0.8	1	0,0	1,5	3.2	6.2	1 /
33	-10,5	0,0	1	0,0	1,5	3,2	0,2	1,4
100	-45,5	l	l	0,8	1,5	3,2	6,2	1,4
101	7	0,8	0,8	1	1,5	3,2	6,2	1,4
102	-22	1	0,8	1	1,5	3,2	6,2	1,4
103	10,5	0,8	1	1	1,5	3,2	6,2	1,4
104	-18.5	1	1	1	1.5	3.2	6.2	1.4
105	-20	0.8	0.8	0.8	2.5	3.2	62	14
106		1	0.8	0.8	2,5	3.2	6.2	1.4
100	-+0	1	1	0,0	2,5	3,2	6.2	1,4
107	-1/	0,8	1	0,8	2,3	3,2	0,2	1,4
108	-46	1	1	0,8	2,5	3,2	6,2	1,4
109	6	0,8	0,8	1	2,5	3,2	6,2	1,4
110	-22,5	1	0,8	1	2,5	3,2	6,2	1,4
111	10	0,8	1	1	2,5	3,2	6,2	1,4
112	-19	1	1	1	2.5	3.2	6.2	14
	*/	-	-	-	_,_	· · · ·	~ , -	- , ·

113	-21,5	0,8	0,8	0,8	1,5	4,2	6,2	1,4
114	-51	1	0,8	0,8	1,5	4,2	6,2	1,4
115	-18	0,8	1	0,8	1,5	4,2	6,2	1,4
116	-47	1	1	0,8	1,5	4,2	6,2	1,4
117	5	0,8	0,8	1	1,5	4,2	6,2	1,4
118	-23,5	1	0,8	1	1,5	4,2	6,2	1,4
119	8,5	0,8	1	1	1,5	4,2	6,2	1,4
120	-20	1	1	1	1,5	4,2	6,2	1,4
121	-22,5	0,8	0,8	0,8	2,5	4,2	6,2	1,4
122	-51	1	0,8	0,8	2,5	4,2	6,2	1,4
123	-18	0,8	1	0,8	2,5	4,2	6,2	1,4
124	-49	1	1	0,8	2,5	4,2	6,2	1,4
125	4,5	0,8	0,8	1	2,5	4,2	6,2	1,4
126	-24	1	0,8	1	2,5	4,2	6,2	1,4
127	8,5	0,8	1	1	2,5	4,2	6,2	1,4
128	-20	1	1	1	2,5	4,2	6,2	1,4
129	-60,5	1.2	0.8	0.9	1.8	4.2	6.2	1.2
130	29	0.6	0.8	0.9	1.8	4.2	6.2	1.2
131	-14,5	0,9	1,4	0,9	1.8	4,2	6,2	1,2
132	-35	0,9	0,4	0,9	1.8	4,2	6,2	1,2
133	11,5	0,9	0,8	1,2	1.8	4,2	6,2	1,2
134	-72,5	0,9	0,8	0,6	1.8	4,2	6,2	1,2
135	-24.5	0.9	0.8	0.9	3.5	4.2	6.2	1.2
136	-22	0.9	0.8	0.9	0.5	4.2	6.2	1.2
137	-25.5	0.9	0.8	0.9	1.8	6.2	6.2	1.2
138	-17	0.9	0.8	0.9	1.8	1.4	6.2	1.2
139	-20,5	0.9	0.8	0.9	1.8	4.2	7.4	1.2
140	-27.5	0.9	0.8	0.9	1.8	4.2	4.6	1.2
141	-21.5	0.9	0.8	0.9	1.8	4.2	6.2	2
142	-25	0.9	0.8	0.9	1.8	4.2	6.2	0.6
143	-23	0.9	0.8	0.9	1.8	4.2	6.2	1.2
144	-23	0.9	0.8	0.9	1.8	4.2	6.2	1.2
145	-23	0,9	0,8	0,9	1.8	4,2	6,2	1,2
146	-23	0.9	0.8	0.9	1.8	4.2	6.2	1.2
147	-23	0,9	0,8	0,9	1.8	4,2	6,2	1,2
148	-23	0,9	0,8	0,9	1,8	4,2	6,2	1,2
149	-23	0,9	0,8	0,9	1,8	4,2	6,2	1,2
150	-23	0,9	0,8	0,9	1,8	4,2	6,2	1,2
151	-23	0,9	0,8	0,9	1,8	4,2	6,2	1,2
152	-23	0,9	0,8	0,9	1,8	4,2	6,2	1,2
153	-23	0,9	0,8	0,9	1,8	4,2	6,2	1,2
154	-23	0,9	0,8	0,9	1,8	4,2	6,2	1,2
155	-23	0,9	0,8	0,9	1,8	4,2	6,2	1,2
156	-23	0,9	0,8	0,9	1.8	4,2	6,2	1,2
157	-23	0,9	0,8	0,9	1,8	4,2	6,2	1,2
158	-23	0,9	0,8	0,9	1,8	4,2	6,2	1,2
159	-23	0.9	0.8	0.9	1.8	4,2	6,2	1,2
160	-23	0.9	0.8	0.9	1.8	4,2	6,2	1,2
161	-23	0.9	0.8	0.9	1.8	4,2	6,2	1,2
162	-23	0,9	0,8	0,9	1,8	4,2	6,2	1,2
163	-23	0,9	0,8	0,9	1,8	4,2	6,2	1,2

W celu weryfikacji badań komputerowych wykonanych w programie Experiment Planer przeprowadzono analizę statystyczną otrzymanych wyników.

Weryfikacja wyników została przeprowadzona przy wykorzystaniu testów Grubbs'a B oraz statystyki $B^{\pm 4}$, $B^{\pm 6}$, $B^{\pm 7}$, $B^{\pm 8}$ w których:

1. *Statystyka B-Grubbs'a* - program nie stwierdził wystąpienia wyników obarczonych błędem grubym;

2. *Statystyka B4* - program nie stwierdził wystąpienia wyników obarczonych błędem grubym;

|--|

Tab. 5.33.Testowanie błędów według statystyki B6

Nr dośw.	min/max	Wynik pomiaru	Wartość testu B	Wartość krytyczna testu B	Średnia z pomiarów	Odchylenie standardowe
1-2	(min)	-24	-1	-0,941	-23,5	1
1-1	(max)	-23	1	0,941	-23,5	1
4-2	(min)	-49	-1	-0,941	-48,5	1
4-1	(max)	-48	1	0,941	-48,5	1
8-2	(min)	-22	-1	-0,941	-21,5	1
8-1	(max)	-21	1	0,941	-21,5	1
10-2	(min)	-53	-1	-0,941	-52,5	1
10-1	(max)	-52	1	0,941	-52,5	1
14-2	(min)	-26	-1	-0,941	-25,5	1
14-1	(max)	-25	1	0,941	-25,5	1
23-1	(min)	5	-1	-0,941	5,5	1
23-2	(max)	6	1	0,941	5,5	1
27-2	(min)	-22	-1	-0,941	-21,5	1
27-1	(max)	-21	1	0,941	-21,5	1
32-2	(min)	-24	-1	-0,941	-23,5	1
32-1	(max)	-23	1	0,941	-23,5	1
34-2	(min)	-51	-1	-0,941	-50,5	1
34-1	(max)	-50	1	0,941	-50,5	1
35-2	(min)	-18	-1	-0,941	-17,5	1
35-1	(max)	-17	1	0,941	-17,5	1
36-2	(min)	-47	-1	-0,941	-46,5	1
36-1	(max)	-46	1	0,941	-46,5	1
37-2	(min)	5	-1	-0,941	5,5	1
37-1	(max)	6	1	0,941	5,5	1
38-2	(min)	-24	-1	-0,941	-23,5	1
38-1	(max)	-23	1	0,941	-23,5	1
40-2	(min)	-20	-1	-0,941	-19,5	1
40-1	(max)	-19	1	0,941	-19,5	1
51-2	(min)	-20	-1	-0,941	-19,5	1
51-1	(max)	-19	1	0,941	-19,5	1
55-1	(min)	7	-1	-0,941	7,5	1
55-2	(max)	8	1	0,941	7,5	1
60-2	(min)	-49	-1	-0,941	-48,5	1
60-1	(max)	-48	1	0,941	-48,5	1
61-1	(min)	3	-1	-0,941	3,5	1
61-2	(max)	4	1	0,941	3,5	1
66-2	(min)	-52	-1	-0,941	-51,5	1
66-1	(max)	-51	1	0,941	-51,5	1
68-2	(min)	-48	-1	-0,941	-47,5	1
68-1	(max)	-4 /	1	0,941	-47,5	1
69-1	(min)	4	-1	-0,941	4,5	1
69-2	(max)	5	1	0,941	4,5	1
70-2	(min)	-25	-1	-0,941	-24,5	1
/0-1	(max)	-24	1	0,941	-24,5	1
71-2	(min)	8	-1	-0,941	8,5	1
/1-1	(max)	9	1	0,941	<u> </u>	1
72-2	(min)	-21	-1	-0,941	-20,5	1
72-1	(max)	-20	1	0,941	-20,5	1
/8-2	(min)	-25	-1	-0,941	-24,5	1
/ 8-1	(min)	-24	1	0,941	-24,3	1
<u> </u>	(min)	-24	-1	-0,941	-23,5	1
01-2	(min)	-23	1	0,941	-23,3	1
0/-1	(IIIII) (may)	7	-1	-0,941	6.5	1
ð/-2	(max)	/	1	0,941	0,3	1

92-2	(min)	-50	-1	-0,941	-49,5	1
92-1	(max)	-49	1	0,941	-49,5	1
93-2	(min)	2	-1	-0,941	2,5	1
93-1	(max)	3	1	0,941	2,5	1
95-2	(min)	6	-1	-0,941	6,5	1
95-1	(max)	7	1	0,941	6,5	1
96-2	(min)	-23	-1	-0,941	-22,5	1
96-1	(max)	-22	1	0,941	-22,5	1
98-2	(min)	-50	-1	-0,941	-49,5	1
98-1	(max)	-49	1	0,941	-49,5	1
99-2	(min)	-17	-1	-0,941	-16,5	1
99-1	(max)	-16	1	0,941	-16,5	1
100-2	(min)	-46	-1	-0,941	-45,5	1
100-1	(max)	-45	1	0,941	-45,5	1
103-1	(min)	10	-1	-0,941	10,5	1
103-2	(max)	11	1	0,941	10,5	1
104-2	(min)	-19	-1	-0,941	-18,5	1
104-1	(max)	-18	1	0,941	-18,5	1
110-2	(min)	-23	-1	-0,941	-22,5	1
110-1	(max)	-22	1	0,941	-22,5	1
113-2	(min)	-22	-1	-0,941	-21,5	1
113-1	(max)	-21	1	0,941	-21,5	1
118-2	(min)	-24	-1	-0,941	-23,5	1
118-1	(max)	-23	1	0,941	-23,5	1
119-2	(min)	8	-1	-0,941	8,5	1
119-1	(max)	9	1	0,941	8,5	1
121-2	(min)	-23	-1	-0,941	-22,5	1
121-1	(max)	-22	1	0,941	-22,5	1
125-1	(min)	4	-1	-0,941	4,5	1
125-2	(max)	5	1	0,941	4,5	1
127-1	(min)	8	-1	-0,941	8,5	1
127-2	(max)	9	1	0,941	8,5	1
129-2	(min)	-61	-1	-0,941	-60,5	1
129-1	(max)	-60	1	0,941	-60,5	1
131-2	(min)	-15	-1	-0,941	-14,5	1
131-1	(max)	-14	1	0,941	-14,5	1
133-1	(min)	11	-1	-0,941	11,5	1
133-2	(max)	12	1	0,941	11,5	1
134-2	(min)	-73	-1	-0,941	-72,5	1
134-1	(max)	-72	1	0,941	-72,5	1
135-2	(min)	-25	-1	-0,941	-24,5	1
135-1	(max)	-24	1	0,941	-24,5	1
137-2	(min)	-26	-1	-0,941	-25,5	1
137-1	(max)	-25	1	0,941	-25,5	1
139-2	(min)	-21	-1	-0,941	-20,5	1
139-1	(max)	-20	1	0,941	-20,5	1
140-2	(min)	-28	-1	-0,941	-27,5	1
140-1	(max)	-27	1	0,941	-27,5	1
141-2	(min)	-22	-1	-0,941	-21,5	1
141-1	(max)	-21	1	0,941	-21,5	1

Statystyczny model matematyczny takiej głowicy jest opisany przez wielomian złożony z logarytmów naturalnych siedmiu zmiennych wielkości w następującej postaci:

$$v_{boki}^{II} = -40.91 - 129.16ln(d_1^{II}) + 16.13ln(d_2^{II}) + 120.70ln(d_3^{II}) - 0.83ln(h_1^{II}) - 5.45ln(H^{II}) + 15.36ln(D^{II}) + 3.27ln(SP^{II}).$$
(5.4)

Prędkość ze znakiem ujemnym oznacza, że przepływ czynnika zewnętrznego odbywa się w kierunku przeciwnym, czyli wypływa a nie zasysa go przez otwory boczne głowicy. Ujemne wartości licznych wielkości zmiennych występujących w powyższym wielomianie są spowodowane przez niemożliwości zasysania czynnika zewnętrznego przez otwory boczne, dlatego przeważająca ich ilość w tab. 5.32 została zaczerwieniona. Model został oceniony przez program jako adekwatny do wyników pomiaru, dlatego też może stać się dobrym narzędziem do szybkiego i sprawnego określania kierunku przepływu czynnika przed otwory boczne głowicy a tym samym określania czy przy zadanych parametrach geometrycznych głowicy istnieją sprzyjające warunki do wytwarzania impulsów hydrodynamicznych w strudze wodnej wypływającej z głowicy. W przypadku gdy po przeprowadzeniu stosownych obliczeń zgodnie z otrzymanym modelem (5.4) uzyskana wartość prędkości przepływającego czynnika przez otwory boczne będzie wartością dodatnią to oznaczać będzie, że przy takich parametrach geometrycznych czynników wejściowych istnieją sprzyjające warunki do zasysania czynnika przez otwory boczne, które intensywnie wpływają na kształt pierścieni wirowych powstających wewnątrz komory, a tym samym występują dogodne warunki do wytwarzania hydraulicznych impulsów na wylocie z głowicy.

W następnym kroku przeprowadzono analizę modelu i wykonano jego analizę statystyczną. W tabeli 5.34 zaprezentowano wartości współczynników równania regresji.

Symbol	Wartość współczynnika	Istotność współczynnika	Wartość testu t- Studenta	Wartośc krytyczna testu t-Studenta
(0)	-40,9142333916386048	Yes	50,83	1,976
А	-129,162829963771536	Yes	438,7	1,976
В	16,1399459422165792	Yes	66,05	1,976
С	120,703449549322624	Yes	410	1,976
D	-0,832155156187920128	Yes	6,777	1,976
E	-5,45019741870641792	Yes	27,24	1,976
F	15,3646133285291168	Yes	34,91	1,976
G	3,27285830414240384	Yes	17,12	1,976

Tab. 5.34. Wartości współczynników równania regresji

Współczynnik korelacji:

Wartość średnia wyników badań komputerowych -22,18;

Wartość średnia wyników modelu matematycznego: -22,18;

Wartość współczynnika korelacji: R=0,9999;

Wartość testu F: 81250,5088;

Wartość krytyczna testu F: 2,069;

Istotność funkcji regresji: istotna;

Wariancja adekwatności: 31,9043;

Liczba stopni swobody: 155;

Wariancja wyników pomiaru: 26;

Liczba stopni swobody: 163;

Wartość badana F: 1,2904;

Krytyczna wartość Fkr: 1,31.

Fkr>F – a więc model matematyczny jest adekwatny do wyników pomiarów.

Na rys. 5.56 zaprezentowano przykładowe wyniki kształtowania się prędkości strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej przy określonych parametrach wejściowych.

Rys. 5.56. Wpływ wybranych parametrów geometrycznych głowicy (d₁^{II}–średnicy dyszy włotowej oraz d₃^{II}–średnicy dyszy wylotowej) dla dwóch wybranych średnic otworów bocznych (d₂^{II}=0,4 mm i 1,4 mm) na średnią prędkość strugi wodnej przepływającej przez otwory boczne głowicy pulsacyjnej

Wzrost średnicy wylotowej d_3^{II} oraz zmniejszanie się średnicy dyszy wlotowej d_1^{II} powodują wzrost średniej prędkości zasysania czynnika przez otwory boczne uzyskując najwyższą jej wartość (około 75 m/s) dla średnicy otworów bocznych równej 1,4 mm. Natomiast dla dużych średnic dyszy wlotowej d_1^{II} oraz małych średnic dyszy wylotowej następuje wypychanie czynnika przez otwory boczne głowicy.

Na kolejnym rys. 5.57 zobrazowano wyraźny spadek prędkości czynnika zewnętrznego, zasysanego przez otwory boczne wynikający ze zwiększania się średnicy dyszy wlotowej d_1^{II} oraz zmniejszającej się średnicy otworów bocznych d_2^{II} .

Rys. 5.57. Wpływ wybranych parametrów geometrycznych głowicy (d₁^{II}–średnicy dyszy wlotowej oraz d₂^{II}–średnicy otworów bocznych) dla dwóch wybranych średnic komory wirowej (D^{II}=4,6 mm i 7,4 mm) na średnią prędkość strugi wodnej przepływającej przez otwory boczne głowicy pulsacyjnej

Jedynie przy niewielkich średnicach dyszy wlotowej d_1^{II} (0,4÷0,9 mm) występuje zasysanie czynnika przez otwory boczne, natomiast przy większych jej średnicach czynnik ten zostaje wypychany przez otwory boczne.

Na ostatniej parze rys. 5.58 a i b zaprezentowano sytuację, w której przy określonych wartościach parametrów wejściowych występuje wypychanie czynnika na zewnątrz przez otwory boczne.

Rys. 5.58. Wpływ wybranych parametrów geometrycznych głowicy: a) D^{II}–średnicy komory wirowej oraz H^{II}–wysokości komory wirowej dla dwóch wybranych wysokości dyszy wlotowej (h₁^{II}=0,5 mm i 3,5 mm); b) D^{II}–średnicy komory wirowej oraz d₃^{II}–średnicy dyszy wylotowej dla dwóch wybranych wysokości komory wirowej (H^{II}=1,4 mm i 6,2 mm), na średnią prędkość strugi wodnej przepływającej przez otwory boczne głowicy pulsacyjnej

Przeprowadzona tu analiza otrzymanych wyników wpływu poszczególnych parametrów geometrycznych głowicy pulsacyjnej na prędkość oraz kierunek przepływu czynnika przez otwory boczne wykazała, że w wielu przypadkach (dla wielu wartości parametrów geometrycznych głowicy) następuje wypychanie czynnika na zewnątrz. Wpływa to niekorzystnie na kształtowanie się hydraulicznych pierścieni wirowych wewnątrz komory wirowej, powodując jednocześnie niekorzystny rozkład wektorów tej prędkości. W takiej sytuacji nie występują warunki sprzyjające wytworzeniu impulsów hydrodynamicznych w strudze wodnej wypływającej z samowzbudnej głowicy pulsacyjnej.

5.3.5. Wpływ smukłości dyszy wlotowej na prędkość strugi wodnej

Wcześniejsze rozważania dotyczyły wpływu analizowanych parametrów wejściowych na prędkość wypływającej strugi wodnej oraz na kierunek zasysania i prędkość przepływu czynnika zewnętrznego przez otwory boczne głowicy. Wstępne badania symulacyjne potwierdziły, że istotny wpływ na tę prędkość wykazuje również smukłość dyszy wlotowej określana stosunkiem jej wysokości (h₁) do średnicy (d₁). Z powyższych względów przeprowadzono niezbędne badania komputerowe, mające na celu wyznaczenia optymalnej smukłości tej dyszy.

Na podstawie analizy wyników takich badań stwierdzono, że przy małych wartościach stosunku h1/d1 uzyskuje się najwyższe prędkości zarówno na wlocie jak i wylocie z samowzbudnej głowicy pulsacyjnej. Przykładowe wyniki wpływu smukłości dyszy wlotowej (dla stosunku $h_1^{II}/d_1^{II}=0.8$; 2,5; 3; 5) na różne prędkości przepływu strugi wodnej występujące w przekrojach pomiarowych, (wskazanych w rozdziale 5.3.1 na rys 5.41) zaprezentowano na rys. 5.59.

Rys. 5.59. Przebiegi prędkości na wlocie i wylocie z samowzbudnej głowicy pulsacyjnej w funkcji smukłości dyszy wlotowej dla d₁^{II}=0,6 mm; d₃^{II}=0,8 mm; d₂^{II}=0,6 mm; D=3,2 mm; H=6,2 mm

Pomimo, że najwyższe prędkości czynnika na wylocie z głowicy uzyskuje się przy minimalnym stosunku $h_1^{II}/d_1^{II}=0.8$ to dla takich wartości parametrów nie uzyskuje się największych prędkości zasysania czynnika przez otwory boczne głowicy, które są niezbędne dla wytwarzania się hydraulicznych zawirowań w komorze wirowej głowicy pulsacyjnej, decydujących o powstawaniu hydrodynamicznych impulsów w strudze wodnej.

Przykładowy wpływ różnych smukłości dyszy wlotowej na prędkość czynnika przepływającego przez otwory boczne głowicy przedstawiono na rys. 5.60.

Rys. 5.60. Przebiegi prędkości zasysania czynnika przez otwory boczne samowzbudnej głowicy pulsacyjnej w funkcji smukłości dyszy wlotowej dla: d₁^{II}=0,6 mm; d₃^{II}=0,8 mm; d₂^{II}=0,6 mm; D=3,2 mm; H=6,2 mm

Analiza przeprowadzonych badan wpływu smukłości dyszy wlotowej wykazała, że najwyższą prędkość (wynoszącą 42 m/s) zasysania czynnika zewnętrznego przez otwory boczne głowicy, zapewniające powstawanie zawirowań generujących hydrodynamiczne impulsy w strudze wodnej wypływającej z głowicy, uzyskuje się przy stosunku $h_1^{II}/d_1^{II}=2,5\div3$.

5.3.6. Wpływ średnicy otworów bocznych na prędkość strugi wodnej

Średnica otworów bocznych (d₂) jest bardzo istotnym parametrem geometrycznym samowzbudnej głowicy pulsacyjnej gdyż przyczynia się do zasysania czynnika zewnętrznego, decydującego o kształtowaniu się pierścieniowych zawirowań wodnych, cyklicznie blokujących przepływ głównej strugi wodnej wewnątrz komory wirowej takiej głowicy. Przykładowe przebiegi prędkości strugi wodnej w dyszy wlotowej w funkcji średnicy otworów bocznych d₂^{II}, przy stałych wartościach pozostałych parametrów, przedstawiono na rys. 5.61.

Rys. 5.61. Przebiegi prędkości strugi wodnej w funkcji średnicy otworów bocznych, kształtujące się w dyszy wlotowej przy stałych pozostałych parametrach geometrycznych głowicy

Przeprowadzona analiza wpływu rozpatrywanych geometrycznych parametrów samowzbudnej głowicy pulsacyjnej na prędkość strugi wodnej w przekrojach dyszy wlotowej w zależności od średnicy otworów bocznych wykazała, że najwyższą jej wartość uzyskuje się dla najmniejszych średnic otworów bocznych $d_2^{II}=0,4$ mm.

Z kolei przykładowe przebiegi prędkości wypływu strugi wodnej z dyszy wylotowej w zależności od średnicy otworów bocznych zaprezentowano na rys. 5.62.

Rys. 5.62. Przebiegi prędkości wypływu strugi wodnej w funkcji średnicy otworów bocznych, przy stałych pozostałych parametrach geometrycznych głowicy

Podobnie jak i wcześniej, najwyższe prędkości wypływu strugi wodnej uzyskuje się przy najmniejszej średnicy otworów bocznych $d_2^{II}=0,4$ mm.

Z kolei przykładowe przebiegi prędkości przepływu czynnika zasysanego przez otwory boczne głowicy w funkcji ich średnicy d₂^{II} zaprezentowano na rys. 5.63.

Rys. 5.63. Przebiegi prędkości przepływu czynnika zasysanego przez otwory boczne głowicy w funkcji ich średnicy d₂^{II} przy stałych wartościach pozostałych parametrów geometrycznych głowicy
Analiza wpływu poszczególnych parametrów geometrycznych samowzbudnej głowicy pulsacyjnej, a w szczególności oddziaływania średnicy otworów bocznych na prędkości pulsującej strugi wodnej uzyskiwane w rozpatrywanych przekrojach dyszy wlotowej, dyszy wylotowej i otworów bocznych głowicy, wykazała, że najwyższe prędkości strugi wodnej uzyskuje się przy najmniejszej średnicy tych otworów, równej $d_2^{II}=0,4$ mm. Przy takiej średnicy zarówno prędkość, jak i kierunek przepływu czynnika przez otwory boczne są korzystne ze względu na możliwości powstawania zawirowań w komorze wirowej oraz wytwarzania hydrodynamicznych impulsów w strudze wodnej na wylocie z tej głowicy.

5.3.7. Wpływ kształtu komory wirowej na prędkość strugi wodnej

Wśród parametrów geometrycznych charakteryzujących kształt samowzbudnej głowicy pulsacyjnej znajdują się również parametry wymiarowe określające kształt jej komory wirowej. Takimi zauważalnymi parametrami są: średnica (D^{II}) komory wirowej i jej wysokość (H^{II}) a także szerokość powierzchni pierścieniowych tej komory (SP^{II}). W celu określenia wpływu powyższych parametrów na prędkość przepływu pulsującej strugi wodnej przeprowadzono symulacje komputerowe w następujących zakresach zmienności poszczególnych parametrów: D^{II} =4,6÷7,4 mm, H^{II} =1,4÷6,2 mm, oraz SP^{II} =0,6÷2 mm, przy niezmiennych pozostałych parametrach geometrycznych takiej głowicy pulsacyjnej.

Zbiorcze wyniki komputerowych symulacji oddziaływania tych parametrów na prędkości strugi wodnej w poszczególnych przekrojach głowicy zaprezentowano na rys. 5.64.

Analiza zaprezentowanych tu wyników wykazała, że takie parametry geometryczne głowicy praktycznie nie mają wpływu na prędkość strugi w dyszy wlotowej gdyż w praktyce ta prędkość zależy od ciśnienia nominalnego oraz parametrów geometrycznych dyszy wlotowej, które są w analizowanym przypadku stałe. Z kolei prędkość strugi wodnej w dyszy wylotowej zależy w dużym stopniu od wysokości komory wirowej H^{II}. Przy najmniejszej wysokości tej komory (H^{II}=1,4 mm) uzyskuje się największe prędkości (120÷130 m/s) strugi wodnej, natomiast przy największej wysokości (H^{II}=6,2 mm) tej komory występują najmniejsze prędkości strugi (73÷81 m/s).

Analiza wyników zaprezentowanych na rys. 5.64 wykazała też, że najwyższe prędkości ($20\div21 \text{ m/s}$) zasysania czynnika zewnętrznego przez otwory boczne głowicy uzyskuje się przy najmniejszych wysokościach komory wirowej H^{II}=1,4 mm, a najmniejsze ich prędkości ($0.5\div3 \text{ m/s}$) przy wysokości H^{II}=4,5÷5,2 mm komory wirowej i jej średnicy D^{II}=6,2÷7,4 mm.

Rys. 5.64. Kształtowanie się prędkości strugi wodnej w wyszczególnionych przekrojach pomiarowych przy zmiennych parametrach geometrycznych samowzbudnej głowicy pulsacyjnej, przy pozostałych stałych parametrach: $d_1^{II}=0,6 \text{ mm}; d_2^{II}=0,6 \text{ mm}; d_2^{II}=1,5 \text{ mm}$

Wszystkie przeprowadzone tu analizy wpływu poszczególnych parametrów geometrycznych głowicy na prędkości strugi wodnej oraz kształtowanie się hydraulicznych pierścieni wirowych a co z tym związane tworzenie hydrodynamicznych impulsów w komorze wirowej potwierdziły, że aby takie impulsy mógłby być wytworzony niezbędne jest uzyskanie odpowiednio wysokiej prędkości zasysania czynnika przez otwory boczne takiej głowicy pulsacyjnej.

5.3.8. Charakterystyka modelu samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni

Model samowzbudnej głowicy wybrany na podstawie przeprowadzonych badań komputerowych charakteryzują następujące parametry geometryczne:

- Średnica dyszy wlotowej d1^{II}=0,6 mm, którą przyjęto ze względu na wzrost prędkości przepływu czynnika zewnętrznego w otworach bocznych komory wirowej.
- Średnica otworów bocznych d₂^{II}=0,6 mm, gdyż zastosowanie mniejszej średnicy (0,4 mm) skutkowało obniżeniem prędkości zasysania czynnika zewnętrznego, natomiast większe otwory boczne wywoływały niekorzystne ukształtowanie pierścieni wirowych.
- Średnica dyszy wylotowej d₃^{II}=0,8 mm, ponieważ dalsze jej zwiększanie w stosunku do średnicy dyszy wlotowej d₁^{II}=0,6 mm, przyczyniało się do niekorzystnego zniekształcania pierścieni wirowych w komorze wirowej (rys. 5.65).

Rys. 5.65. Rozkład prędkości oraz ciśnień wewnątrz analizowanych modeli samowzbudnej głowicy pulsacyjnej dla przypadku: a) braku pierścieni wirowych (dla: d₁^{II}=0,6 mm i d₃^{II}=1,2 mm), b) prawidłowych pierścieni wirowych (dla: d₁^{II}=0,6 mm i d₃^{II}=0,8 mm)

Wysokość dyszy wlotowej przyjęto jako równą h₁^{II}=1,5 mm, gdyż nie ma ona znaczącego wpływu na prędkość strugi wodnej w badanym zakresie (różnica prędkości w otworach bocznych dla badanego zakresu h₁^{II}=0,5÷3,5 mm, zmieniała się w zakresie zaledwie 2 m/s), natomiast mniejsza wysokość dyszy wlotowej niekorzystnie oddziałuje na kształtowanie się pierścieni wirowych (rys. 5.66).

Rys. 5.66. Rozkład prędkości oraz ciśnień wewnątrz analizowanej samowzbudnej głowicy pulsacyjnej dla przypadków: a) nieprawidłowe kształtowanie się pierścieni wirowych (dla: $d_1^{II}=0,6$ mm; $d_3^{II}=0,8$ mm i $h_1^{II}=0,5$ mm), b) prawidłowe generowanie pierścieni wirowych (dla: $d_1^{II}=0,6$ mm; $d_3^{II}=0,8$ mm i $h_1^{II}=1,8$ mm) c) prawidłowe kształtowanie się pierścieni wirowych (dla: $d_1^{II}=0,6$ mm; $d_3^{II}=0,6$ mm; $d_3^{II}=0,8$ mm i $h_1^{II}=1,5$ mm) d) nieprawidłowe generowanie pierścieni wirowych (dla: $d_1^{II}=0,6$ mm; $d_3^{II}=0,8$ mm i $h_1^{II}=1,5$ mm) d) nieprawidłowe generowanie pierścieni wirowych (dla: $d_1^{II}=0,6$ mm; $d_3^{II}=0,8$ mm i $h_1^{II}=1,5$ mm) d) nieprawidłowe generowanie pierścieni wirowych (dla: $d_1^{II}=0,6$ mm; $d_3^{II}=0,8$ mm i $h_1^{II}=3$ mm)

Wysokość komory wirowej H^{II}=3,2 mm wybrano na podstawie analizy prędkości strugi wodnej w otworach bocznych: zbyt mała wysokość komory uniemożliwia powstawanie zawirowań natomiast nadmierne jej wysokości (do 6,2 mm) powodują obniżenie prędkości wypływu strugi wodnej z głowicy i prędkości przepływu w otworach bocznych (rys. 5.67).

- Rys. 5.67. Rozkład wektorów prędkości wewnątrz samowzbudnej głowicy pulsacyjnej pod wpływem wysokości komory wirowej: a) brak pierścieni wirowych (dla: d₁^{II}=0,6 mm; d₃^{II}=0,8 mm; d₂^{II}=0,6 mm; h₁^{II}=1,5 mm; H^{II}=1,4 mm i D^{II}=6,2 mm) b) nadmiernie wysokie elipsy zawirowań zmniejszające prędkość przepływu strugi wodnej dla: d₁^{II}=0,6 mm; d₃^{II}=0,8 mm; d₂^{II}=0,6 mm; h₁^{II}=1,5 mm; H^{II}=4,2mm i D^{II}=6,2mm)
- Średnica komory wirowej D^{II}=6,2 mm, jest dobierana w sprzężeniu z jej wysokością H^{II} ze względu na kształtowanie się pierścieni wirowych, przy uwzględnieniu tego, że zbyt mała średnica D^{II} powoduje spadek prędkości przepływu w otworach bocznych, natomiast nadmierna (D^{II}=7,4 mm) powoduje niekorzystne spłaszczanie eliptycznych zawirowań.

Szerokość powierzchni pierścieniowych komory wirowej SP^{II}=1,4 mm wybierano z uwzględnieniem dwóch kryteriów: zmniejszanie szerokości SP^{II} powoduje zmniejszanie się prędkości wypływu strugi wodnej, natomiast zawyżanie szerokości SP^{II} negatywnie oddziałuje na kształt zawirowań wodnych.

Po przeprowadzeniu kompleksowych badań i analiz pod względem prędkości przepływu wodnej i kształtu pierścieni wirowych, wytypowano optymalny model samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni. Charakterystykę parametrów geometrycznych tego modelu głowicy zaprezentowano w tabeli 5.35.

Tab. 5.35. Optymalne parametry konstrukcyjne wybranego modelu samowzbudnej głowicy pulsacyjnej - model II

Nazwa parametru geometrycznego	Oznaczenie	Wartości
średnica komory wirowej[mm]	D ^{II}	6,2
wysokość komory wirowej[mm]	H^{II}	3,2
wysokość dyszy wlotowej [mm]	h_1 ^{II}	1,5
średnica dyszy wylotowej [mm]	d ₃ ^{II}	0,8
średnica otworów bocznych [mm]	d_2^{II}	0,6
średnica dyszy wlotowej [mm]	d_1^{II}	0,6
szerokość powierzchni pierścieniowych komory wirowej[mm]	SP ^{II}	1,4

Optymalne rozkłady wektorów prędkości i ciśnienia wewnątrz najkorzystniejszego modelu samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni, przedstawiono na rys. 5.68.

Rys. 5.68. Rozkłady: a) wektorów prędkości i b) ciśnienia wody wewnątrz optymalnego modelu samowzbudnej głowicy pulsacyjnej (d₁^{II}=0,6mm; d₂^{II}=0,6mm; d₃^{II}=0,8mm; h₁^{II}=1,5mm; D^{II}=6,2mm; H^{II}=3,2mm; SP^{II}=1,4mm), przy nominalnym ciśnieniu wody p=15 MPa

Takie regularne wirowe rozkłady wektorów prędkości w komorze wirowej optymalnego modelu głowicy oraz rozkłady ciśnienia odpowiednio zacieśniające przepływającą strugę wodną prowadzą do cyklicznego generowania w niej impulsów hydrodynamicznych.

Najogólniej rzecz biorąc, niniejsze badania numeryczne przeprowadzano w celu opracowania optymalnego modelu samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni. Umożliwia to przeprowadzona analiza wyników takich komplementarnych badań komputerowych oddziaływania geometrii samowzbudnej głowicy pulsacyjnej na maksymalną prędkość strugi wodnej wypływającej z takiej głowicy i prędkości przepływu czynnika zasysanego przez otwory boczne wskutek oddziaływania odpowiednio ukształtowanych zawirowań wody w komorze wirowej takiej głowicy pulsacyjnej.

Biorąc powyższe pod uwagę ustalono, że w ten sposób wybrana optymalna konstrukcja samowzbudnej głowicy pulsacyjnej powinna mieć komorę wirową o średnicy D^{II}=6,2 mm i wysokości H^{II}=3,2 mm z górną i dolną powierzchnią pierścieniową o szerokości SP^{II}=1,4 mm oraz kątem natarcia λ^{II} =120° a także mieć dwa otwory boczne o średnicy d₂^{II}=0,6 mm usytuowane naprzeciw siebie i prostopadle (promieniowo) względem komory wirowej, a także dyszę wlotową o średnicy d₁^{II}=0,6 mm i wysokości wysokość h₁^{II}=1,5 mm oraz dyszę wylotową o średnicy d₃^{II}=0,8 mm.

Z przeprowadzonych badań symulacyjnych wynika także, że rozkład wartości wektorów prędkości przepływu i dynamicznych ciśnień występujących wewnątrz samowzbudnej głowicy pulsacyjnej są uzależnione od nominalnego ciśnienia wody i geometrycznych parametrów takiej głowicy.

5.3.9. Wnioski

Analiza wyników komputerowych badań oddziaływania geometrii samowzbudnej głowicy pulsacyjnej na maksymalną prędkość strugi wodnej wypływającej z takiej głowicy i prędkości przepływu czynnika zewnętrznego zasysanego przez otwory boczne wskutek oddziaływania odpowiednio ukształtowanych pierścieni wirowych, pozwoliła na sformułowanie następujących wniosków, usytuowanych tu w kolejności zbliżonej do chronologicznej:

- Dla geometrycznego modelu samowzbudnej głowicy pulsacyjnej z dwoma, trzema i czterema otworami bocznymi prostopadłymi do komory wirowej, zasysanie czynnika przez te otwory występuje wówczas, gdy średnica dyszy wlotowej jest mniejsza od średnicy dyszy wylotowej (d₁< d₃). Ma to zasadniczy pływ na właściwy kształt wirujących pierścieni wodnych tworzących się w komorze wirowej i w konsekwencji, na tworzenie się impulsów hydrodynamicznych w strudze wodnej wypływającej z takiej głowicy.
- Gdy średnica dyszy wlotowej jest równa lub większa od średnicy dyszy wylotowej (d₁≥ d₃) nie występuje zasysanie czynnika zewnętrznego przez otwory boczne, co prowadzi do zaniku zawirowań w komorze wirowej, powodując w niej niewłaściwy rozkład wektorów prędkości. W takich okolicznościach nie ma warunków do

wytwarzania impulsów hydrodynamicznych w rdzeniu strugi wodnej przepływającej wzdłuż osi głowicy i taka struga nie wykazuje pulsacji hydrodynamicznych.

- 3. Najistotniejszymi czynnikami zapewniającymi tworzenie impulsów hydrodynamicznych w wysokociśnieniowej strudze wodnej są: intensywność zasysania ciekłego czynnika zewnętrznego przez otwory boczne, decydująca o kształtowaniu się wyrazistych zawirowań wodnych w komorze wirowej oraz rozkład ciśnienia w tej komorze, sprzyjający cyklicznemu blokowaniu przepływu strugi wodnej.
- 4. Dla zapewnienia korzystnego kształtu pierścieniowych zawirowań wody w komorze wirowej i zasysania czynnika zewnętrznego przez otwory boczne, co decyduje o pulsacyjnym charakterze strugi wodnej, średnica dyszy wlotowej powinna być mniejsza od średnicy dyszy wylotowej. Zwiększanie średnicy dyszy wlotowej sprzyja zwiększaniu prędkości wypływu wody przez otwory boczne, natomiast wzrost średnicy dyszy wylotowej zwiększa intensywność zasysania czynnika zewnętrznego i prędkość jego przepływu przez otwory boczne.
- 5. Analiza różnych modeli samowzbudnej głowicy pulsacyjnej wykazała, że głowice z trzema i czterema otworami bocznymi prostopadłymi do komory wirowej, charakteryzują się stosunkowo mniejszą intensywnością zasysania czynnika zewnętrznego w postaci wody, i prędkością jej przepływu przez otwory boczne, przez co w większości rozpatrywanych przypadków nie następuje korzystne kształtowanie się wyrazistych pierścieni wirowych, które decydują o generowaniu impulsów hydrodynamicznych w strudze wodnej.
- 6. Odpowiedni dobór średnic dyszy wlotowej i wylotowej zapewnia zasysanie czynnika zewnętrznego przez otwory boczne dzięki czemu powstają odpowiednie zawirowania wody w komorze wirowej, które wpływają na wytworzenie w strudze wodnej cyklicznych impulsów hydrodynamicznych. Z powyższych względów dalsze analizy przeprowadzano wyłącznie na modelu samowzbudnej głowicy pulsacyjnej z dwoma otworami bocznymi prostopadłymi do komory wirowej.
- 7. Prędkość strugi wodnej wypływającej z głowicy pulsacyjnej jest najważniejszym czynnikiem oddziaływującym na efektywność erodowania materiałów. Z powyższych względów średnia prędkość wypływu strugi wodnej stała się jedynym czynnikiem wyjściowym przeprowadzanych symulacji komputerowych.

- 8. Do opracowania optymalnego modelu samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni, zastosowano oprogramowanie Experiment Planer umożliwiające opracowanie planu opartego na kryteriach: największej prędkości wypływu strugi wodnej przy zapewnieniu odpowiedniego kształtu zawirowań wodnych w komorze wirowej. Symulacje głowicy przeznaczonej od obróbki powierzchni przeprowadzono w programie Solid Works FlowSimulation.
- 9. Na podstawie obliczeń oddziaływania geometrii samowzbudnej głowicy pulsacyjnej na maksymalną prędkość strugi wodnej wypływającej z takiej głowicy, przeprowadzonych w programie "Experiment Planer" z pięciopoziomowym planem rotatabilnym, określono statystyczny model matematyczny takiej głowicy, który jest opisany wielomianem złożonym z następujących siedmiu wielkości zmiennych: v_{sr} =128.42 + 51.09 $ln(d_1^{II})$ - 4.88 $ln(d_2^{II})$ - 0.26 $ln(d_3^{II})$ + 0.29 $ln(h_1^{II})$ -11.27 $ln(H^{II})$ + 12.85 $ln(D^{II})$ + 0.99 $ln(SP^{II})$.
- 10. Statystyczny model matematyczny opisujący maksymalną prędkość strugi wypływającą z głowicy, stworzony przy wykorzystaniu oprogramowania "Experiment Planer", został oceniony przez program jako adekwatny do wyników pomiarów, więc może być narzędziem do szybkiego określania tej prędkości przy parametrach występujących w badanym zakresie wartości zmiennych wejściowych.
- 11. Średnia prędkość strugi wodnej wypływająca z głowicy zależna jest od średnicy otworów bocznych, uzyskując około 4 % wzrost tej prędkości przy zmniejszeniu średnicy tych otworów z 1,4 mm do 0,4 mm, przy wysokości dyszy wlotowej równej 0,5 mm oraz około 6% wzrost prędkości strugi przy wysokości dyszy wlotowej równej 3,5 mm.
- 12. Wzrost średnicy komory wirowej z 4,6 mm do 7,4 mm powoduje zwiększenie prędkości strugi o około 5 m/s, natomiast zmniejszenie wysokości tej komory z 6,2 mm do 1,4 mm wpływa na wzrost prędkości o około 14 m/s, uzyskując maksymalną jej wartość około 165 m/s dla najmniejszej średnicy otworów bocznych, równej 0,4 mm.
- 13. Kilkuprocentowy wzrost prędkości strugi wodnej przy zmniejszeniu średnicy otworów bocznych do 0,4 mm oraz wzrost średnicy dyszy wlotowej do 1,2 mm przyczynia się do uzyskania najwyższych prędkości strugi (ok. 150 m/s), stanowiącej około 30 % jej wzrostu, w stosunku do najmniejszej średnicy dyszy wlotowej (0,6 mm). Wzrastająca wysokość dyszy wlotowej przy analizowanych

parametrach (d_2^{II}, d_1^{II}) powoduje, iż wysokość ta praktycznie nie ma wpływu na prędkość wypływającej strugi.

- 14. Średnica otworów bocznych w stosunku do szerokości powierzchni pierścieniowych komory wirowej nie ma znaczącego wpływu na prędkość strugi wodnej. Wzrost wysokości komory wirowej w badanym zakresie zmienności powoduje spadek prędkości wyjściowej o około 23 %.
- 15. Wzrastająca wysokość komory wirowej do 1,4 mm oraz malejąca do 0,4 mm średnica otworów bocznych powodują około 16 % wzrost prędkości strugi wodnej, w stosunku do najmniejszych wielkości analizowanych parametrów (H^{II}, d₂^{II}). Wzrost średnicy komory wirowej do 7,4 mm skutkuje nieznacznym (ok. 1 %) wzrostem prędkości strugi wodnej na wylocie z głowicy.
- 16. Na podstawie przeprowadzonej analizy możliwe było wyznaczenie wartości parametrów modelu samowzbudnej głowicy pulsacyjnej, wybranego na podstawie badań komputerowych, dla których występowała największa prędkość strugi na wyjściu z głowicy.
- 17. W modelu samowzbudnej głowicy pulsacyjnej, o wymiarach zoptymalizowanych według kryterium największej prędkości wypływu strugi wodnej, nie występuje zasysanie czynnika zewnętrznego przez otwory boczne, dlatego nie tworzą się pierścienie zawirowania wewnątrz komory wirowej, co uniemożliwia efektywną pracę takiej głowicy pulsacyjnej w warunkach rzeczywistych.
- 18. Z powyższych względów niezbędne stało się podjęcie kolejnych badań komputerowych i analiz uwzględniających konieczność takiego zasysania czynnika zewnętrznego przez otwory boczne, aby doprowadzić do powstawania w komorze wirowej korzystnych zawirowań wody i odpowiednich rozkładów ciśnienia.
- 19. Do opracowania optymalnego modelu samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni, zastosowano oprogramowanie Experiment Planer umożliwiające opracowanie planu opartego na kryteriach: największej intensywności zasysania i prędkości przepływu czynnika zewnętrznego przez otwory boczne, zapewniające korzystne ukształtowanie zawirowań wodnych i odpowiednie rozkłady ciśnienia w komorze wirowej.
- 20. W obecnym przypadku statystyczne obliczenia oddziaływania geometrii samowzbudnej głowicy pulsacyjnej na prędkości przepływu zewnętrznego czynnika zasysanego przez otwory boczne, przeprowadzone w programie "Experiment Planer" z pięciopoziomowym planem rotatabilnym, umożliwiły określenie

statystycznego modelu matematycznego takiej głowicy, który jest opisany następującym wielomianem: $v_{boki}^{II} = -40.91 - 129.16 \ln(d_1^{II}) + 16.13 \ln(d_2^{II}) + 120.70 \ln(d_3^{II}) - 0.83 \ln(h_1^{II}) - 5.45 \ln(H^{II}) + 15.36 \ln(D^{II}) + 3.27 \ln(SP^{II}).$

- 21. Przeprowadzona analiza wyników komplementarnych badań komputerowych umożliwia określenie oddziaływania parametrów geometrycznych samowzbudnej głowicy pulsacyjnej na prędkość przepływu zewnętrznego czynnika zasysanego przez otwory boczne, wskutek oddziaływania odpowiednio ukształtowanych wyrazistych zawirowań wody w komorze wirowej tej głowicy.
- 22. Na podstawie analizy wyników tych badań ustalono, że w ten sposób wybrany optymalny model samowzbudnej głowicy pulsacyjnej powinien mieć komorę wirową o średnicy D^{II}=6,2 mm i wysokości H^{II}=3,2 mm wraz z górną i dolną powierzchnią pierścieniową o szerokości SP^{II}=1,4 mm oraz kątem natarcia λ^{II} =120°, a także mieć dwa otwory boczne o średnicy d₂^{II}=0,6 mm usytuowane naprzeciw siebie i prostopadle (promieniowo) względem komory wirowej, jak również dyszę wlotową o średnicy d₁^{II}=0,6 mm i wysokości h₁^{II}=1,5 mm oraz dyszę wylotową o średnicy d₃^{II}=0,8 mm.
- 23. Z przeprowadzonych komputerowych badań symulacyjnych wynika także, że rozkład wartości wektorów prędkości przepływu oraz rozkład ciśnień występujących wewnątrz optymalnego modelu samowzbudnej głowicy pulsacyjnej, zależne głównie od nominalnego ciśnienia wody i geometrycznych parametrów takiej głowicy, odznaczają się cechami nieodzownymi dla generowania pulsacji hydrodynamicznych w przepływającej strudze wodnej.
- 24. Analiza wyników średnich prędkości przepływu strugi na wejściach otworów bocznych d^{2^{II}} wykazała, że są one wyższe o około 30 % dla samowzbudnej głowicy pulsacyjnej z dwoma otworami bocznymi, względem takiej głowicy mającej cztery prostopadłe otwory boczne. Ze względu na korzystny kształt pierścieni wirowych oraz zasysanie czynnika przez otwory boczne, średnica dyszy wlotowej d^{1^{II}} zawsze powinna być mniejsza od średnicy dyszy wylotowej d^{3^{II}}.
- 25. Średnia prędkość strugi wodnej w badanych otworach bocznych przy zmniejszeniu średnicy dyszy wlotowej oraz wzroście średnicy dyszy wylotowej ulega zwiększeniu a zmiana kierunku przepływu skutkuje zasysaniem strugi wodnej przez otwory boczne.

26. Zmniejszenie średnicy dyszy wlotowej oraz zwiększenie średnicy otworów bocznych wpływa na zmianę kierunku przepływu czynnika przez otwory boczne, a tym samym na zasysanie czynnika zewnętrznego przez te otwory oraz powoduje wzrost prędkości w otworach bocznych. Przyczynia się również do tego zwiększenie średnicy komory wirowej, gdzie następuje wzrost prędkości strugi wodnej w otworach bocznych o około 25%.

Analiza otrzymanych wyników wpływu poszczególnych parametrów geometrycznych samowzbudnej głowicy pulsacyjnej na prędkość wypływającej strugi wodnej, a zarazem na zasysanie czynnika zewnętrznego przez otwory boczne wykazała, że jest ona zależna od badanych parametrów a otrzymany model jest adekwatny do wyników eksperymentalnych badań komputerowych w badanym zakresie. Dzięki otrzymanemu modelowi można znaleźć wyniki dla dowolnych parametrów geometrycznych głowicy.

6. METODYKA BADAŃ EKSPERYMENTALNYCH

Metodykę badań eksperymentalnych opracowano do realizacji konkretnego planu badań dwóch głowic pulsacyjnych przeznaczonych do drążenia otworów oraz obróbki i czyszczenia powierzchni. Kształt i konkretne parametry wymiarowe wytypowanych rozwiązania konstrukcyjne zostały zoptymalizowane na podstawie przeprowadzonych numerycznych badań symulacyjnych przy wykorzystaniu oprogramowania Solid Works Flow Simulation.

W celu zweryfikowania przydatności takich głowic pulsacyjnych pracujących w środowisku wodnym oraz powietrznym, konieczne jest przeprowadzenie odpowiednich badań eksperymentalnych. Nieodzowne więc stało się zbudowanie stanowisk badawczych oraz ich wyposażenia w odpowiedni osprzęt technologiczny i specjalistyczną aparaturę pomiarową. Na podstawie wyników uzyskanych w trakcie rozruchowych badań wstępnych określono liczbę trzech niezbędnych pomiarów paralelnych a do przeprowadzenia badań takich głowic pulsacyjnych wybrano statyczny zdeterminowany monoselekcyjny wielokrotny plan oznaczony symbolem PS/DS-M:M, które łącznie decydują o wiarygodności wyników i pracochłonności pomiarów.

6.1. Stanowiska badawcze

Stworzone stanowiska badawcze zapewniały możliwości pomiaru wielkości fizycznych oraz wskaźników technologicznych charakteryzujących właściwości użytkowe głowicy. Źródłem wody o określonym ciśnieniu i wydatku były dwa różne hydromonitory, na bazie których zbudowano stanowiska badawcze. Dla wytworzenia wysokociśnieniowej impulsowej strugi wodnej oprócz niezbędnego osprzętu wykorzystano odpowiednie konstrukcje samowzbudnych głowic pulsacyjnych. Do przeprowadzenia pomiarów różnych wielkości fizycznych i wskaźników charakteryzujących impulsową strukturę strugi wodnej stało się nieodzowne zestawienie różnej specjalistycznej aparatury oraz przyrządów pomiarowych.

6.1.1. Urządzenia do wytwarzania wysokociśnieniowej strugi wodnej

Do badań wykorzystano hydromonitor P30 oraz Wemaa AS500/15 o różnych charakterystykach technicznych oraz hydromotor P30 (rys. 6.1), produkcji Puckich Zakładów Mechanicznych, napędzany trójfazowym silnikiem elektrycznym o mocy 89 kW.

Rys. 6.1. Widok ogólny hydromonitora typu P30 o napędzie elektrycznym

Hydromonitor P30 posiada pompę wysokociśnieniową wykorzystującą nurniki ceramiczne P30 (o średnicy 30 mm), co pozwala osiągnąć ciśnienie wody do 57 MPa przy natężeniu przepływu 1,8 dm³/s. Posiada własny układ pomiaru i regulacji ciśnienia roboczego. Woda pod ciśnieniem zadawanym w hydromonitorze za pomocą elastycznych węży wysokociśnieniowych, dostarczana jest do samowzbudnej głowicy pulsacyjnej przeznaczonej do drążenia głębokich otworów. Hydromonitor ten wykorzystywano najczęściej ponieważ dla realizacji programu badań zapewniał wystarczające parametry pracy.

Drugi hydromonitor typu Wemaa AS500/15, którego widok zaprezentowano na rys. 6.2 wykorzystywano w badaniach wymagających znacznie mniejszej ilości wody.

Rys. 6.2. Widok ogólny hydromonitora Wemaa AS500/15 o napędzie elektrycznym

Do napędu wysokociśnieniowej pompy tego urządzenia zastosowano silnik elektryczny o mocy 15 kW. W tym hydromonitorze można uzyskiwać ciśnienie robocze 50 MPa, przy wydatku wody 0,25 dm³/s. Hydromonitor Wemaa również posiada własny układ regulacji i pomiaru nominalnego ciśnienia wody. Wykorzystywano go do badań samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni ze względu na jej nieznaczną wielkość.

6.1.2. Stanowisko badawcze dla głowic pracujących w ośrodku powietrznym

W stanowisku badawczym dla samowzbudnych głowic pulsacyjnych pracujących w ośrodku powietrznym, do pomiaru częstotliwości impulsów strugi wodnej wykorzystano piezoelektryczny czujnik siły oraz ultraszybką kamerę. Badania w środowisku powietrznym, dotyczące dwóch rodzajów głowic, przy wykorzystaniu piezoelektrycznego czujnika siły realizowano dla określonych odległości głowicy.

Na rys 6.3. przedstawiono graficzną interpretację odległości pomiarów dla badań wykonanych dla strugi pulsacyjnej oraz ciągłej.

Pomiar częstotliwości generowanych impulsów przebiegał następująco: z hydromonitora P30 podawano strugę wodną o odpowiednim ciśnieniu przez przewód wysokociśnieniowy na wejście do samowzbudnej głowicy pulsacyjnej. Głowicę mocowano w odpowiednim uchwycie, a pod spodem mocowano czujnik siły, który za pomocą przetwornika piezoelektrycznego rejestrował nacisk strugi wodnej i przekazywał sygnał do komputera.

Rys. 6.3. Graficzna interpretacja odległości głowicy pulsacyjnej od czujnika siły: a) dla strugi ciągłej, b) dla strugi pulsacyjnej

W celu porównania częstotliwości wytwarzanych impulsów zapisanych przy wykorzystaniu czujnika siły, dokonano również rejestracji obrazów pulsującej strugi wodnej przy wykorzystaniu ultraszybkiej kamery Phantom V12.1 (rys. 6.4) mogącej rejestrować obrazy z szybkością 1000000 klatek na sekundę. Dla uzyskania prawidłowej ostrości obrazów rejestrowanych przy użyciu tej kamery wykorzystano reflektory typu Pallite VR-L2400, oświetlające strugę wodną na wyjściu z głowicy. Przy pomocy kamery pracującej w zakresie od 4000 do 11000 klatek na sekundę rejestrowano impulsową strugę wodną pracującą w ośrodku powietrznym.

Rys. 6.4. Stanowiska pomiarowe do rejestracji obrazów impulsowej i ciągłej strugi wodnej pracującej w ośrodku powietrznym: 1 - wysokociśnieniowy przewód zasilający, 2 - samowzbudna głowica pulsacyjna, 3 - uchwyt mocujący głowicę, 4 - czujnik siły, 5 - oświetlenie, 6 - kamera typu Phantom V12.1

Rejestracja częstotliwości impulsów wodnych powstających w samowzbudnej głowicy pulsacyjnej, przeznaczonych do obróbki powierzchni w środowisku powietrznym, przebiegała w sposób następujący. Struga wodna o odpowiednim ciśnieniu wytwarzana w hydromonitorze jest podawana przewodem wysokociśnieniowym na wejście do samowzbudnej głowicy pulsacyjnej, w której generuje się impulsową strugę wodną. Struga pulsacyjna wydostając się z głowicy pulsacyjnej jest rejestrowana przez piezoelektryczny czujnik siły oraz ultra-szybką kamerę.

6.1.3. Stanowisko badawcze dla głowic pracujących w ośrodku wodnym

Do badań laboratoryjnych głowicy przeznaczonej do drążenia głębokich otworów pracującej w ośrodku wodnym, zbudowano stanowisko badawcze, którego ogólny widok przedstawiono na rys. 6.5.

Rys. 6.5. Stanowisko pomiarowe do badania strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej pracującej w ośrodku wodnym: 1 - hydromonitor P30, 2 - mocowanie czujnika siły, 3 - wąż wysokociśnieniowy, 4 - zbiornik z wodą, 5 - oświetlacz, 6 - czujnika siły z przetwornikiem KISTLER-9602AQ01, 7 - kamera typu Phantom V12.1

W celu przeprowadzenia badań w ośrodku wodnym głowicę pulsacyjną umieszczono w specjalnym uchwycie. Do rejestracji wartości siły naporu wypływającej strugi, wykorzystano czujnik siły z przetwornikiem piezoelektrycznym typu KISTLER-9602AQ01, który umieszczano bezpośrednio pod głowicą pulsacyjną. Rejestrował on wartości dynamicznych zmian siły naporu badanej strugi pulsacyjnej, przekazując je do komputera. W celu porównania zapisów częstotliwości rejestrowanej przy użyciu czujnika siły dodatkowo rejestrowano obrazy strugi przy wykorzystaniu ultraszybkiej kamery TV typu Phantom V12.1 produkcji Vision Research Inc., o maksymalnej szybkostrzelności 1 miliona klatek na sekundę, z rozdzielczością 1280 x 800 pikseli przy czułości 6400 ISO/ASA.

Rozdzielczość kamery typu Phantom V12.1 oraz szybkość rejestracji zapewnia otrzymywanie obrazów pulsacyjnej strugi wodnej synchronizując je w czasie z dokładnością do jednej mikrosekundy. Dzięki temu gdy sensor zaczyna odbierać obraz, procesy konwersji obrazu analogowego na cyfrowy łącznie z ich komputerową obróbką tworzą binarną reprezentację tych obrazów, która jest gromadzona w pamięci wewnętrznej, opcjonalnie w pamięci trwałej lub transmitowana do podłączonego serwera.

Obraz rejestrowano przy użyciu ultraszybkiej kamery TV a następnie poddawano obróbce cyfrowej przy wykorzystaniu oprogramowania Cine Viewer 675, w którym dokonano pomiarów liczby impulsów generowanych w różnych przedziałach czasowych.

Przebieg badań głowicy pulsacyjnej służącej do obróbki powierzchni wygląda następująco: wodę o odpowiednim ciśnieniu wytwarzaną w agregacie hydromonitorowym, przesyłano przy użyciu węża wysokociśnieniowego bezpośrednio na wejście do głowicy pulsacyjnej. Wizualizację pracy samowzbudnej głowicy pulsacyjnej, w postaci wytwarzanych w niej impulsów strugi wodnej na wyjściu w dyszy wylotowej, dokonano przy wykorzystaniu czujnika siły z przetwornikiem typu KISTLER-9602AQ01 oraz ultraszybkiej kamery TV typu Phantom V12.1. Poszczególne fazy procesu kształtowania się impulsów w strudze wodnej na wyjściu z samowzbudnej głowicy pulsacyjnej, rejestrowano przy użyciu kamery i przekazywano do komputera. Zapis dynamicznych zmian siły naporu strugi impulsowej generowanej w głowicy pulsacyjnej rejestrowano czujnikiem siły i przekazywano do komputera, w którym dokonano analizy tych zapisów.

6.1.4. Aparatura i przyrządy pomiarowe

Wykorzystane przyrządy oraz aparatura pomiarowa pozwoliły przeprowadzić pomiary wielkości fizykalnych oraz wskaźników technologicznych, niezbędnych do opisu użytkowych właściwości impulsowej strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej. Przeprowadzona analiza literatury wykazała, że zaliczają się do nich charakterystyki przepływu impulsowej strugi wodnej wytwarzanej w warunkach powietrznych i wodnych. Z uwagi na szczególne warunki badań przyrządy pomiarowe musiały odznaczać się łatwością obsługi i niezawodnością pomiaru.

Ze względu na powyższe uwarunkowania w przeprowadzonych badaniach wykorzystywano następujące przyrządy i aparaturę pomiarową:

Do badania nacisku impulsowej strugi wodnej stosowano zaprojektowany do tego czujnik siły z przetwornikiem piezoelektrycznym, którego konstrukcję oraz widok jego nadajnika zaprezentowano na rys. 6.6. Struga wodna napierając na główkę czujnika 1, który przekazuje ten nacisk na nadajnik siłomierza 4 przytwierdzonego do korpusu śrubą łączącą 3 oraz do przetwornika piezoelektrycznego 5 wywołując w nim odpowiedni sygnał elektryczny. Taki piezoelektryczny siłomierz zanurzony w zbiorniku z wodą jest zabezpieczony szczelną osłoną gumową oraz sztywną osłoną metalową 2. Zastosowanie małej średnicy główki 1 (ø2 mm) czujnika umożliwia pomiar nacisku jednostkowego oddziaływującej strugi pulsacyjnej.

Rys. 6.6. Siłomierz piezoelektryczny a) konstrukcja siłomierza piezoelektrycznego: 1 - czujnik, 2 - osłona, 3 - łącznik nadajnika,4 - nadajnik siłomierza, 5 - przetwornik piezoelektryczny, b) widok siłomierza piezoelektrycznego, c) widok piezoelektrycznego przetwornika KISTLER-9602AQO1,

W podobny sposób badano maksymalny nacisk impulsowej strugi wodnej umieszczając ten sam siłomierz piezoelektryczny tak, by czujnik 1 znajdował się w osi strugi wodnej.

Badanie częstotliwości pulsacji strugi wodnej przeprowadzono dwoma sposobami. Pierwszy polegał na odczytywaniu zarejestrowanych przebiegów sił naporu strugi wodnej mierzonych siłomierzem piezoelektrycznym, które były przeliczane na wartości ciśnienia przy znanej ich podstawie czasowej. Z kolei drugi sposób określania częstotliwości pulsacji strugi wodnej realizowano przy wykorzystaniu ultraszybkiej kamery TV typu Phantom V12.1 (rys. 6.7).

Rys. 6.7. Szybkostrzelna (1 000 000 fps) kamera typu Phantom V12.1 firmy Vision Research

Kamera ta zapewnia automatyczną kontrolę ekspozycji oraz rejestrację obrazów według systemów Pre-trigger i Post-trigger o pojemności 16 GB RAM pamięci wewnętrznej.

Badanie efektywności impulsowej strugi wodnej polega na ocenie jej erozyjności obróbkowej w postaci zróżnicowanej głębokości rowków nacinanych strugą wodną w erodowanym materiale. Badania takie przeprowadzono zarówno dla strugi impulsowej, jak i dla strugi ciągłej.

6.2. Metody pomiarowe

Metody pomiarowe wykorzystane w badaniach zostały opracowane dla zapewnienia obiektywnych wielkości fizycznych i wskaźników technologicznych charakteryzujących użytkowe właściwości wysokociśnieniowej strugi wodnej. Ze względu na charakter strugi impulsowej, metody pomiarowe i zastosowane przyrządy muszą być pewne i niezawodne. Z drugiej zaś strony powinny to być metody dokładne, by na ich podstawie można było wskazać przeznaczenie różnych rozwiązań konstrukcyjnych badanych głowic oraz ich oddziaływanie na obrobione powierzchnie. Zatem, opracowane metody muszą zapewnić dokonywanie jednoznacznych pomiarów: kształtu i dynamiki strugi wodnej rejestrowanej w środowisku powietrznym oraz wodnym a także kształtu i struktury strugi wodnej, od których w głównej mierze zależą erozyjność, wydajność erozyjna i efektywność erozyjna tejże strugi.

6.2.1. Metoda oceny kształtu strugi pulsacyjnej

Charakterystyka strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej decyduje między innymi o kształcie strugi na wyjściu z dyszy wylotowej. Nieciągłość struktury takiej strugi impulsowej przenosi się na zróżnicowany sposób jej mieszania z powietrzem, jeżeli struga badana jest na powietrzu lub z wodą, jeżeli głowica zanurzona jest w środowisku wodnym. Do oceny kształtu strugi stosowano metodę analizy zdjęć wykonanych ultra-szybką kamerą.

Do oceny kształtu impulsowej strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej pracującej w środowisku wodnym i powietrznym zbudowano dwa różne stanowiska, które różnią się ze względu na przeznaczenie oraz wielkość badanych głowic. Głowicę przeznaczoną do drążenia głębokich otworów, w których występuje głównie środowisko wodne badano przy wykorzystaniu specjalnie przeszklonego zbiornika wodnego. Oceniano w nim kształt strugi wodnej na wylocie z samowzbudnej głowicy pulsacyjnej pracującej w środowisku wodnym, wykorzystując do tego szybkostrzelną kamerę. Widok tego stanowiska zaprezentowano na rys. 6.8a. Badanie impulsowej strugi wodnej na powietrzu przeprowadzono przy użyciu głowicy zamocowanej do nieruchomego stojaka rys. 6.8b. Na wyjściu z głowicy generowaną strugę impulsową rejestrowano przy wykorzystaniu kamery Phantom V12.1 o maksymalnym zapisie 1000000 klatek na sekundę przy rozdzielczości 1280 x 800 pikseli.

Rys. 6.8. Stanowiska badawcze głowicy przeznaczonej do drążenia otworów pracującej w: a) środowisku wodnym, b) środowisku powietrznym

Pomiary takie umożliwiły rejestrację obrazu w ośrodku wodnym i powietrznym z dokładnością w zakresie od 4000÷11000 klatek na sekundę.

Takie same pomiary wykonywano również dla głowicy przeznaczonej do obróbki powierzchni. Do tego celu stworzono stanowiska badawcze zaprezentowane na rys. 6.9.

Rys. 6.9. Stanowisko do oceny kształtu strugi pulsacyjnej wytwarzanej w głowicy samowzbudnej przeznaczonej do obróbki powierzchni: a) w środowisku wodnym, b) w środowisku powietrznym

W obu rozwiązaniach za pomocą oprogramowania Cine Viewer 675, służącego do zapisu obrazu z kamery, dokonano rejestracji kształtu tejże strugi impulsowej.

W celu określenia odległości kształtowania się impulsów wodnych od dyszy wylotowej, obraz konwertowano i odtwarzano w programie AutoCAD, który posłużył do oceny impulsów wodnych.

6.2.2. Sposoby pomiaru częstości impulsów wodnych

Pomiar częstotliwości impulsów wodnych dokonano przy wykorzystaniu czujnika siły. Do tego typu badań wykonano stanowisko badawcze, w którym strugę impulsową i ciągłą rejestrowano w takiej samej odległości. Nadajnik wraz z piezoelektrycznym czujnikiem siły wprowadzono do strugi ciągłej lub impulsowej.

Badania częstotliwości wykonane w środowisku powietrznym przy wykorzystaniu czujnika siły przeprowadzono umieszczając czujnik w nieruchomym uchwycie. Do tego typu badań zestawiono stanowisko badawcze, którego widok oraz schemat widoczny jest na rys. 6.10.

Rys. 6.10. Stanowisko badawcze przy zastosowaniu głowicy pracującej w środowisku powietrznym: a) widok stanowiska przeznaczonego do drążenia otworów, b) schemat stanowiska (1 - hydromonitor, 2 - manometr, 3 - samowzbudna głowica pulsacyjna, 4 - czujnik siły, 5 - jednostka monitorująca)

Dla badań strugi impulsowej generowanej w samowzbudnej głowicy pulsacyjnej pracującej w środowisku wodnym, piezoelektryczny czujnik siły umieszczano w specjalnej osłonie. Schematy oraz zdjęcia takich stanowisk badawczych zaprezentowano na rys. 6.11.

Zasada pomiaru częstotliwości strugi wodnej, badana w ośrodkach wodnym i powietrznym, polega na wprowadzeniu nadajnika siłomierza do wnętrza wysokociśnieniowej strugi impulsowej lub ciągłej. Dzięki temu określano napór na główkę czujnika wystającą poza obudowę, a w przypadku badań na powietrzu struga wodna napierała bezpośrednio na nadajnik.

Rys. 6.11. Stanowiska do rejestracji częstotliwości impulsów wodnych generowanych w głowicach pracujących o ośrodku wodnym przeznaczonych: a) schemat, b) widok stanowiska z głowicą do drążenia otworów, c) schemat, d) widok stanowiska z głowicą do obróbki powierzchni

Strugę pulsacyjną wytwarzaną w głowicy przeznaczoną do drążenia otworów w obu ośrodkach badano przy odległości 50 mm pomiędzy dyszą wylotową a piezoelektrycznym czujnikiem siły, natomiast głowicę przeznaczona do obróbki powierzchni badano w odległości 15 mm pomiędzy dyszą wylotową a czujnikiem siły.

6.2.3. Sposób oceny erozyjności strugi impulsowej

Do badań erozyjności strugi pulsacyjnej wytwarzanej w samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni wykorzystywano ten sam przesuwny stół, na którym umieszczano materiał obrabiany. Widok stanowiska zaprezentowano na rys. 6.12.

Rys. 6.12. Stanowisko do badania erozyjności impulsowej strugi wodnej: a) schemat stanowiska: 1 - agregat hydromonitorowy, 2 - manometr, 3 - przewód zasilający, 4 - samowzbudna głowica pulsacyjna, 5 - przedmiot obrabiany, 6 - stół przesuwny, oraz b) widok ogólny stanowiska

Ruch stołu realizowany był za pomocą przekładni śrubowo-kulowej, napędzanej silnikiem elektrycznym prądu stałego z różnymi prędkościami posuwu w zakresie od 3 do 20 mm/s. Sposób zamocowania na stanowisku głowicy umożliwia regulację jej odległości od obrabianego materiału w zakresie 0÷150 mm.

Wykonano też dodatkowe badania dla głowicy pracującej pod wodą, które ze względu na trudności technologiczne pominięto dla głowicy do drążenia otworów. Do tego celu zestawiono stanowisko badawcze, którego widok zaprezentowano na rys. 6.13.

Rys. 6.13. Stanowisko do badań erozyjności pulsującej strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni pracującej w środowisku wodnym: a) schemat stanowiska (1 - agregat hydromonitorowy, 2 - manometr, 3 - przewód zasilający, 4 - samowzbudna głowica pulsacyjna, 5 - zbiornik wypełniony wodą, 6 - przedmiot obrabiany, 7 - stół przesuwny) oraz b) widok

Na przesuwnym stole umieszczono zbiornik z wodą, który przemieszczał się wraz z suportem. Materiał obrabiany umieszczany w metalowym uchwycie, który dla wyeliminowania możliwości przesuwania się materiału obrabianego ustawiano na gumowej podkładce.

Pomiary geometryczne głębokości erodowanej szczeliny dokonywano przy wykorzystaniu suwmiarki z głębokościomierzem, o dokładnością 0,05 mm.

6.3. Samowzbudne głowice pulsacyjne i materiały obrabiane używane w badaniach

W pracy wykorzystywano trzy rodzaje samowzbudnych głowic pulsacyjnych. Pierwszą z nich wykonano w celu zweryfikowania badań literaturowych [85] wykonanych w Instytucie Ropy Naftowej w Chinach. Kolejne głowice ze względu na przeznaczenie (do drążenia głębokich otworów oraz obróbki powierzchni) poddano komputerowej analizie, na podstawie której wytypowano parametry konstrukcyjne głowic. Po dokonaniu wyboru parametrów konstrukcyjnych wykonano samowzbudne głowice pulsacyjne a także wytypowano rodzaj materiału poddany erozyjnej obróbce.

6.3.1. Charakterystyka samowzbudnych głowic pulsacyjnych

Budowa samowzbudnych głowic pulsacyjnych kształtujących impulsową strugę wodną posiada zasadnicze znaczenie w niniejszej pracy z uwagi na dynamiczne oddziaływanie udarowe impulsów hydraulicznych strugi wodnej o okresowo zmiennej strukturze. Opierając się na badaniach literaturowych wykonanych w Instytucie Ropy Naftowej w Chinach [46, 85] oraz własnych komputerowych badaniach symulacyjnych [6, 7], do niniejszych badań wytypowano głowicę pulsacyjną opracowaną według dokonań zagranicznych oraz dwa rodzaje samowzbudnych głowic służących do drążenia otworów oraz do obróbki powierzchni.

Samowzbudna głowica pulsacyjna opracowana według dokonań zagranicznych

Wykorzystując wyniki badań [85, 106] przeprowadzonych w chińskim Instytucie Ropy Naftowej analogiczną głowicę pulsacyjną opracowano i wykonano w Centrum Niekonwencjonalnych Technologii Hydrostrumieniowych Politechniki Koszalińskiej. Jej uproszony przekrój oraz widok przedstawiono na rys. 6.14.

Taką głowicę pulsacyjną charakteryzują następujące parametry wymiarowe:

- średnicą dyszy wlotowej $d_1 = 5 \text{ mm}$,
- średnicą dyszy wylotowej $d_3 = 9 \text{ mm}$,

- wysokością dyszy wlotowej h = 6 mm,
- średnicą komory wirowej D = 50 mm,
- wysokością komory wirowej H = 35 mm,
- kątem natarcia komory $\lambda = 120^{\circ}$,
- średnicą otworów bocznych $d_2 = 5$ mm.

Rys. 6.14. Głowica pulsacyjna: a) schemat przekroju oraz b) widok

Głowicę taką badano przy nominalnym ciśnieniu wody równym zaledwie 10 MPa, co jest wynikiem ograniczonego wydatku wody hydromonitora P30 (1,8 dm³/s) przy stosunkowo dużej średnicy dyszy wlotowej (5 mm). Jednak już nawet na podstawie takich rozpoznawczych badań stwierdzono, że ze względu na uniwersalne zastosowanie takiej samowzbudnej głowicy pulsacyjnej, zasadny jest dalszy rozwój i doskonalenie jej konstrukcji.

Samowzbudna głowica pulsacyjna przeznaczona do drążenia otworów

Głowicę pulsacyjną mającą służyć do drążenia otworów wybrano na podstawie przeprowadzonych wcześniej symulacyjnych badań własnych [6, 8, 12]. Budowę wewnętrzną i widok poszczególnych części takiej głowicy przedstawiono na rys. 6.15.

Głowicę taką charakteryzują następujące parametry wymiarowe:

- średnica dyszy wlotowej $d_1 = 2,5 \text{ mm}$,
- średnica otworów bocznych $d_2 = 2 \text{ mm}$,
- średnica dyszy wylotowej $d_3 = 4 \text{ mm}$,
- wysokość dyszy wlotowej h₁ = 12 mm,

- średnica komory wirowej D = 25 mm,
- wysokość komory wirowej H = 15 mm,
- kąt natarcia komory $\lambda = 120^{\circ}$,
- szerokość powierzchni pierścieniowych komory wirowej SP=6 mm.

Rys. 6.15. Samowzbudna głowica pulsacyjna do drążenia otworów: a) przekrój (1 - dysza wlotowa; 2 - korpus głowicy; 3 - dysza wylotowa; d1 - średnica dyszy wlotowej; h1 - wysokość dyszy wlotowej; d2 - średnica otworów bocznych; d3 - średnica dyszy wylotowej; D - średnica komory wirowej; H - wysokość komory wirowej) oraz b) widok poszczególnych elementów głowicy

Głowica ta charakteryzuje się łatwością intensywnego zasysania czynnika zewnętrznego przez otwory boczne determinującą pulsujący wzrost ciśnienia na wyjściu z komory wirowej oraz wysoką prędkością wypływającej strugi wodnej.

Przydatność takiej głowicy do drążenia otworów oceniano na podstawie badań charakterystyki formowanej w niej strugi wodnej. Do tego celu wykorzystano ultraszybką kamerę, którą rejestrowano niejednorodności struktury przepływającej strugi wodnej. Głowicę do drążenia otworów badano przy różnych ciśnieniach roboczych: 10, 15, 20, 25 MPa.

Samowzbudna głowica pulsacyjna przeznaczona do obróbki powierzchni

Następnym rodzajem samowzbudnej głowicy pulsacyjnej poddawanej badaniom sprawnościowym i eksploatacyjnym jest głowica przeznaczona do obróbki powierzchni. Geometrię jej budowy wewnętrznej opracowano na podstawie przeprowadzonych wcześniej symulacyjnych badań własnych [8]. Przekrój takiej samowzbudnej głowicy pulsacyjnej do obróbki powierzchni i widok jej części składowych zaprezentowano na rys. 6.16.

Rys. 6.16. Samowzbudna głowica pulsacyjna do obróbki powierzchni: a) przekrój (1 - korpus; 2 - dysza wyjściowa; d1^{II} - średnica dyszy wlotowej; d2^{II} - średnica otworów bocznych; d3^{II} - średnica dyszy wylotowej; h1^{II} - wysokość dyszy wlotowej; D^{II} - średnica komory wirowej; H^{II} - wysokość komory wirowej) oraz b) widok

Głowica przeznaczona do obróbki powierzchni ma następujące wymiary:

- średnica dyszy wlotowej $d_1^{II} = 0.6 \text{ mm}$,
- średnicą otworów bocznych $d_2^{II} = 0.6 \text{ mm}$,
- średnicą dyszy wylotowej $d_3^{II} = 0.8 \text{ mm}$,
- wysokością dyszy wlotowej $h_1^{II} = 1,5 \text{ mm},$
- średnicą komory wirowej $D^{II} = 6.2 \text{ mm}$,
- wysokością komory wirowej H^{II} = 3,2 mm,
- kątem natarcia komory $\lambda^{II} = 120^{\circ}$,
- szerokość powierzchni pierścieniowych komory wirowej SP^{II}=1,4 mm.

Ograniczenie wymiarów geometrycznych takiej głowicy wynika głównie z potrzeby minimalizacji jej masy, gdyż w hydrostrumieniowej obróbce powierzchni wiele operacji nadal jest wykonywanych manualnie.

Przydatność takiej głowicy przeznaczonej do obróbki powierzchni, oceniano na podstawie badań wypływającej z niej strugi wodnej. Do tego celu wykorzystano głównie ultraszybką kamerę, którą rejestrowano niejednorodności struktury przepływającej strugi wodnej oraz piezoelektryczny czujnik siły. Głowicę do obróbki powierzchni badano zarówno w środowisku wodnym, jak i na powietrzu, przy różnych ciśnieniach roboczych, zmienianych w zakresie od 1 do 45 MPa z krokiem rozstępu 5 MPa.

6.3.2. Charakterystyka materiałów obrabianych

W badaniach wykorzystano materiały: blacha ze stali nierdzewnej OH18N9 pokryta emalią, cegły pełne oraz beton komórkowy. Wykonane próby przy wykorzystaniu stali nierdzewnej pokrytej emalią powodowały zbyt duże odpryski emalii oraz nierównomierne jej rozłożenie, co wręcz uniemożliwiało zbadanie powierzchni po obróbce. Cegły poddane obróbce wysokociśnieniową strugą wodną odznaczały się nadmierną kruchością co powodowało ich rozkruszanie uniemożliwiając ocenę erozyjności strugi pulsacyjnej. Z uwagi na strukturę oraz obrabialność materiału także na zastosowanie głowic (drążenie otworów) w pracy ograniczono się do badania tylko jednego rodzaju materiału obrabianego - betonu komórkowego. Jest to materiał budowlany, rodzaju lekkiego betonu otrzymywanego poprzez wprowadzenie gazu, zwykle powietrza pod odpowiednim ciśnieniem do plastycznej mieszanki cementowej, w wyniku czego powstają w nim jednorodne pory, zwane komórkami. Beton komórkowy wykazuje wysoką odkształcalność cieplną i wilgotnościową oraz wysoki skurcz (zmiana objętości). Jego właściwości użytkowe przedstawiono w tabeli 6.1.

Tab. 6.1.Właściwości użytkowe betonu komórkowego według normy EN 771-4:2011
(PN EN 771-4:2012)

Lp	NAZWA WŁAŚCIWOŚCI	ILOŚĆ	
1	Średnia nominalna wartość wytrzymałości na ściskanie	3,0 N/mm ² (kategoria I)	
2	Nominalna wartość rozszerzalności/ skurcz pod wpływem wilgoci	\leq 0,2 mm/m	
3	Reakcja na ogień	Euroklasa A1	
4	Nominalny współczynnik absorpcji wody	po 10 min – 36 g/dm ² po 30 min – 48 g/dm ² po 90 min – 65 g/dm ²	
5	Nominalny współczynnik dyfuzji pary wodnej	5/10	
6	Nominalna wartość gęstości brutto	475±20 kg/m ³	
7	Nominalny współczynnik przewodzenia ciepła A _{D10,stan suchy}	0,12 W/mK	

Beton komórkowy jest stosunkowo łatwo obrabialnym materiałem w budownictwie jest lekki i posiada dobrą izolację termiczną. Z uwagi jednak na zmienność współczynnika absorpcji wody w miarę czasu, stosowano jednakowy czas trwania próby (zwłaszcza względem prób cięcia pod wodą) trwający około 5 min.

Do badań erozyjności impulsowej strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej wykorzystano beton komórkowy o wymiarach 100x200x600 mm.

6.4. Metodyka planowania doświadczeń

Po wykonaniu badań komputerowych oraz wybraniu rozwiązań konstrukcyjnych głowic, przeprowadzono badania eksperymentalne, które obejmowały zagadnienia dotyczące wpływu parametrów hydraulicznych na proces erodowania materiału obrabianego.

6.4.1. Model badań

Metodyka planowania doświadczeń w niniejszej pracy została skoncentrowana na takiej optymalizacji parametrów technologicznych przecinania by osiągnąć maksymalną głębokość erodowania w materiale. Tak więc celem pracy było określenie wpływu grupy czynników badanych na trzy czynniki wynikowe.

Schemat modelu badań laboratoryjnych wpływu czynników wejściowych *x* na czynniki wyjściowe *y* przy założeniu występowania czynników stałych *c*, oraz czynników zakłócających *z*, których wpływ jest ujmowany jako przedział ufności modelu przedstawia rys. 6.17.

Rys. 6.17. Model schematu badań laboratoryjnych

Model zaplanowanych badań laboratoryjnych w przypadku obu głowic zawiera następujące grupy czynników:

X - wielkości wejściowe:

- x1 ciśnienie nominalne wody,
- x2 prędkość posuwu głowicy,
- x₃ odległość głowicy od obrabianego materiału.

Z - wielkości wyjściowe:

- z1- nacisk impulsowej strugi wodnej,
- z₂ częstotliwość pulsacji strugi wodnej,
- z₃ efektywność impulsowej strugi wodnej.

C - wielkości stałe:

- c1 geometria samowzbudnej głowicy pulsacyjnej,
- c2 materiał samowzbudnych głowic pulsacyjnych,
- c3 średnica wysokociśnieniowego węża wodnego,
- c₄ długość wysokociśnieniowego węża wodnego.

H - wielkości zakłócające:

- h1 błąd pomiaru ciśnienia wody,
- h₂ błąd wykonania samowzbudnych głowic pulsacyjnych,
- h₃ błąd pomiaru każdej z wielkości wyjściowej,
- h₄ błąd oceny kształtu strugi wodnej,

h5 - błąd odczytu częstotliwości pulsującej strugi wodnej.

Wszystkie te zabiegi służą ograniczeniu wariantów badań i zredukowania ich pracochłonności.

6.4.2. Wybór planu eksperymentu

Przy wyborze planu eksperymentu kierowano się kryteriami: realizowalność, informatywność i efektywność, występującymi w specjalistycznej literaturze [79] oraz w pracach badawczych [10, 21]. Na ich podstawie do realizacji badań głębokości rowków nacinanych strugą wodną wybrano plan statyczny zdeterminowany monoselekcyjny wielokrotny, oznaczony PS/DS-M:M [78, 79]. Stosuje się go najczęściej w pracach wykorzystujących wysokociśnieniowe przepływy cieczy [67, 76].

Plany monoselekcyjne opierają się na badaniach doświadczalnych elementarnego obiektu badań o jednym wejściu i jednym wyjściu. Badania przeprowadza się w ten sposób, że zmieniając kolejno wartość wielkości wejściowej $x=x_1$ mierzy się odpowiednio wielkości wyjściowe z. Istniejący zbiór wielkości stałych c, w trakcie pomiarów nie ulega zmianie. Otrzymuje się w ten sposób dla przedziału $x_{1min} \le x_1 \le x_{1max}$ obejmującego n_1 wartości dyskretnych pewną funkcję $z=F_1(x_1)$. Przy występowaniu większej ilości wielkości wejściowych x_1 , x_2 , x_3 ,... x_n bada się kolejno wpływ tych wielkości ustalając chwilowo wartości pozostałych wielkości wejściowych czyli utożsamiając je z wielkościami stałymi zwanymi centralnymi. Następnie przeprowadza się badania wpływu kolejnych wielkości wejściowych x_k k=(2,3...i), przyjmując jako stałe pozostałe wielkości wejściowe. Postępowanie takie kontynuuje się do momentu zbadania ostatniej wielkości wejściowej x_n . Przykładowy schemat postępowania według planu monoselekcyjnego, wielokrotnego PS/DS-M:M pokazano na rys. 6.18.

Rys. 6.18. Schematyczny przykład realizacji planu monoselekcyjnego wielokrotnego

Plan taki oparty jest na założeniach metodycznych zbliżonych do planu monoselekcji jednokrotnej. Badania według planu, którego przykład zaprezentowano na rys. 6.18 realizowano w poszczególnych etapach:

Etap 0. Wybrano wielkości centralne dla każdej z następujących wielkości x_1 - ciśnienie nominalne wody, x_2 - prędkość posuwu głowicy, x_3 - odległość od obrabianego materiału.

Etap 1. Badano wpływ ciśnienia nominalnego wody (wielkości wejściowej x_1) na wyjściową z przy chwilowo ustalonych na poziomie wartości centralnych, wartościach zbioru pozostałych wielkości wejściowych. Otrzymano w ten sposób funkcję $z=F(x_1)$ obiektu badań.

Etap 2. Badano wpływ prędkość posuwu głowicy (wielkości wejściowej x_2) na wyjściową z przy chwilowo ustalonych na poziomie wartości centralnych, wartościach zbioru pozostałych wielkości wejściowych. Otrzymano w ten sposób funkcję $z=F(x_2)$ obiektu badań.

Etap 3. Badano wpływ odległość od obrabianego materiału (wielkości wejściowej x_3) na wyjściową z przy chwilowo ustalonych na poziomie wartości centralnych, wartościach zbioru pozostałych wielkości wejściowych. Otrzymano w ten sposób funkcję $z=F(x_3)$ obiektu badań.

Badania według przedstawionego powyżej planu przeprowadzono po kolei dla każdej z badanych wielkości (z_1 , z_2 , z_3) dla materiału próbek betonu komórkowego.

6.4.3. Ustalenie liczebności pomiarów paralelnych

Erodowanie w materiale oraz związane z tym wysokie koszty spowodowały konieczność ograniczenia liczebności serii pomiarów paralelnych. Działania tego typu nie mogą mieć jednak wpływu na badania końcowe prowadzonych prac badawczych, dlatego należy przeprowadzić badania powtarzalności wyników erodowania co pozwoli oszacować wielkość ich rozrzutu. W tym celu przeprowadzono kilkanaście prób erodowania dla obu głowic. Do tego celu zastosowano samowzbudną głowicę pulsacyjną przeznaczoną do drążenia otworów oraz głowicę przeznaczoną do obróbki powierzchni, dla których efekt erodowania materiału, w postaci głębokości rowków nacinanych strugą wodną, da się określić miarą wgłębienia.

Do badań użyto samowzbudnej głowicy pulsacyjnej przeznaczonej do drążenia otworów wybranej na podstawie badań komputerowych, charakteryzującej się:

- średnicą dyszy wlotowej $d_1 = 2,5 \text{ mm}$,
- średnicą dyszy wylotowej $d_3 = 4 \text{ mm}$,
- wysokością dyszy wlotowej h₁ = 12 mm,
- średnicą komory wirowej D = 25 mm,
- wysokością komory wirowej H = 15 mm,
- kątem natarcia komory $\lambda = 120^{\circ}$,
- średnicą otworów bocznych $d_2 = 2$ mm.

Głowicę do badań umieszczono w odległości 50 mm od obrabianego materiału (beton komórkowy) przesuwając ją z prędkością 4 mm/s przy stałym ciśnieniu roboczym 15 MPa. Proces erodowania powtórzono pięciokrotnie. Uzyskane wyniki badań umieszczono w tabeli 6.2 i poddano analizie statystycznej.

Dysponując zbiorem wartości wielkości wyjściowych (głębokość rowków nacinana strugą wodną) można dokonać oceny niedokładności pojedynczych pomiarów, stosując pojęcie miary i położenia [78, 79]. Miara położenia jest określana najczęściej jako średnia arytmetyczna z wszystkich wielkości wartości wyjściowej, otrzymanych w wyniku *r* powtórzeń pomiarów, według wzoru:

$$\bar{z} = \frac{1}{r} \sum_{j=1}^{r} z_j,\tag{6.1}$$

Natomiast miary zmienności są określane za pomocą różnych wielkości, przy czym wielkością podstawową jest wariancja. Wariancja jest ściśle związana z pojęciem odchylenia standardowego. W przykładzie zastosowano odchylenie standardowe skorygowane, zwane

krótko odchyleniem standardowym [79], które określa się według wzoru (6.2). Zastosowano również rozstęp określony zależnością (6.3).

$$S = S(z) = \sqrt{\frac{\sum_{j=1}^{r} (z_j - \bar{z})^2}{r - 1}},$$
(6.2)

$$R = R(z) = z_{max} - z_{min}.$$
(6.3)

Na podstawie powyższych zależności obliczono miary położenia z, będące średnią arytmetyczną głębokości rowków nacinanych struga wodną oraz odchylenie standardowe S(z) i rozstęp R(z).

Wyniki takich pomiarów przeprowadzonych przy zastosowaniu głowicy do drążenia otworów przedstawiono w tabeli 6.2.

Parametry badań	<i>p</i> =15 MPa; <i>l</i> =50 mm; <i>f</i> =4 mm/s				
Warunek prowadzenia badań	Numer próby	Głębokość rowków nacinanych struga wodną z3	Średnia arytmetyczna z̄ ₃ głębokości rowków	Odchylenie standardowe S(z)	Rozstęp R(z)
		[mm]	[mm]	[mm]	[mm]
Próbki betonu	1	25,37	25,37		
komórkowego	2	24,98	25,175		
erodowanie w	3	25,84	25,397	0,4002	1,01
srodowisku	4	25,99	25,545		
powietizityiti	5	25,63	25,562		

Tab. 6.2. Wyniki badań nad powtarzalnością erodowania dla głowicy do drążenia otworów

Jak wynika z przeprowadzonych obliczeń wartość odchylenia standardowego jest niewielka, natomiast rozstęp R(z) - będący bardzo wygodną do określenia i zarazem miarodajną wielkością rozrzutu wyników pomiarów wielkości wyjściowej - stanowi tylko niewielki procent średniej arytmetycznej z_3 i nie przekracza ± 2%. Uwzględniając zaś średnią wartość głębokości rowków wyerodowanych w trzech kolejnych próbach to rozrzut wyników wynosi zaledwie ±0,65 %, przez co zawiera się w przedziale poniżej 1 % wartości średniej.

Wyniki kształtowania się średniej arytmetycznej \bar{z}_3 , głębokości rowków erodowanych przy użyciu pulsacyjnej strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej do drążenia otworów przedstawiono na rys. 6.19.

Rys. 6.19. Kształtowanie się wartości średniej głębokości rowków erodowanych pulsacyjną strugą wodną wytwarzana w głowicy do drążenia otworów, w funkcji liczby przeprowadzonych pomiarów paralelnych

Te same czynności wykonano dla głowicy do obróbki powierzchni pracującej w środowisku powietrznym przy odległości głowicy do obrabianego materiału 60 mm, ciśnieniu wejściowym 35 MPa oraz prędkości posuwu 8 mm/s. Głowica charakteryzowała się:

- średnicą dyszy włotowej $d_1^{II} = 0.6 \text{ mm},$
- średnicą dyszy wylotowej $d_3^{II} = 0.8 \text{ mm},$
- wysokością dyszy wlotowej $h_1^{II} = 1,5 \text{ mm},$
- średnicą komory wirowej $D^{II} = 6,2 \text{ mm},$
- wysokością komory wirowej H^{II} = 3,2 mm,
- kątem natarcia komory $\lambda^{II} = 120^{\circ}$,
- średnicą otworów bocznych $d_2^{II} = 0.6$ mm.

Wyniki pomiarów paralelnych dla głowicy do obróbki powierzchni przedstawiono w tabeli 6.3.

Parametry badań	<i>p</i> =35 MPa; <i>l</i> =60 mm; <i>f</i> =8 mm/s				
Warunek prowadzenia badań	Numer próby	Głębokość rowków nacinanych struga wodną z3	Średnia arytmetyczna Z₃ głębokości rowków	Odchylenie standardowe S(z)	Rozstęp R(z)
		[mm]	[mm]	[mm]	[mm]
Próbki betonu	1	15,21	15,21		
komórkowego	2	16,13	15,67		
erodowanie w	3	15,87	15,737	0,3852	0,94
środowisku	4	16,15	15,84		
powietrznym	5	15,98	15,868		

Tab. 6.3. Wyniki badań nad powtarzalnością erodowania dla głowicy do obróbki powierzchni

Dla wyników zamieszczonych w tabeli 6.3 Rozstęp dla głowicy do obróbki powierzchni stanowi niewielki procent średniej arytmetycznej i wynosi około \pm 3%, natomiast przy uwzględnieniu średniej wartości głębokości rowków wyerodowanych w trzech kolejnych próbach to rozrzut wyników wynosi zaledwie \pm 0,81 %, przez co zawiera się w przedziale poniżej 1 % wartości średniej.

Pomiary średniej arytmetycznej \bar{z}_3 głębokości rowków wykonane przy wykorzystaniu pulsacyjnej strugi wodnej dla głowicy do obróbki powierzchni w funkcji liczby przeprowadzonych pomiarów paralelnych przedstawiono na rys. 6.20.

Rys. 6.20. Kształtowanie się wartości średniej głębokości rowków erodowanych pulsacyjną strugą wodną wytwarzana w głowicy do obróbki powierzchni, w funkcji liczby przeprowadzonych pomiarów paralelnych

Różnice występujące między wartościami minimalnymi i maksymalnymi wyników badań stanowią w obu przypadkach niewielki procent średniej arytmetycznej. Graniczne wartości liczone względem średniej arytmetycznej \bar{z}_3 z 5 pomiarów paralelnych dla głowicy przeznaczonej do drążenia otworów mieszczą się w obszarze dopuszczalnym, natomiast dla głowicy do obróbki powierzchni pierwszy pomiar znajduje się poza obszarem dopuszczalnym.

Wobec powyższego pomiary głębokości erodowania strugi w materiale należałoby wykonać dla trzech pomiarów paralelnych, w których rozrzut wartości jest mniejszy od 1% dla obu głowic, co przekłada się na zmniejszenie pracochłonności oraz obniża koszty ich wykonania. Oczywiście należy przy tym pamiętać, że prace badawcze oraz pomiary głębokości mierzonych rowków będą prowadzone z dostateczną starannością, co pozwoli wyeliminować błędy powstałe wskutek np. złego ustawienia wartości ciśnienia.

6.5. Wnioski

Doświadczenie zgromadzone podczas opracowywania szeroko pojętej metodyki badań eksperymentalnych i budowy odpowiednio wyposażonych stanowisk badawczych, nieodzownych dla przeprowadzenia konkretnego planu badań wytypowanych głowic pulsacyjnych, przeznaczonych głównie do drążenia otworów oraz obróbki i czyszczenia powierzchni, a także w trakcie przeprowadzania badań rozruchowych, jak również podczas optymalnej realizacji programów takich badań, pozwoliło na sformułowanie następujących istotnych wniosków metodologicznych:

- Do przeprowadzenia eksperymentalnych badań zbudowano dwa niezawodnie działające stanowiska badawcze, które zapewniały możliwości pomiaru wielkości fizycznych oraz wskaźników technologicznych charakteryzujących właściwości użytkowe głowic pracujących w środowisku wodnym i powietrznym.
- W zależności od potrzeb stanowiska te zasilano wysokociśnieniową strugą wodną o określonym ciśnieniu i wydatku dostarczaną przez dwa następujące hydromonitory: typu P30 (p_{max}=57 MPa, Q_{max}= 1,8 dm³/s) oraz typu Wemaa AS500/15 (p_{max}=50 MPa, Q_{max}= 0,25 dm³/s).
- 3. Ze względu na dynamiczny charakter pulsującej strugi wodnej stosowano wyłącznie pewne i niezawodne metody pomiarowe i przyrządy rejestrujące badane przebiegi. Z uwagi na powyższe wymogi zastosowano najnowocześniejszą specjalistyczną aparaturę oraz przyrządy pomiarowe opracowane dla zapewnienia obiektywnych rejestracji wielkości fizycznych charakteryzujących impulsową strukturę strugi wodnej.
- 4. Do badania hydrodynamicznych sił naporu strugi wodnej oraz jej nacisków jednostkowych wraz z rejestracją ich przebiegów stosowano specjalnie skonstruowany piezoelektryczny czujnik siły typu KISTLER-9602AQ01.
- 5. W celu określenia częstotliwości występowania hydrodynamicznych pulsacji w strudze wodnej wykorzystywano przebiegi sił lub nacisków zarejestrowanych przy użyciu piezoelektrycznego czujnika siły typu KISTLER-9602AQ01 oraz obrazy pulsującej strugi wodnej rejestrowane ultraszybką kamerą TV typu Phantom V12.1 o maksymalnej szybkostrzelności 1 miliona klatek na sekundę, z rozdzielczością 1280 x 800 pikseli przy czułości 6400 ISO/ASA.
- 6. Kształt i strukturę wewnętrzną impulsowej strugi wodnej, stosowanej zarówno w środowisku wodnym jak i powietrznym, oceniano na podstawie obrazów
zarejestrowanych przy użyciu ultraszybkiej kamery TV typu Phantom V12.1 o maksymalnej szybkostrzelności 1 miliona klatek na sekundę, z rozdzielczością 1280 x 800 pikseli przy czułości 6400 ISO/ASA.

- 7. Badania erozyjności impulsowej strugi wodnej, będącej jednym z podstawowych kryteriów określających technologiczną przydatność zastosowania głowicy pulsacyjnej, polegają na ocenie głębokości rowka wyerodowanego w obrabianym materiale podczas jednorazowego przejścia głowicy odległej od niego o 50 mm z wybraną prędkością posuwu.
- 8. Do badań głowicy pulsacyjnej wykonanej według rozwiązania konstrukcyjnego opracowanego w chińskim Instytucie Ropy Naftowej przygotowano program zawężony do analogicznego zakresu znanego z opublikowanych dokonań zagranicznych, gdyż mają to być typowe badania weryfikacyjne.
- 9. Kompleksowy program badań przeprowadzanych zarówno w środowisku powietrznym jak i wodnym, opracowano dla dwóch samowzbudnych głowic pulsacyjnych własnej konstrukcji przeznaczonych do drążenia otworów i do obróbki powierzchni, których parametry geometryczne zostały zoptymalizowane na podstawie komputerowych badań symulacyjnych.
- 10. Przy wyborze statycznego zdeterminowanego monoselekcyjnego wielokrotnego, planu realizacji niniejszych programów badawczych, oznaczonego w specjalistycznej literaturze symbolem PS/DS-M:M, kierowano się nie tylko kryteriami: realizowalności, informatywności i efektywności badań, ale również jego wcześniejszymi zastosowaniami w pracach badawczych dotyczących wysokociśnieniowej strugi wody.
- 11. Na podstawie wyników badań rozpoznawczych stwierdzono, że w poszczególnych punktach pomiarowych badanych głowic pulsacyjnych należy wykonywać po trzy pomiary paralelne, co przy zachowaniu wysokiej wiarygodności wyników, zapewnia wyraźne zmniejszenie pracochłonności takich badań oraz obniża koszty ich wykonania.

7. BADANIA EKSPERYMENTALNE

Badania eksperymentalne przeprowadzano w celu sprawdzenia możliwości wytwarzania i przydatności strugi wodnej o przepływach odznaczających się okresowo zmiennymi pulsacjami. Przeprowadzano je zwłaszcza po to, aby dokonać weryfikacji wyników badań trzech rozwiązań konstrukcyjnych samowzbudnej głowicy pulsacyjnej zaprojektowanych na podstawie wyników przeprowadzonych symulacjikomputerowych. Pierwsza z nich to głowica opracowana według analogicznego wzoru głowicy wykonanej w Instytucie Ropy Naftowej w Chinach, a dwie następne wykonano z przeznaczeniem do drążenia otworów oraz do obróbki powierzchni.

Dla sprawdzenia funkcjonowania tych głowic przeprowadzano dynamiczne badania głównie przy użyciu piezoelektrycznego czujnika siły, za pomocą którego określano również częstotliwość pulsującej strugi wodnej. Z kolei w celu określenia rozmiarów i kształtu pulsacji takiej strugi oraz jej częstotliwości i równomierności, przepływ strugi rejestrowano przy użyciu ultraszybkiej kamery. Ponadto przeprowadzono badania erozyjności strug wodnych wytwarzanych w głowicach służących do drążenia otworów i obróbki powierzchni.

7.1. Badania charakterystyki strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej opracowanej według dokonań zagranicznych

Opierając się na wcześniejszych dokonaniach osiągniętych w Instytucie Ropy Naftowej w Chinach [85, 106] podjęto się powtórzenia wyników ich badań przy wykorzystaniu analogicznej głowicy, wykonanej w Centrum Niekonwencjonalnych Technologii Hydrostrumieniowych Politechniki Koszalińskiej. Pełniejszą charakterystykę tej głowicy zamieszczono w rozdziale 6.3.1.

7.1.1. Badania pulsacji strugi wodnej przy użyciu piezoelektrycznego czujnika siły

W badaniach własnych charakterystykę samowzbudnej głowicy pulsacyjnej oceniano m.in. na podstawie badań częstotliwości występowania pulsacji w strudze wodnej, co przeprowadzono przy wykorzystaniu ultraszybkiej kamery oraz piezoelektrycznego czujnika siły. Do rejestracji wartości siły wypływającej strugi wykorzystano czujnik siły z przetwornikiem piezoelektrycznym KISTLER-9602AQ01 (bliższe szczegóły w rozdz. 6.1.4). Czujnik siły umieszczony pod samowzbudną głowicą pulsacyjną rejestrował zapis dynamicznych zmian siły naporu badanej strugi pulsacyjnej, przekazując go jednocześnie do jednostki monitorującej proces. Bliższą charakterystykę sposobu przeprowadzania takich badań przedstawiono w rozdz. 6.2.2.

Wyniki badań zmienności ciśnienia strugi wodnej i siły naporu tej strugi, rejestrowane przy użyciu czujnika siły (rys. 7.1), wskazują na występowanie, okresowych impulsów cisnienia na wyjściu z samowzbudnej głowicy pulsacyjnej.

Rys. 7.1. Rozkłady impulsów hydrodynamicznych oraz strugi ciągłej dla ciśnienia 10 MPa, w czasie 0,01 s

Znacznie mniejsze wahania ciśnienia a zarazem sił naporu rejestrowano dla strugi ciągłej. Porównując otrzymane przebiegi, należy zauważyć wyraźne zróźnicowanie ich kształtu oraz bezwzględnych wartości ciśnienia i oddzialywania dynamicznych impulsów naporu strugi wodnej.Natomiest średnia wartość częstotliwości strugi pulsacyjnej dla badanej głowicy przy ciśnieniu nominalnym 10 MPa rejestrowana czujnikiem siły wyniosła 750 Hz.

7.1.2. Badania struktury pulsującej strugi wodnej przy użyciu ultraszybkiej kamery TV

Wizualizację pracy samowzbudnej głowicy pulsacyjnej, a zwłaszcza wytwarzanych w niej impulsów strugi wodnej, dokonywano przy wykorzystaniu ultraszybkiej kamery typu Phantom V12.1, umożliwiającą rejestrację z maksymalną prędkością do 1.000.000 obrazów na sekundę (więcej szczegółów zamieszczono w rozdz. 6.1.4). Poszczególne fazy procesu kształtowania się impulsów w strudze wodnej na wyjściu z samowzbudnej głowicy pulsacyjnej, rejestrowane przez tę kamerę były przekazywane do komputera i analizowane. Bliższą charakterystykę sposobu przeprowadzania takich badań przedstawiono w rozdziale 6.2.1 i 6.2.2.

Dla niższych ciśnień nominalnych, rzędu 10 MPa, wytwarzanych w hydromonitorze P30 (bliższą charakterystykę tego urządzenia zamieszczono w rozdz. 6.1.1) uzyskiwano na wyjściu z głowicy obrazy impulsów o wyraźnie zmiennej strukturze (rys. 7.2).

Rys. 7.2. Przykłady kształtowania się impulsów hydrodynamicznych w strudze podczas pracy głowicy umieszczonej w ośrodku wodnym przy ciśnieniu nominalnym 10 MPa

Z otrzymanych obrazów wynikają wyraźne zmiany ciągłości przepływu strugi wytwarzanej w samowzbudnej głowicy pulsacyjnej. Obliczona średnia wartość częstotliwości wytwarzania takich impulsów hydrodynamicznych, rejestrowana przy użyciu ultraszybkiej kamery, wynosi 720 Hz.

7.1.3. Wnioski

Przeprowadzone badania laboratoryjne charakterystyki ciągłej i pulsującej strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej, opracowanej według dokonań zagranicznych autorów, umożliwiły ocenę kształtu i częstotliwości występowania impulsów hydrodynamicznych. Analiza wyników badań samowzbudnej głowicy pulsacyjnej przeprowadzonych zarówno w środowisku powietrznym jak i wodnym, pozwoliła na sformułowanie poniższych wniosków:

- Zastosowanie piezoelektrycznego czujnika siły umożliwia rejestrację występowania cyklicznych impulsów ciśnienia w strudze wodnej wypływającej z samowzbudnej głowicy pulsacyjnej.
- Rozkłady impulsów hydrodynamicznych pulsującej strugi wodnej są zróżnicowane pod względem kształtu i wartości ciśnień w porównaniu ze strugą ciągłą.

- Charakter generowanych impulsów hydrodynamicznych występujących przy ciśnieniu nominalnym 10 MPa wskazuje na gwałtowne, okresowo-zmienne wahania ciśnienia pulsującej strugi wodnej w zakresie 12÷17 MPa.
- W analogicznych warunkach badań, przeprowadzonych dla ciągłej strugi wodnej, występują mniejsze wahania ciśnienia, rzędu 9÷11 MPa.
- 5. Okresowo-zmienne wartości siły naporu strugi wodnej, rejestrowane piezoelektrycznym czujnikiem siły przy ciśnieniu nominalnym 10 MPa, wykazują występowanie hydrodynamicznych impulsów ciśnienia pojawiających się z częstotliwością około 750 Hz.
- 6. Zmiany ciągłości przepływu strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej przy nominalnym ciśnieniu wody 10 MPa, rejestrowane przy użyciu ultraszybkiej kamery TV, wskazują na wyraźne zróżnicowanie obrazów impulsów hydrodynamicznych występujące z częstotliwością około 720 Hz.
- Częstotliwości impulsów hydrodynamicznych występujących w pulsującej strudze wodnej, rejestrowane przy użyciu piezoelektrycznego czujnika siły i ultraszybkiej kamery, mierzone w różnych fazach czasowych, różnią się zaledwie o 4 %.

7.2. Badania charakterystyki strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej przeznaczonej do drążenia otworów

Samowzbudną głowicę pulsacyjną przeznaczoną do drążenia otworów wybrano (rozdz. 5.2.10) na podstawie przeprowadzonych wcześniej badań symulacyjnych. Odpowiednio dobrana geometria tej głowicy, a zwłaszcza kształt jej komory wirowej i układ otworów bocznych, sprawiają, że wyraziste zawirowania wody powstające w tej komorze intensywnie modulują centralnie przepływającą strugę wodną, wywołując w niej okresowo zmienne pulsacje. Pełniejszą charakterystykę tej głowicy zamieszczono w rozdziale 6.3.1.

7.2.1. Kształtowanie się impulsów wodnych rejestrowanych ultraszybką kamerą TV

W celu oceny przydatności takiej głowicy pulsacyjnej przeznaczonej do drążenia otworów, przeprowadzono badania charakterystyki strugi wodnej, oceniając jej strukturę. Do tego celu wykorzystano ultraszybką kamerę TV typu Phantom V12.1 (więcej szczegółów w rozdz. 6.1.4), którą rejestrowano niejednorodności struktury pulsującej strugi wodnej. Taką głowicę do drążenia otworów badano przy następujących ciśnieniach nominalnych strugi wodnej: 10, 15, 20, 25 MPa.

Kształtowanie się impulsów w strudze wodnej działającej w środowisku powietrznym

Przykłady zarejestrowanych obrazów kształtowania się impulsów hydrodynamicznych dla głowicy pracującej w środowisku powietrznym zaprezentowano rys. 7.3.

Rys. 7.3. Obrazy formowania impulsów hydrodynamicznych podczas pracy głowicy w ośrodku powietrznym pracującej przy ciśnieniu nominalnym: a) 10MPa, b) 15MPa, c) 20MPa, d) 25MPa

Otrzymane wyniki obrazów zarejestrowanych ultraszybką kamerą TV podczas pracy głowicy w ośrodku powietrznym przy różnych ciśnieniach wejściowych wskazują, na nieciągłość strugi wodnej.

Potwierdzenie faktu kształtowania się impulsu wodnego wymaga przeprowadzenia oceny struktury strugi pulsującej generowanej na wyjściu z głowicy przeznaczonej do drążenia otworów. Przykłady pomiaru odległości, w jakiej kształtują się impulsy od dyszy wylotowej badanej głowicy, przedstawiono na rys. 7.4.

Rys. 7.4. Przykładowe obrazy pulsującej strugi wodnej wypływającej z dyszy wylotowej, badane w warunkach powietrznych

Pomiary kształtu impulsów hydrodynamicznych wykonywano przy wykorzystaniu oprogramowania Auto-CAD, umożliwiającego skalowanie zdjęć względem wymiaru charakterystycznego, tj. średnicy dyszy wylotowej. Przykłady takich pomiarów zaprezentowano na rys. 7.4 a zestawienie wyników przedstawiono w tab.7.1.

lp.	Ciśnienie p [MPa]	Odleg	Średnia odległość kształtowania się impulsów [mm]				
1	10	24,44	25,44	24,96	25,45	25,1	25,08
2	15	35,85	35,22	35,81	35,82	35,72	35,68
3	20	41,97	41,23	41,51	40,98	41,02	41,34
4	25	41,57	42,51	42,33	41,52	42,58	42,10

Tab. 7.1.Odległości kształtowania się impulsów hydrodynamicznych od dyszy wylotowej samowzbudnej
głowicy pulsacyjnej przeznaczonej do drążenia otworów, pracującej w środowisku powietrznym.

Średnia odległość badanych impulsów hydrodynamicznych od dyszy wylotowej z takiej głowicy pracującej w środowisku powietrznym, kształtuje się w zakresie 24÷43 mm. Zestawienie średnich wartości odległości kształtowania się impulsów w zależności od ciśnienia przedstawiono na rys. 7.5.

Rys. 7.5. Wpływ ciśnienia wody na odległość kształtowania się impulsów hydrodynamicznych od wylotu z samowzbudnej głowicy pulsacyjnej pracującej w środowisku powietrznym

Z rozkładu zaprezentowanego na rys. 7.5 wynika, że wraz ze wzrostem ciśnienia występuje maksymalny(o 30 % większy) wzrost, gdy ciśnienie zmienia się z 10 MPa na 15 MPa.

Kształtowanie się impulsów w strudze wodnej działającej w środowisku wodnym

Badanie charakterystyki strugi pulsacyjnej generowanej w samowzbudnej głowicy pulsacyjnej przeznaczonej do drążenia otworów, przeprowadzano również dla głowicy pracującej w środowisku wodnym. Przykładowe obrazy niejednorodnej struktury strugi wodnej wytwarzanej w środowisku wodnym, rejestrowane ultraszybką kamerą TV, przedstawiono na rys. 7.6.

Obrazy kształtu strugi pulsującej, generowanej w głowicy do drążenia otworów, zarejestrowane w środowisku wodnym, ukazują przerwany przepływ strugi na wyjściu z głowicy. Na zdjęciach wykonanych ultraszybką kamerą TV można zaobserwować wydłużanie się impulsów wodnych przy wzroście nominalnego ciśnienia wody.

Rys. 7.6. Wyniki kształtowania się impulsów hydrodynamicznych w strudze wodnej podczas pracy głowicy w środowisku wodnym, przy ciśnieniu wejściowym: a) 10 MPa, b) 15 MPa, c) 20 MPa, d) 25 MPa

Do określenia odległości kształtowania się impulsów hydrodynamicznych od wylotu z dyszy wykorzystano ultraszybką kamerę TV, z której otrzymano obrazy kształtowania się impulsów wodnych (rys.7.7) na wyjściu z samowzbudnej głowicy pulsacyjnej do drążenia otworów.

Rys. 7.7. Przykładowe obrazy kształtowania impulsów hydrodynamicznych wytwarzanych w środowisku wodnym

Dokonując analizy obrazów stwierdzono, że w badanym zakresie takie impulsy kształtują się w odległości około 50 mm od dyszy wylotowej. Zestawienie średniej odległości od badanego materiału dla głowicy pracującej w środowisku wodnym przedstawiono tab. 7.2.

lp.	Ciśnienie p [MPa]	Odległ	ość kszt	ałtowani [mm]	Średnia odległość kształtowania się impulsów [mm]		
1	10	30,7	31,1	30,8	30,2	30,1	30,58
2	15	46,5	46,2	47,1	46,8	46,9	46,70
3	20	50,3	50,8	50,2	51,3	50,9	50,70
4	25	55,8	56	56,2	55,4	55,6	55,80

Tab. 7.2. Pomiary odległości kształtowania się impulsów hydrodynamicznych w strudze wodnej wypływającej z dyszy wylotowej głowicy przeznaczonej do drążenia otworów, pracującej w środowisku wodnym

Wyniki średniej odległości impulsów hydrodynamicznych od dyszy wylotowej badanej głowicy pulsacyjnej, zaprezentowano na rys. 7.8.

Rys. 7.8. Wpływ ciśnienia wody na odległość kształtowania się impulsów hydrodynamicznych od wylotu z samowzbudnej głowicy pulsacyjnej, pracującej w środowisku wodnym

Z badań tych wynika jednoznacznie, że ze wzrostem ciśnienia strugi wodnej występuje "rozciąganie się" impulsów hydrodynamicznych a jego uformowanie następuje w coraz to większej odległości od dyszy wylotowej.

7.2.2. Częstotliwość występowania impulsów wodnych rejestrowanych ultraszybką kamerą TV

Pomiary częstotliwości występowania impulsów wodnych (metodyka pomiarów w rozdz. 6.2.2) rejestrowanych na wylocie z samowzbudnej głowicy pulsacyjnej

przeznaczonej do drążenia otworów wykonano przy użyciu ultraszybkiej kamery TV typu Phantom V12.1 (więcej szczegółów w rozdz. 6.1.4). Zapis z kamery do programu Cine Viewer 675, umożliwia zliczanie liczby impulsów hydrodynamicznych występujących w analizowanym okresie czasu.

Częstotliwość występowania impulsów w strudze wodnej będącej w środowisku powietrznym

Rejestrację częstotliwości strugi pulsacyjnej głowicy pracującej w środowisku powietrznym wykonano dla głowicy do drążenia otworów przy ciśnieniu roboczym: 10, 15, 20, 25 MPa. Wyniki pomiarów częstotliwości impulsów hydrodynamicznych występujących w strugach wodnych o różnych ciśnieniach, przedstawiono narys. 7.9.

Rys. 7.9. Wpływ nominalnego ciśnienia wody na częstotliwość impulsów zarejestrowanych ultraszybką kamerą, dla głowicy przeznaczonej do drążenia otworów pracującej w środowisku powietrznym

Wzrost nominalnego ciśnienia wody powodujący zwiększanie prędkości wypływu strugi generowanej w samowzbudnej głowicy pulsacyjnej, skutkuje obniżeniem częstotliwości występowania impulsów hydrodynamicznych. Przykładową ilustracją takiej zależności może być wykres zaprezentowany na rys. 7.9. Zależność tę bardzo dokładnie (R^2 =0,99) opisuje następujące równanie empiryczne:

$$f = -1470 \ln(p) + 13583. \tag{7.1}$$

Wyniki zaprezentowane na rys. 7.11 przedstawiają około 7 % spadek częstotliwości przy każdorazowym wzroście ciśnienia o 5 MPa.

Częstotliwość występowania impulsów w strudze wodnej działającej w środowisku wodnym

Badanie częstotliwości generowanych impulsów wodnych w głowicy pulsacyjnej do drążenia otworów przeprowadzono również w środowisku wodnym. Przykładowe wyniki takich pomiarów wykonanych z wykorzystaniem ultraszybkiej kamery TV zaprezentowano na rys. 7.10. Wykres ten ilustruje oddziaływanie nominalnego ciśnienia wody na częstotliwość pulsacji występujących w takich warunkach pracy strugi wodnej.

Rys. 7.10. Wpływ nominalnego ciśnienia wody na częstotliwość rejestrowanych impulsów hydrodynamicznych, wytwarzanych w samowzbudnej głowicy pulsacyjnej przeznaczonej do drążenia otworów, pracującej w środowisku wodnym

Pomiary wykonane w środowisku wodnym przy wykorzystaniu oprogramowania Cine Viewer 675 wykazały, że wzrost ciśnienia skutkuje obniżeniem częstotliwości występowania impulsów hydrodynamicznych co można opisać następującą zależnością empiryczną:

$$f = -687 \ln(p) + 3403. \tag{7.2}$$

Na podstawie tego dokładnego ($R^2=0,97$) wzoru można dla ciśnienia wejściowego wybranego spośród rozpatrywanego zakresu warunków fizycznych, określić częstotliwość występowania impulsów hydraulicznych generowanych w strudze wodnej wypływającej z takiej właśnie samowzbudnej głowicy pulsacyjnej.

7.2.3. Częstotliwość występowania impulsów wodnych w pulsującej strudze wodnej, rejestrowana piezoelektrycznym czujnikiem siły

Badanie częstotliwości występowania impulsów wodnych w pulsującej strudze wodnej, generowanej w samowzbudnej głowicy pulsacyjnej przeznaczonej do drążenia otworów (bliższa charakterystyka w rozdz. 5.2.10), wykonano również przy wykorzystaniu piezoelektrycznego czujnika siły (szczegóły w rozdz. 6.2.2). Jest to najłatwiejsza metoda

rejestrowania rozkładu impulsów hydraulicznych powstających w strugach wodnych wytwarzanych w samowzbudnej głowicy pulsacyjnej w określonym, na ogół bardzo krótkim przedziale czasu. Badania takie przeprowadzono przy ciśnieniach nominalnych: 10, 15, 20 i 25 MPa w odległości głowicy od czujnika siły równej 50 mm.

Częstotliwość występowania impulsów w strudze wodnej będącej w środowisku powietrznym

Badania częstotliwości występowania impulsów hydraulicznych w strudze wodnej generowanej w głowicy do drążenia otworów w środowisku powietrznym (szczegółowy opis stanowiska badawczego w rozdz. 6.1.2), przeprowadzano przy różnych ciśnieniach nominalnych (10, 15, 20, 25 MPa). W tego rodzaju pomiarach stosowano piezoelektryczny czujnik siły typu KISTLER 9602AQ01 (szczegóły w rozdz. 6.1.4), który instalowano w odległości 50mm od wylotu z głowicy pulsacyjnej, która to odległość została ustalona w badaniach wykonanych przy użyciu ultraszybkiej kamery TV.

Przykładowe wyniki rozkładów impulsów hydrodynamicznych oraz przebiegi siły naporu strugi wodnej, wybranych dla jednakowego przedziału czasu liczącego 4 ms, jakie zarejestrowano w strugach wodnych, działających w środowisku powietrznym przy zróżnicowanych ciśnieniach nominalnych, przedstawiono odpowiednio: dla p=10 MPa na rys.7.11, dla p=15 MPa na rys.7.12, dla p=20 MPa na rys.7.13 oraz dla p=25 MPa na rys.7.14

Rys. 7.11. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 10 MPa w odległości 50 mm od wylotu z głowicy pulsacyjnej), wytwarzanej w głowicy do drążenia otworów w środowisku powietrznym oraz wibrujące przebiegi ciśnienia w analogicznej strudze ciągłej

Rys. 7.12. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 15 MPa w odległości 50 mm od wylotu z głowicy pulsacyjnej), wytwarzanej w głowicy do drążenia otworów w środowisku powietrznym oraz wibrujące przebiegi ciśnienia w analogicznej strudze ciągłej

Rys. 7.13. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 20 MPa w odległości 50 mm od wylotu z głowicy pulsacyjnej), wytwarzanej w głowicy do drążenia otworów w środowisku powietrznym oraz wibrujące przebiegi ciśnienia w analogicznej strudze ciągłej

Rys. 7.14. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 25 MPa w odległości 50 mm od wylotu z głowicy pulsacyjnej), wytwarzanej w głowicy do drążenia otworów w środowisku powietrznym oraz wibrujące przebiegi ciśnienia w analogicznej strudze ciągłej

Analiza wyników rozkładów impulsów hydraulicznych wykazała, że przy każdorazowym wzroście nominalnego ciśnienia wody o 5 MPa następuje zwiększenie chwilowego ciśnienia takich impulsów. Dla najniższych ciśnień strugi wodnej taki chwilowy wzrost ciśnienia wynosi około 53 % i kolejno: dla średnich wartości ciśnienia strugi wzrasta o około 35 %, a najmniejszy wzrost (około 26 %) występuje dla strugi wodnej generowanej przy najwyższych ciśnieniach nominalnych.

Zmienne wartości siły naporu generowane w samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni, zarejestrowane przy nominalnych ciśnieniach 10÷25 MPa potwierdzają występowanie impulsów hydraulicznych. Wraz ze wzrostem nominalnego ciśnienia wody częstotliwość występowania impulsu sił naporu ulega obniżeniu. Zarejestrowany przebieg siły naporu strugi wodnej przy każdorazowym wzroście ciśnienia o 5 MPa odznacza się chwilowym zwiększeniem siły naporu o około 15,8 N dla ciśnień najniższych oraz średnich oraz około 11 N dla ciśnień najwyższych (rzędu 15÷20 MPa).

Stwierdzono ponadto spadek częstotliwości występowania pulsacji w strudze wodnej pod wpływem wzrostu nominalnego ciśnienia wody. Graficzną ilustrację przebiegu tej częstotliwości pulsowania strugi wodnej, przedstawiono na rys.7.15.

Rys. 7.15. Wpływ nominalnego ciśnienia wody na częstotliwość pulsacji strugi wodnej generowanej w głowicy przeznaczonej do drążenia otworów w środowisku powietrznym

Zależnośćtakiejczęstotliwościodnominalnegociśnieniawodyopisujenastępującywzóremp iryczny:

$$f = -1617 \ln(p) + 14288. \tag{7.3}$$

Równanie (7.3) jest bardzo dobrze dopasowanym zapisem wyników uzyskanych eksperymentalnie, o czym świadczy wysoki współczynnik regresji (R^2 =0,98).

Częstotliwość występowania impulsów w strudze wodnej działającej w środowisku wodnym

Badania częstotliwości występowania impulsów hydraulicznych w strudze wodnej generowanej w głowicy do drążenia otworów przeprowadzono również w środowisku wodnym. Pomiary wykonywano instalując piezoelektryczny czujnik siły w zbiorniku wodnym w odległości 50mm od głowicy pulsacyjnej (szczegółowy opis w rozdz. 6.1.3).

Typowe przykłady chwilowych rozkładów ciśnienia oraz sił naporu pulsującej i ciągłej strugi wodnej, zarejestrowane czujnikiem siły z przetwornikiem piezoelektrycznym KISTLER 9602AQ01 (szczegóły w rozdz. 6.1.4) w czasie 10 ms, przy różnych ciśnieniach nominalnych(10, 15, 20, 25 MPa) zaprezentowano na kilku odpowiednich rys. 7.16÷7.19.

Rys. 7.16. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 10 MPa w odległości 50 mm od wylotu z głowicy pulsacyjnej), wytwarzanej w głowicy do drążenia otworów w środowisku wodnym oraz w strudze "ciągłej" pracującej w analogicznych warunkach

Rys. 7.17. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 15 MPa w odległości 50 mm od wylotu z głowicy pulsacyjnej), wytwarzanej w głowicy do drążenia otworów w środowisku wodnym oraz w strudze "ciągłej" pracującej w analogicznych warunkach

Rys. 7.18. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 20 MPa w odległości 50 mm od wylotu z głowicy pulsacyjnej), wytwarzanej w głowicy do drążenia otworów w środowisku wodnym oraz w strudze "ciągłej" pracującej w analogicznych warunkach

Rys. 7.19. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 25 MPa w odległości 50 mm od wylotu z głowicy pulsacyjnej), wytwarzanej w głowicy do drążenia otworów w środowisku wodnym oraz w strudze "ciągłej" pracującej w analogicznych warunkach

Analiza takich rozkładów impulsów hydrodynamicznych wykazała, że przy każdorazowym wzroście nominalnego ciśnienia wody o 5 MPa następuje wyraźne zwiększenie chwilowego ciśnienia impulsów hydrodynamicznych. Dla najniższych ciśnień strugi wodnej taki chwilowy wzrost ciśnienia wynosi rzędu aż 100 %.Dla średnich wartości nominalnego ciśnienia (rzędu 15÷20 MPa) chwilowy wzrost ciśnienia jest rzędu 50 %, natomiast dla strugi wodnej generowanej przy najwyższych ciśnieniach nominalnych, średnie wartości zwiększenia chwilowych ciśnień impulsów hydrodynamicznych wynoszą17 %.

Przebiegi sił naporu strugi wodnej przy każdorazowym wzroście ciśnienia o 5 MPa wskazują na chwilowe zwiększenie siły naporu o około 12,6 N dla ciśnień najniższych oraz około 9,1 N dla ciśnień średnich oraz najwyższych (rzędu 15÷20MPa oraz 20÷25 MPa).

W wyniku przeprowadzonych badań stwierdzono ponadto, że pod wpływem wzrostu nominalnego ciśnienia wody występuje zmniejszanie się częstotliwości pulsacji ciśnienia w strudze wodnej. Przykładowy wykres częstotliwości pulsowania takiej strugi wodnej, przedstawiono na rys.7.20.

Rys. 7.20. Przebieg częstotliwości impulsów hydrodynamicznych rejestrowana czujnikiem siły dla samowzbudnej głowicy pulsacyjnej przeznaczonej do drążenia otworów pracującej w środowisku wodnym

Jak zatem wynika z przeprowadzonych badań taki przebieg częstotliwości występowania impulsów hydrodynamicznych daje się opisać następującą zależnością empiryczną:

$$f = -611 \ln(p) + 3239. \tag{7.4}$$

Na podstawie tej zależności (o dokładności odwzorowania określonej wysokim współczynnikiem regresji R^2 =0,98) da się obliczyć częstotliwość występowania impulsów hydrodynamicznych przy różnych ciśnieniach zawierających się w badanym zakresie ich zmienności.

7.2.4. Przydatność metod pomiaru częstotliwości występowania impulsów hydrodynamicznych w pulsującej strudze wodnej

Do określania częstotliwości występowania impulsów hydrodynamicznych w strudze wodnej stosowanej w obydwu badanych środowiskach (powietrznym i wodnym), używano zarówno piezoelektryczny czujnik siły, jak i wykorzystywano ultraszybką kamerę TV. Bliższą charakterystykę zastosowanej aparatury pomiarowej przedstawiono w rozdz. 6.1.4.

Wyniki częstotliwości występowania takich impulsów, określone obydwiema wspomnianymi metodami podczas pracy samowzbudnej głowicy pulsacyjnej w środowisku powietrznym, przedstawiono na rys. 7.21.

Rys. 7.21. Przebiegi częstotliwości pulsacji strugi wodnej wytwarzanej przy różnych ciśnieniach w samowzbudnej głowicy pulsacyjnej przeznaczonej do drążenia otworów, pracującej w środowisku powietrznym, określane przy użyciu ultraszybkiej kamery i piezoelektrycznego czujnika siły

Widok obydwu takich przebiegów wykazuje zarówno zbliżony charakter jakościowy, jak i bardzo dobrą zbieżność ilościową, obydwu porównywanych przebiegów. Wykresy te praktycznie się pokrywają, a największe rozbieżności częstotliwości pulsacji hydrodynamicznych występują w zakresie najmniejszych ciśnień (10 MPa). W takich to warunkach częstotliwość zarejestrowana piezoelektrycznym czujnikiem siły przewyższa zaledwie 2,63 % wyniki uzyskane przy użyciu ultraszybkiej kamery TV.

Zbliżone oceny wyników badań dotyczących częstotliwości hydrodynamicznych pulsacji strugi wodnej, występujących podczas pracy samowzbudnej głowicy pulsacyjnej w środowisku wodnym, zaprezentowano na rys. 7.22. Również i one przedstawiają bardzo zbliżone częstotliwości występowania takich impulsów wodnych rejestrowanych ultraszybką kamerą TV oraz piezoelektrycznym czujnikiem siły. Także i w tym przypadku, przy praktycznie pokrywających się wykresach, nieznacznie wyższe (o 3,75 %) częstotliwości rejestruje piezoelektryczny czujnik siły, jednak tym razem różnice te występują w obszarze największych wartości stosowanych ciśnień.

Rys. 7.22. Przebiegi częstotliwości pulsacji strugi wodnej wytwarzanej przy różnych ciśnieniach w samowzbudnej głowicy pulsacyjnej przeznaczonej do drążenia otworów pracującej w środowisku wodnym, określane przy użyciu ultraszybkiej kamery i piezoelektrycznego czujnika siły

Wartości częstotliwości występowania impulsów hydraulicznych zarejestrowanych zarówno przy wykorzystaniu piezoelektrycznego czujnika siły, jak i ultraszybkiej kamery TV w obu badanych środowiskach, są odwrotnie proporcjonalne do nominalnego ciśnienia wody zasilającej samowzbudną głowicę pulsacyjną.

7.2.5. Erozyjność pulsującej strugi wodnej

Ocena erozyjności strugi pulsacyjnej jest jednym z kryteriów określających przydatność zastosowania głowicy do drążenia otworów. Badania erozyjności strugi wodnej polegają na ocenie głębokości rowka wyerodowanego w obrabianym materiale podczas jednorazowego przejścia głowicy odległej od niego o 50 mm z wybraną prędkością posuwu. Bliższą charakterystykę sposobu oceny erozyjności impulsowej strugi wodnej przedstawiono w rozdz. 6.2.3.

Ze względu na możliwości technologiczne wykonania stanowiska laboratoryjnego do realizacji badań erozyjności strugi pulsacyjnej w środowisku wodnym, na którym nie występowałyby niekontrolowane "rozbryzgi" strugi w warunkach laboratoryjnych, możliwe było przeprowadzenie tylko badań takiej erozyjności dla głowicy pracującej w środowisku powietrznym.

Efektywność pulsacyjnej i ciągłej strugi wodnej, wytwarzanych w głowicy pracującej w środowisku powietrznym, obrazują histogramy przedstawione na rys. 7.23 (dla prędkości posuwu 3 i 6 mm/s) oraz na rys.7.24 (dla prędkości posuwu 9 i 12 mm/s).

Rys. 7.23. Porównanie głębokości erodowania betonu komórkowego strugą wodną (pulsującą i bez pulsacji), wytwarzanymi w głowicy do drążenia otworów z prędkością posuwu: a) 3 mm/s, b) 6 mm/s

Rys. 7.24. Porównanie głębokości erodowania betonu komórkowego strugą wodną (pulsującą i bez pulsacji), wytwarzanymi w głowicy do drążenia otworów z prędkością posuwu: a) 9 mm/s, b) 12 mm/s

Otrzymane wyniki erodowania materiału obrabianego strugą wodną wytwarzaną w głowicy przeznaczonej do drążenia otworów, pracującej w środowisku powietrznym, wykazały, że dla przebadanych zakresów ciśnienia i prędkości posuwowej, nie stwierdzono istotnego wzrostu erozyjności pulsującej strugi wodnej względem strugi bez pulsacji.

7.2.6. Wnioski

Analiza przeprowadzonych badan laboratoryjnych, dotyczących charakterystyki strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej przeznaczonej do drążenia otworów, pozwoliła na określenie kształtu oraz częstotliwości impulsów hydrodynamicznych, rejestrowanych w środowisku wodnym i powietrznym oraz umożliwiła sformułowanie następujących wniosków:

- Wykorzystanie ultraszybkiej kamery TV pozwala na rejestracje obrazów impulsów hydrodynamicznych generowanych w samowzbudnej głowicy pulsacyjnej. Takie obrazy zarejestrowane dla nominalnych ciśnień wody:10, 15, 20, 25 MPa, podczas pracy głowicy w środowisku powietrznym, wskazują jedynie na występowanie nieciągłości strugi wodnej. Natomiast obrazy kształtu takiej strugi generowanej w środowisku wodnym wskazują na wyraźnie przerywany jej przepływ.
- Ocena struktury strugi pulsacyjnej na wyjściu z głowicy pozwoliła wyznaczyć średnią odległość kształtowania się impulsów dla przebadanych wartości ciśnień nominalnych (10, 15, 20, 25 MPa).
- Wraz ze wzrostem wartości ciśnienia nominalnego zaobserwowano różne odległości kształtowania się impulsów wodnych zarówno dla głowicy pracującej w środowisku powietrznym oraz w środowisku wodnym.
- 4. Średnia odległość kształtowania się impulsów hydrodynamicznych od wylotu z głowicy pracującej w środowisku wodnym jest (w zakresie analizowanych wartości ciśnień) większa o 18÷25%,niż podczas pracy w środowisku powietrznym.
- 5. Wzrost nominalnego ciśnienia wody wywołuje spadek częstotliwości impulsów hydrodynamicznych, rejestrowanych przy użyciu ultraszybkiej kamery TV, w pulsującej strudze wodnej wytwarzanej w głowicy pracującej zarówno w środowisku wodnym, jak i powietrznym.
- 6. Najwyższą średnią wartość częstotliwości występowania impulsów hydrodynamicznych (10417 Hz) uzyskano przy użyciu głowicy pracującej w środowisku powietrznym przy ciśnieniu nominalnym 10 MPa, co stanowi około 570% wzrostu w stosunku do głowicy pracującej w środowisku wodnym, której zarejestrowana częstotliwość przy tym samym ciśnieniu wyniosła 1800 Hz.
- 7. Wraz ze wzrostem nominalnego ciśnienia wody średnie wartości częstotliwości występowania impulsów hydrodynamicznych wytwarzanych w samowzbudnej głowicy pulsacyjnej, rejestrowane przy wykorzystaniu ultraszybkiej kamery TV w środowisku powietrznym, wykazują spadek częstotliwości o około 5% przy każdorazowym wzroście ciśnienia o 5 MPa.
- Spadek częstotliwości impulsów hydrodynamicznych wytwarzanych w głowicy pracującej w środowisku wodnym, rejestrowanych ultraszybką kamerą TV, przy każdorazowym wzroście ciśnienia o 5 MPa wynosi około 10%.
- 9. Pomiary częstotliwości występowania impulsów hydrodynamicznych w strudze wodnej wytwarzanej w głowicy pulsacyjnej, pracującej zarówno w środowisku

powietrznym, jak i wodnym, przeprowadzone przy wykorzystaniu piezoelektrycznego czujnika siły, wykazały podobne charakterystyki jakościowe i dobrą zbieżność ilościową, z pomiarami przeprowadzonymi przy użyciu ultraszybkiej kamery TV. Największe rozbieżności częstotliwości występowania impulsów hydrodynamicznych, wynoszące 2,63 % dla głowicy pracującej w środowisku powietrznym, występują w zakresie najniższych ciśnień nominalnych 10 MPa, natomiast dla głowicy pracującej w środowisku wodnym największe rozbieżności (3,75 %) występują dla najwyższych przebadanych ciśnień nominalnych.

- 10. Rozkłady impulsów hydrodynamicznych rejestrowane czujnikiem siły, które są wytwarzane w samowzbudnej głowicy pulsacyjnej, pracującej w środowisku powietrznym przy ciśnieniach nominalnych 10, 15, 20, 25 MPa, wskazują, że przy każdorazowym wzroście nominalnego ciśnienia wody o 5 MPa następuje zwiększenie chwilowego ciśnienia generowanych impulsów. Dla najwyższych nominalnych ciśnień wody (25 MPa), taki chwilowy wzrost ciśnienia strugi wodnej wynosi około 26 %, natomiast dla najniższego ciśnienia nominalnego 10 MPa wzrasta ono około 53 %.
- 11. Rozkłady impulsów hydrodynamicznych dla głowicy pracującej w środowisku wodnym przy analizowanych ciśnieniach nominalnych również wykazują wyraźne zwiększenie chwilowego ciśnienia impulsów hydraulicznych przy każdorazowym wzroście tego ciśnienia o 5 MPa. Dla najwyższych wartości nominalnego ciśnienia (25 MPa) wzrost ten wynosi zaledwie 17 %. Dla średnich wartości nominalnego ciśnienia (rzędu 15÷20 MPa) chwilowy wzrost ciśnienia jest rzędu 50 %, natomiast dla ciśnienia 10 MPa wzrost taki sięgał nawet 100 %.
- 12. Wzrost nominalnego ciśnienia wody zasilającej samowzbudną głowicę pulsacyjną przeznaczoną do drążenia otworów, powoduje zwiększenie średniej wartości siły naporu pulsującej strugi wodnej pracującej zarówno w środowisku powietrznym, jak i wodnym.
- 13. Samowzbudna głowica pulsacyjna pracująca w środowisku wodnym wytwarza strugę wodną odznaczającą się wyższymi wartościami średnimi siły naporu w porównaniu do analogicznej strugi wodnej stosowanej w środowisku powietrznym. Największy, 50% wzrost siły naporu, występuje przy nominalnym ciśnieniu wody równym 20 MPa, natomiast najmniejszy wzrost, sięgający zaledwie rzędu 5 %, zaobserwowano przy ciśnieniu 10 MPa.

- 14. Samowzbudna głowica pulsacyjna pracująca w środowisku wodnym zapewnia znaczący wzrost chwilowych dynamicznych naporów strugi wodnej, w porównaniu z głowicą pracującą w środowisku powietrznym. Przykładowo, dla nominalnych ciśnień średnich i najwyższych wzrost taki wynosi nawet o 82%, natomiast dla ciśnień najniższych (10 MPa)chwilowe wartości siły naporu zwiększają się o 46%.
- 15. Wyniki erodowania materiału obrabianego strugą wodną wytwarzaną w głowicy przeznaczonej do drążenia otworów, pracującej w środowisku powietrznym, wykazały, że dla przebadanych zakresów nominalnego ciśnienia wody i prędkości posuwowej strugi wodnej, nie stwierdzono istotnego wzrostu erozyjności pulsującej strugi wodnej, względem analogicznej strugi wodnej bez pulsacji.

7.3. Badania charakterystyki strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni

Samowzbudną głowicę pulsacyjną przeznaczoną do obróbki powierzchni wybrano (rozdz. 5.3.5) na podstawie przeprowadzonych wcześniej badań symulacyjnych. Dzięki odpowiednio dobranej geometrii tej głowicy, a zwłaszcza ukształtowaniu jej komory wirowej i otworów bocznych, uzyskuje się w tej komorze odpowiednie zawirowania wody, które intensywnie oddziałują na przepływającą strugę wodną, wywołując w niej okresowo zmienne pulsacje. Pełną charakterystykę tej głowicy pulsacyjnej zamieszczono w rozdziale 6.3.1.

7.3.1. Kształtowanie się impulsów wodnych rejestrowanych ultraszybką kamerą TV

Dla oceny funkcjonowania wybranej samowzbudnej głowicy pulsacyjnej w pierwszej kolejności przeprowadzono laboratoryjne badania kształtu generowanych w niej impulsów hydrodynamicznych. Do tego celu wykorzystano ultraszybką kamerę TV typu Phantom V12.1 (więcej szczegółów w rozdz. 6.1.4), którą rejestrowano niejednorodności struktury przepływającej strugi wodnej. Taką głowicę przeznaczoną do obróbki powierzchni badano przy różnych ciśnieniach nominalnych w zależności od rodzaju środowiska pracy.

Kształtowanie się impulsów w strudze wodnej działającej w środowisku powietrznym

W operacjach czyszczenia lub obróbki powierzchni przy użyciu strugi wodnej generowanej w takiej głowicy pulsacyjnej stosowano strugę wodną wytwarzaną przy ciśnieniu nominalnym: 5, 10, 15, 20 MPa. Przykładowe obrazy ciągłej i pulsującej strugi

wodnej, generowanych w środowisku powietrznym przy różnych ciśnieniach, zaprezentowano rys. 7.25.

Rys. 7.25. Obrazy ciągłej i pulsującej strugi wodnej generowane w środowisku powietrznym przy różnym ciśnieniu nominalnym: a - 5 MPa, b - 10 MPa, c - 15 MPa, c - 20 MPa rejestrowane przy użyciu ultraszybkiej kamery TV

W porównaniu do obrazów ciągłej strugi wodnej generowanej w środowisku powietrznym, kształty analogicznych strug pulsujących wykazują istnienie strukturalnych nieciągłości takiej strugi.

W celu określenia odległości kształtowania się impulsów od wylotu z samowzbudnej głowicy pulsacyjnej wykorzystano ultraszybką kamerę TV, z której otrzymywane obrazy zaprezentowane na rys 7.26, konwertowano i mierzono skalując je z wykorzystaniem programu Auto-CAD.

Rys. 7.26. Przykładowe obrazy odległości kształtowania się impulsów hydrodynamicznych od wylotu z pulsacyjnej głowicy przeznaczonej do obróbki powierzchni w środowisku powietrznym

Pomiaru odległości kształtowania się impulsów hydrodynamicznych dla głowicy przeznaczonej do obróbki powierzchni, której szczegółową budowę zaprezentowano w podrozdziale 6.3.1, wykonano z uwzględnieniem wymiarów konstrukcyjnych, a w szczególności konieczności zastosowania w dyszy wylotowej gniazda pod klucz nimbusowy o głębokości 7 mm. Z otrzymanych wyników odległości niezbędnej dla ukształtowania się impulsów hydrodynamicznych od wylotu z dyszy określono, że optymalna odległość oddziaływania pulsującej strugi wodnej na obrabiany materiał wynosi 15 mm. Jednak ze względu na niejednorodności struktury strugi, występujące również w większej odległości od samowzbudnej głowicy pulsacyjnej, postanowiono także przeprowadzić badania przydatności takiej strugi wodnej oddziałującej w odległości 60 mm od materiału obrabianego.

Kształtowanie się impulsów w strudze wodnej działającej w środowisku wodnym

Szczegóły zastosowanej tu metodyki badania sposobu powstawania impulsów hydrodynamicznych w strudze wodnej generowanej w głowicy pracującej w środowisku wodnym, przedstawiono we wcześniejszym rozdz. 6.2.1. Najogólniej rzecz biorąc, jest ona zbliżona do poprzedniej (dla środowiska powietrznego) i polega ona na analizie obrazów kształtów strugi wodnej zarejestrowanych ultraszybką kamerą TV. Badania takie przeprowadzono dla ciśnień nominalnych zawartych w przedziale 10÷45 MPa, z krokiem zmienności równym 5 MPa. Przykłady typowych kształtów strugi wodnej generowanej w głowicy pracującej w środowisku wodnym, zaprezentowano na rys. 7.27.

Rys. 7.27. Typowe kształty strugi wodnej o strukturze ciągłej i pulsującej, generowanej w głowicy do obróbki powierzchni w środowisku wodnym przy następujących ciśnieniach nominalnych: a - 10 MPa, b - 15 MPa, c - 20 MPa, d - 25MPa, e - 30 MPa, f - 35 MPa, g - 40 MPa, h - 45 MPa

Analiza takich obrazów wykazuje, że proces kształtowania się każdego impulsu hydrodynamicznego w strudze wodnej, generowanej w samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni w środowisku wodnym, rozpoczyna się zaraz po jej wypłynięciu z dyszy wylotowej i w miarę oddalania się od niej następuje coraz to wyraźniejszy podział tej strugi. Na podstawie przeglądu licznych obrazów strugi wodnej określono także typowe odległości niezbędne dla uformowania impulsów hydrodynamicznych od dyszy wylotowej, występujące przy rożnych wartościach nominalnego ciśnienia wody.

Przykładowe obrazy tego rodzaju kształtów strug wodnych, generowanych w głowicy przeznaczonej do obróbki powierzchni w środowisku wodnym, zaprezentowano na rys. 7.28.

Rys. 7.28. Przykładowe obrazy odległości kształtowania się impulsów hydrodynamicznych (dla różnych ciśnień wody) od wylotu z głowicy przeznaczonej do obróbki powierzchni w środowisku wodnym

Na podstawie powyższych analiz określono optymalną odległość dla ukształtowania się impulsów hydrodynamicznych w strudze wodnej po wylocie z samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni w środowisku wodnym, która wynosi 15 mm. Ponadto, ze względu na wydłużające się impulsy hydrodynamiczne, generowane zwłaszcza w zakresie wyższych ciśnień wody, można oczekiwać zwiększonej erozyjności takiej strugi w obszarze odległym o 60 mm od wylotu z głowicy pulsacyjnej.

7.3.2. Częstotliwość występowania impulsów hydrodynamicznych w środowisku wodnym, rejestrowana ultraszybką kamerą TV

Nakładające się na siebie pulsacje strugi wodnej generowane w głowicy przeznaczonej do obróbki powierzchni w środowisku powietrznym, skutecznie utrudniają dokładne rejestrowanie czestotliwości występowania takich impulsów przy użyciu kamery TV. Z powyższych względów tego rodzaju badania częstotliwości występowania takich impulsów przeprowadzono wyłącznie w warunkach pracy takiej głowicy w środowisku wodnym. Wyniki uzyskane w tego rodzaju badaniach przedstawiono na rys 7.29.

Rys. 7.29. Wpływ nominalnego ciśnienia wody na średnią częstotliwość występowania impulsów hydrodynamicznych w strudze wodnej, wytwarzanej w głowicy pulsacyjnej przeznaczonej do obróbki powierzchni w środowisku wodnym, określony przy użyciu ultraszybkiej kamery TV

Jak wynika z przeprowadzonych badań, pod wpływem wzrostu nominalnego ciśnienia wody występuje zmniejszanie się częstotliwości pulsacji ciśnienia w strudze wodnej. Ponadto, ze względu na znacznie większą gęstość i sprężystość środowiska wodnego, częstotliwość pulsacji strugi wodnej w takich warunkach jest znacznie niższa, niż w powietrzu.

Wzrost nominalnego ciśnienia pulsującej strugi wodnej powoduje obniżenie częstotliwości impulsów wodnych generowanych w takich warunkach, zgodnie z następującą zależnością:

$$f = -408 \ln(p) + 2553. \tag{7.5}$$

Przebieg uśrednionych wartości empirycznej funkcji opisanej zależnością (7.5), został odtworzony z zadowalającą dokładnością techniczną, o czym świadczy wartość współczynnika regresji (R^2 =0,96).

7.3.3. Częstotliwość występowania impulsów hydrodynamicznych w pulsującej strudze wodnej, rejestrowana piezoelektrycznym czujnikiem siły

Badanie częstotliwości występowania impulsów hydrodynamicznych w pulsującej strudze wodnej, generowanej w samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni (o charakterystyce zamieszczonej w rozdz. 5.3.5), wykonano również przy

wykorzystaniu piezoelektrycznego czujnika siły typu KISTLER 9602AQ01 (szczegóły w rozdz. 6.1.4 i 6.2.2). Jest to najłatwiejsza metoda rejestrowania rozkładu impulsów hydrodynamicznych powstających w strugach wodnych wytwarzanych w samowzbudnej głowicy pulsacyjnej w określonym, na ogół bardzo krótkim przedziale czasu. Badania takie prowadzono z odległości głowicy od piezoelektrycznego czujnika siły równej 15 mm, zarówno w środowisku powietrznym, jaki wodnym.

Częstotliwość występowania impulsów w strudze wodnej będącej w środowisku powietrznym

Badania częstotliwości występowania impulsów hydrodynamicznych w strugach wodnych pracujących w środowisku powietrznym przeprowadzono przy nominalnych ciśnieniach: 5, 10, 15, 20 MPa. Do rejestrowania chwilowych przebiegów ciśnienia stosowano piezoelektryczny czujnik siły a częstotliwość pulsacji określano na podstawie zapisów zrobionych w czasie 5 ms.

Przykładowe obrazy przebiegów chwilowych rozkładów ciśnienia dla ciągłej i pulsującej strugi wodnej przedstawiono na rys. 7.30 dla p=5 MPa, i dalej kolejno: na rys. 7.31 dla p=10 MPa, narys. 7.32 dla p=15 MPa, narys. 7.33 dla p=20 MPa.

Rys. 7.30. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 5 MPa w odległości 15 mm od głowicy pulsacyjnej), wytwarzanej w głowicy do obróbki powierzchni w środowisku powietrznym oraz w strudze "ciągłej" pracującej w analogicznych warunkach

Rys. 7.31. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 10 MPa w odległości 15 mm od głowicy pulsacyjnej), wytwarzanej w głowicy do obróbki powierzchni w środowisku powietrznym oraz w strudze "ciągłej" pracującej w analogicznych warunkach

Rys. 7.32. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 15 MPa w odległości 15 mm od głowicy pulsacyjnej), wytwarzanej w głowicy do obróbki powierzchni w środowisku powietrznym oraz w strudze "ciągłej" pracującej w analogicznych warunkach

Rys. 7.33. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 20 MPa w odległości 15 mm od głowicy pulsacyjnej), wytwarzanej w głowicy do obróbki powierzchni w środowisku powietrznym oraz w strudze "ciągłej" pracującej w analogicznych warunkach

Analiza powyższych rozkładów impulsów hydrodynamicznych, występujących w strudze pulsującej, wykazała, że przy każdorazowym wzroście nominalnego ciśnienia wody o 5 MPa następuje wyraźne zwiększenie zarówno chwilowego, jak i średniego ciśnienia tych impulsów. Przy czym stałe skokowe wzrastanie nominalnego ciśnienia wody sprawia, że zwiększenie średniego ciśnienia impulsów hydrodynamicznych staje się coraz to mniejsze. Dlatego przy najniższych wartości nominalnych ciśnień strugi wodnej średni wzrost ciśnienia impulsów hydrodynamicznych powiększa się aż o około 112 %. Z kolei dla średnich wartości nominalnego ciśnienia taki wzrost ciśnienia wynosi około 52 %, natomiast przy najwyższych ciśnieniach nominalnych, średni przyrost ciśnienia impulsów hydrodynamicznych osiąga wartość około 35 %.

Z kolei przebiegi sił naporu strugi wodnej, przy każdorazowym wzroście ciśnienia o 5 MPa, wskazują na chwilowe zwiększenie siły naporu o około 15,7 N.

Takie rozkłady chwilowego ciśnienia w strudze wodnej wytwarzanej w głowicy do obróbki powierzchni w środowisku powietrznym, potwierdzają, iż wzrost nominalnego ciśnienia wody przyczynia się do obniżenia częstotliwości występowania impulsów hydrodynamicznych w pulsującej strudze wodnej. Przykładową ilustrację średnich wartości tego rodzaju częstotliwości zmian ciśnienia w funkcji nominalnego ciśnienia wody, dla takiej strugi pulsacyjnej, zamieszczono na rys. 7.34. Ponadto, zaobserwowano wyższość strugi ciągłej w porównaniu ze strugą pulsacyjną.

Zależność tę opisuje następujące równanie empiryczne:

$$f = -814 \ln(p) + 12902. \tag{7.6}$$

Na podstawie tej bardzo dokładnej zależności, o współczynniku regresji R^2 =0,99, można określić częstotliwość występowania impulsów hydrodynamicznych w strudze wodnej dla ciśnienia nominalnego wybranego z przebadanego zakresu jego zmienności.

Częstotliwość występowania impulsów w strudze wodnej działającej w środowisku wodnym

Pomiary częstotliwości impulsów hydrodynamicznych strugi wodnej generowanej w głowicy pulsacyjnej do obróbki powierzchni, która pracuje w środowisku wodnym, realizowano na specjalnie zmontowanym stanowisku badawczym (szczegóły w rozdz. 6.1.3), w którym zastosowano piezoelektryczny czujnik siły typu KISTLER 9602AQ01 (szczegóły w rozdz. 6.1.4). Taki czujnik zamocowany w zbiorniku wodnym w odległości 15 mm od głowicy, służy do rejestrowania rozkładów chwilowych wartości ciśnień, spośród których analizowano poszczególne fragmenty zapisów zarejestrowanych w jednakowym okresie czasu równym 10 ms. Przykładowo wybrane rozkłady takich chwilowych ciśnień pulsującej strugi wodnej, uzyskane pod wpływem oddziaływania nominalnych ciśnień o następujących wartościach: 5, 10, 15, 20, 25, 30, 35, 40 i 45 MPa, zaprezentowano na dziewięciu odpowiednich rys. 7.35÷7.43.

Rys. 7.35. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 5 MPa w odległości 15 mm od głowicy pulsacyjnej), wytwarzanej w głowicy do obróbki powierzchni w środowisku wodnym oraz w strudze "ciągłej" pracującej w analogicznych warunkach

Rys. 7.36. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 10 MPa w odległości 15 mm od głowicy pulsacyjnej), wytwarzanej w głowicy do obróbki powierzchni w środowisku wodnym oraz w strudze "ciągłej" pracującej w analogicznych warunkach

Rys. 7.37. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 15 MPa w odległości 15 mm od głowicy pulsacyjnej), wytwarzanej w głowicy do obróbki powierzchni w środowisku wodnym oraz w strudze "ciągłej" pracującej w analogicznych warunkach

Rys. 7.38. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 20 MPa w odległości 15 mm od głowicy pulsacyjnej), wytwarzanej w głowicy do obróbki powierzchni w środowisku wodnym oraz w strudze "ciągłej" pracującej w analogicznych warunkach

Rys. 7.39. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 25 MPa w odległości 15 mm od głowicy pulsacyjnej), wytwarzanej w głowicy do obróbki powierzchni w środowisku wodnym oraz w strudze "ciągłej" pracującej w analogicznych warunkach

Rys. 7.40. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 30 MPa w odległości 15 mm od głowicy pulsacyjnej), wytwarzanej w głowicy do obróbki powierzchni w środowisku wodnym oraz w strudze "ciągłej" pracującej w analogicznych warunkach

Rys. 7.41. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 35 MPa w odległości 15mmod głowicy pulsacyjnej), wytwarzanej w głowicy do obróbki powierzchni w środowisku wodnym oraz w strudze "ciągłej" pracującej w analogicznych warunkach

Rys. 7.42. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 40 MPa w odległości 15 mm od głowicy pulsacyjnej), wytwarzanej w głowicy do obróbki powierzchni w środowisku wodnym oraz w strudze "ciągłej" pracującej w analogicznych warunkach

Rys. 7.43. Rozkłady impulsów hydrodynamicznych występujących w strudze wodnej (o ciśnieniu 45 MPa w odległości 15 mm od głowicy pulsacyjnej), wytwarzanej w głowicy do obróbki powierzchni w środowisku wodnym oraz w strudze "ciągłej" pracującej w analogicznych warunkach

Analiza powyższych rozkładów impulsów hydrodynamicznych, występujących w strudze pulsującej, wykazała, że przy każdorazowym wzroście nominalnego ciśnienia wody o 5 MPa następuje wyraźne zwiększenie zarówno chwilowego, jak i średniego ciśnienia tych impulsów. Jednak ze względu na odwrotnie proporcjonalne relacje występujące pomiędzy wzrostem nominalnego ciśnienia wody a zwiększaniem średniego ciśnienia impulsów hydrodynamicznych, przyrost tych ostatnich ciśnień staje się coraz to mniej intensywny. Dlanajniższych wartości nominalnych ciśnień (5 MPa) strugi wodnej, wzrost średniego ciśnienia impulsów powiększa się aż o 120 %.I tak dla kolejnych przyrostów nominalnego ciśnienia wody (o 5 MPa) aż do osiągnięcia najwyższej jego wartości, rzędu 45 MPa, takie zwiększenie średnich wartości ciśnienia impulsów hydraulicznych odpowiednio przyrasta po kolei o: 50 %, 33 %, 21 %, 20 %, 18 %, 15 % i na koniec już tylko o 14 %.

Przebiegi sił naporu strugi wodnej przy każdorazowym wzroście ciśnienia o 5 MPa wskazują na chwilowe zwiększenie siły naporu o około 16 N.

Badania częstotliwości występowania impulsów hydrodynamicznych w strudze wodnej, przeprowadzane przy użyciu piezoelektrycznego czujnika siły dla głowicy pracującej w środowisku wodnym, wykazały występowanie gwałtownego, okresowego wzrostu ciśnienia (rys. 7.35÷7.43) strugi pulsującej. Na rys. 7.44 zaprezentowano ilustracje średnich wartości częstotliwości zmian ciśnienia w funkcji nominalnego ciśnienia wody dla strugi pulsującej.

Rys. 7.44. Wpływ nominalnego ciśnienia wody na częstotliwość impulsów hydrodynamicznych strugi wodnej generowanej w samowzbudnej głowicy pulsacyjnej do obróbki powierzchni, pracującej w środowisku wodnym

Dokonując analizy częstotliwości zmian ciśnienia impulsów hydrodynamicznych stwierdzono, że ze wzrostem nominalnego ciśnienia wody częstotliwość strugi pulsacyjnej ulega obniżeniu. Najwyższa taka częstotliwość, rzędu 1900 Hz, występuje dla ciśnienia nominalnego równego 5 MPa, natomiast przy ciśnieniu nominalnym 45 MPa jej wartość zmniejsza się do około 850 Hz. Przebieg ten opisuje poniższe równanie:

$$f = -471,91 \ln(p) + 2569,6. \tag{7.7}$$

Na podstawie tej zależności (7.7), dla każdej wartości ciśnienia nominalnego z analizowanego zakresu 5÷45 MPa, można określić częstotliwość występowania impulsów hydrodynamicznych w strudze wodnej generowanej w głowicy przeznaczonej do obróbki powierzchni w środowisku wodnym.

7.3.4. Ocena przydatności metod pomiaru częstotliwości występowania impulsów hydrodynamicznych w pulsującej strudze wodnej

Do określania częstotliwości występowania impulsów hydrodynamicznych w strudze wodnej stosowanej w obydwu badanych środowiskach (powietrznym i wodnym), używano zarówno piezoelektryczny czujnik siły typu KISTLER 9602AQ01,jak i wykorzystywano ultraszybką kamerę TV typu Phantom V12.1.Bliższą charakterystykę zastosowanej aparatury pomiarowej przedstawiono w rozdz. 6.1.4.

Wyniki badania częstotliwości występowania takich impulsów w funkcji nominalnego ciśnienia wody, określone obydwiema wspomnianymi metodami, podczas pracy głowicy w środowisku wodnym, przedstawiono na rys. 7.45.

Rys. 7.45. Wpływ nominalnego ciśnienia wody na częstotliwości występowania impulsów hydrodynamicznych, w strugach wodnych wytwarzanych w głowicy do obróbki powierzchni, pracującej w środowisku wodnym, zarejestrowanych ultraszybką kamerą TV i piezoelektrycznym czujnikiem siły

Charakter obydwu tych przebiegów jest bardzo zbliżony: najwyższe częstotliwości pulsacji strugi wodnej występują przy najmniejszym ciśnieniu wody lecz w miarę jego zwiększania następuje obniżanie się częstotliwości takich pulsacji. Dzieje się tak, ponieważ w analizowanym tu obszarze zmienności, częstotliwość występowania impulsów hydrodynamicznych jest odwrotnie proporcjonalna do nominalnego ciśnienia wody zasilającej samowzbudną głowicę pulsacyjną. Należy jednak odnotować, że częstotliwości pulsacji strugi wodnej, określane przy użyciu ultraszybkiej kamery TV, są o około 20 %wyższe niż mierzone piezoelektrycznym czujnikiem siły.

Zastosowanie piezoelektrycznego czujnika siły do pomiaru częstotliwości występowania impulsów hydrodynamicznych pulsującej strugi wodnej oraz oceny wartości poszczególnych tych impulsów, jest obiektywne, ponieważ podstawa ich pomiaru sa fizyczne przebiegi wartości ładunku elektrycznego. W praktyce analiza badanych zjawisk sprowadza się do komputerowego przeglądu zarejestrowanych przebiegów, w których rozkłady zagęszczenia i wielkość zarejestrowanych impulsów świadczą bezpośrednio o częstotliwości pulsacji badanej strugi wodnej i wartości chwilowego ciśnienia poszczególnych udarów hydrodynamicznych. Odpowiednie zmiany podstawy czasu i wzmocnienia sygnału zarejestrowanych rozkładów ułatwia dokonywanie odczytów i zwiększa precyzję wyników badań. Z powyższych względów metoda wykorzystująca piezoelektryczny czujnik siły jest dokładna, stosunkowo prosta i efektywna.

Z kolei zastosowanie ultraszybkiej kamery TV umożliwia odpowiednio spowolnioną obserwację szybko zmiennych przebiegów zjawisk i impulsów hydrodynamicznych występujących w pulsującej strudze wodnej, a także pozwala na dokładną analizę ich

zatrzymanych obrazów. Jednak badania "struktury" takiej bardzo szybko przemieszczającej się strugi wodnej, bywają utrudnione przysłanianiem pola obserwacji przez silnie podświetlone, zaerowane mikro-rozbryzgi wody. Przez to precyzyjna ocena ilościowa takich szybko zmiennych zjawisk może być obarczona odpowiednim uchybem.

Reasumując należy stwierdzić, że obydwie zastosowane metody badania częstotliwości występowania impulsów hydrodynamicznych w strudze wodnej, stosowanej zarówno w środowisku powietrznym, jak i wodnym, są nieodzowne, ponieważ wzajemnie się uzupełniają. Dokładniejszy i bardziej poręczny sposób pomiaru częstotliwości i rozmiarów pulsacji strugi wodnej zapewnia stosowanie piezoelektrycznego czujnika siły. Z kolei użycie ultraszybkiej kamery TV jest niezastąpione podczas badan i analizowania mechanizmów inicjujących tworzenie i przebieg pulsacyjnej strugi wodnej.

7.3.5. Erozyjność pulsującej strugi wodnej

Badania erozyjności pulsującej strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni przeprowadzano w środowisku powietrznym i podwodnym na materiale obrabianym w postaci betonu komórkowego. W zależności od rodzaju środowiska próbki erodowanego betonu umieszczano na przesuwnym stole lub w zbiorniku wody zachowując odległości 15 i 60 mm od głowicy pulsacyjnej. Odległości takie zostały ustalone na podstawie badań kształtowania się impulsów hydrodynamicznych w strudze wodnej (rozdział 7.3.1). Bardziej szczegółowe informacje metodologiczne zawarto w rozdziale 6.2.3, natomiast bliższe dane sprzętowo-technologiczne w rozdziałach: 6.1.2, 6.1.3 i 6.1.4.

Erozyjność pulsującej strugi wodnej w środowisku powietrznym

W badaniach erozyjności strugi wodnej przeprowadzanych w środowisku powietrznym stosowano różne prędkości posuwu (10, 17,5 i 20 mm/s) i ciśnienia strugi wodnej(równe 15, 25, i 35 MPa). Na poniższych dwóch rysunkach zaprezentowano wyniki badań oddziaływania: różnych ciśnień nominalnych oraz ciągłej i pulsacyjnej strugi wodnej formowanej w głowicy pracującej w środowisku powietrznym, na głębokość erodowania betonu komórkowego, przy odległości głowicy od materiału 15 mm (rys. 7.46) oraz 60 mm (rys. 7.47).

Wyniki erodowania betonu komórkowego przy użyciu strugi formowanej w samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni w środowisku powietrznym, wykazały, że w niższym zakresie ciśnień erozyjność strugi impulsowej jest wyraźnie niższa niż strugi ciągłej.

W podobnym stopniu oddziałuje zwłaszcza zwiększenie odległości głowicy od materiału obrabianego (60 mm), powodujące wyraźne obniżenie efektywności impulsowej strugi wodnej, od której w takich warunkach efektywniejsza okazuje się struga ciągła (bez pulsacji).

Erozyjność pulsującej strugi wodnej w środowisku wodnym

Jako następne, przeprowadzono badania erodowania betonu komórkowego strugą wodną formowaną w głowicy pracującej w środowisku wodnym, przy różnych prędkościach posuwu (3, 6, 9, 12, 15 i 20 mm/s) i ciśnienia strugi wodnej (15,25, 35 MPa) oraz odległości głowicy od materiału obrabianego 15 i 60 mm. Wyniki badań wpływu ciśnień nominalnych oraz ciągłej i pulsacyjnej strugi wodnej na głębokość erodowania betonu komórkowego przy odległości głowicy od materiału obrabianego 15 mm, zaprezentowano na rys. 7.48÷7.50.

Rys. 7.49. Wpływ nominalnego ciśnienia wody na głębokość erodowania betonu komórkowego ciągłą oraz pulsacyjną strugą wodną, formowaną w głowicy przeznaczonej do obróbki powierzchni w środowisku wodnym, dla prędkości posuwu: a) 9 mm/s oraz b) 12 mm/s, z odległości 15 mm od wylotu strugi do materiału obrabianego

Rys. 7.50. Wpływ nominalnego ciśnienia wody na głębokość erodowania betonu komórkowego ciągłą oraz pulsacyjną strugą wodną, formowaną w głowicy przeznaczonej do obróbki powierzchni w środowisku wodnym, dla prędkości posuwu: a) 15 mm/s oraz b) 20 mm/s, z odległości 15 mm od wylotu strugi do materiału obrabianego

Z kolei na rys. 7.51, 7.52, 7.53 zaprezentowano wyniki badań oddziaływania ciśnień nominalnych oraz ciągłej i pulsacyjnej strugi wodnej na głębokość erodowania betonu komórkowego, przy zachowaniu odległości głowicy pracującej w środowisku wodnym od materiału obrabianego, równej 60 mm.

Erodowanie betonu komórkowego strugą wodną formowaną w głowicy przeznaczonej do obróbki powierzchni w środowisku powietrznym, wykazało, że w zakresie stosowanych nominalnych ciśnień wody i prędkości posuwowych, pulsacyjna struga wodna wykazuje się mniejszą erozyjnością, niż struga ciągła (bez pulsacji). Przy zastosowaniu najwyższych ciśnień wody zasilającej głowicę pulsacyjną uzyskuje się nieco lepsze efekty erozyjne. W takich warunkach erozyjność strugi pulsacyjnej jest o kilka procent większa w stosunku do strugi ciągłej (bez pulsacji).

Korzystniejsza sytuacja występuje przy zastosowaniu głowicy pulsacyjnej przeznaczonej do obróbki powierzchni w środowisku wodnym. Struga wodna formowana w takiej samowzbudnej głowicy pulsacyjnej pracującej w środowisku wodnym przy ciśnieniach 25 i 35 MPa oraz przy krótszej (15 mm) odległości głowicy od powierzchni erodowanego betonu komórkowego, charakteryzuje się około 15÷20 % wzrostem głębokości erodowania w stosunku do strugi ciągłej. Z kolei dla większych odległości (60 mm) takiej głowicy od obrabianego materiału, przy względnie wyższych ciśnieniach roboczych (25 i 35 MPa), struga pulsacyjna zapewnia nawet o 20÷25 % większą głębokość erodowania betonu komórkowego od strugi ciągłej.

7.3.6. Wnioski

Analiza wyników badań charakterystyki ciągłej i pulsującej strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej przeznaczonej do obróbki powierzchni, w trakcie których określano kształt i częstotliwość impulsów wodnych rejestrowanych zarówno w środowisku powietrznym jak i wodnym, przy wykorzystaniu ultraszybkiej kamery TV oraz piezoelektrycznego czujnika siły, umożliwiła sformułowanie następujących wniosków:

- Zastosowanie ultraszybkiej kamery TV umożliwiające rejestrację oraz ocenę struktury pulsującej strugi wodnej, pozwoliło określić średnią odległość kształtowania się impulsów obrazu. Optymalna odległość oddziaływania pulsującej strugi wodnej na obrabiany materiał, dla głowicy pracującej w środowisku powietrznym a także w środowisku wodnym, wynosi 15 mm.
- 2. Ze względu na wydłużające się impulsy hydrodynamiczne, zarówno dla głowicy pracującej w środowisku powietrznym oraz wodnym, generowanym szczególnie przy wyższych zakresach nominalnych ciśnień, wartością optymalnej odległości oddziaływania pulsującej strugi wodnej na obrabiany materiał, w której nie występuje dodatkowo negatywne oddziaływanie odbijającej się strugi od materiału obrabianego, jest odległość 60 mm.
- 3. Proces kształtowania się impulsów hydrodynamicznych rozpoczyna się zaraz po wypłynięciu strugi z dyszy wylotowej głowicy i jest prawie niezauważalny podczas pracy głowicy w środowisku powietrznym. Bardzo wyraźnie natomiast można zaobserwować kształtowanie się impulsów hydrodynamicznych dla głowicy pracującej w środowisku wodnym, gdzie w miarę oddalania się od niej występuje intensywniejszy podział tej strugi.
- 4. Wykorzystanie ultraszybkiej kamery TV do rejestracji częstotliwości występowania impulsów hydrodynamicznych, dla głowicy pracującej w środowisku powietrznym, jest skutecznie utrudniona ze względu na nakładające się na siebie pulsacje o bardzo wysokiej częstotliwości.
- Spadek częstotliwości impulsów hydrodynamicznych zarejestrowanych przy użyciu piezoelektrycznego czujnika siły, dla głowicy pracującej w środowisku powietrznym oraz w środowisku wodnym, następował pod wpływem wzrostu nominalnego ciśnienia wody.
- 6. Przy każdorazowym wzroście ciśnienia wody o 5 MPa, dla głowicy pracującej w środowisku powietrznym, występuje chwilowy okresowy wzrost ciśnienia impulsów hydrodynamicznych. Najmniejszy wzrost około 35 % występuje przy najwyższych analizowanych ciśnieniach nominalnych (20 MPa), natomiast największy wzrost około 112 % występuje przy najniższych ciśnieniach nominalnych (5 MPa).
- 7. Dla głowicy pracującej w środowisku wodnym przy każdorazowym wzroście ciśnienia nominalnego o 5 MPa (w zakresie ciśnień nominalnych 5÷45 MPa) następował chwilowy okresowy wzrost ciśnienia generowanych impulsów wodnych. Najmniejszy wzrost, około 14 %, następował przy najwyższych badanych ciśnieniach

nominalnych (45 MPa), natomiast największy wzrost około 120 % następował przy najmniejszych ciśnieniach nominalnych (5 MPa).

- 8. Przebiegi sił naporu strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej wykazują, że przy każdorazowym wzroście ciśnienia o 5 MPa następuje chwilowe zwiększenie siły naporu o około 15,7 N podczas pracy w środowisku powietrznym oraz o około 16 N w środowisku wodnym.
- 9. Charakter przebiegu częstotliwości występowania impulsów hydrodynamicznych w pulsującej strudze wodnej pracującej w środowisku wodnym, określony na podstawie pomiarów przeprowadzanych ultraszybką kamerą TV, jest zbliżony do wyników uzyskiwanych w pomiarach piezoelektrycznym czujnikiem siły.
- 10. Częstotliwości pulsacji strugi wodnej uzyskiwane przy użyciu ultraszybkiej kamery TV są o około 20 % wyższe od rejestrowanych piezoelektrycznym czujnikiem siły.
- 11. Erozyjność pulsującej strugi wodnej pracującej w środowisku powietrznym przy odległości głowicy od powierzchni obrabianego materiału równej 15 mm oraz 60 mm, jest niższa, niż strugi ciągłej stosowanej w identycznych warunkach.
- 12. Erozyjność pulsującej strugi wodnej pracującej w środowisku wodnym przy niskich ciśnieniach nominalnych, jest mniejsza niż erozyjność strugi ciągłej. Jedynie przy najwyższych stosowanych ciśnieniach nominalnych występują nieco lepsze (o 15÷25 %) efekty erozyjne takiej strugi pulsującej.

Przeprowadzone tu badania zarówno wpływu poszczególnych parametrów geometrycznych głowicy na kształtowanie się zawirowań w komorze skutkujących powstawaniem impulsów wodnych na wylocie z głowicy oraz kształtu i częstotliwości tych impulsów potwierdzają, że taka optymalizacja miała sens, gdyż w jej wyniku uzyskano rozwiązania, które w przyszłych pracach przy wykorzystaniu dodatków w postaci ścierniwa zwielokrotnią, dynamikę i poprawią właściwości erozyjne takiej strugi.

8. PODSUMOWANIE

Na podstawie przeprowadzonej tu analizy, rozważań oraz wykonanych badań prowadzących jednoznacznie do uzyskania zoptymalizowanych parametrów geometrycznych głowicy można stwierdzić że zasadniczy cel rozprawy, jakim jest: określenie wpływu geometrycznych parametrów samowzbudnej głowicy pulsacyjnej i hydraulicznych warunków pracy na funkcjonowanie takiej głowicy oraz dynamiczną charakterystykę wytwarzanej w niej strugi wodnej a także jej technologiczna przydatność dla erodowania materiałów, został w pełni zrealizowany.

Dla zrealizowania zamierzeń badawczych oraz udowodnienia hipotez naukowych opracowano metodykę badań, na którą składały się odpowiedni dobór badań, budowa stanowisk badawczych i wykorzystanie odpowiedniej aparatury pomiarowej.

Przeprowadzone badania oraz rozważania nad wynikami dla głowicy do drążenia otworów potwierdzają pierwszą hipotezę dysertacji, która sprowadza się do stwierdzenia, iż komputerowe badania doboru parametrów geometrycznych i dynamicznych rozkładów ciśnienia o zróżnicowanych formach przepływów w komorze wirowej decydują o prędkości wypływu strugi z takiej głowicy, oraz drugą hipotezę dysertacji w części dotyczącej funkcjonowania takiej głowicy, która w istotnym stopniu oddziałuje na zmienność jej struktury wewnętrznej oraz jej własności dynamicznych (jak wartość siły naporu strugi i częstotliwość jej zmian).

Literaturowe rozwiązanie ukazało, że istnieje wiele sposobów wytwarzania impulsowej strugi wodnej. Najczęściej stosowane opierają się na zastosowaniu: urządzenia wykorzystującego ultradźwiękową częstotliwość segmentowania strugi wodnej albo urządzenia z cylindryczną komorą wypełnioną wodą, z tłokiem i centralnie usytuowaną dyszą, które generuje hydrodynamiczne impulsy wodne, albo też odpowiedniej głowicy pulsacyjnej [23, 28, 34, 46, 99]. Taka głowica pulsacyjna odznacza się wprawdzie dość złożonym ukształtowaniem wnętrza, lecz nie posiada żadnych części ruchomych, co jest istotne ze względów eksploatacyjnych. Odpowiedni dobór parametrów geometrycznych oraz hydraulicznych warunków pracy takiej głowicy, powoduje powstawanie na wyjściu strugi impulsowej. Spośród wszystkich tych technik struga pulsacyjna ma większą efektywność erozyjną, dzięki temu może być stosowana do różnych aplikacji przemysłowych. Z tych też względów jak również z uwagi na potencjalne wykorzystanie takiego rozwiązania w przemyśle, podjęcie tej tematyki jest w pełni uzasadnione.

Dla zrealizowania zamierzeń badawczych opracowano metodykę badań polegającą na realizacji wielu rodzajów badań numerycznych oraz badań eksperymentalnych, do których wykonano specjalne stanowiska badawcze wyposażone w specjalistyczny sprzęt pomiarowy.

Dla określenia parametrów geometrycznych głowicy do drążenia otworów i obróbki powierzchni przeprowadzono symulacyjne badania optymalizacyjne poprzez badanie średniej prędkości na wlocie i wylocie oraz w otworach bocznych samowzbudnej głowicy pulsacyjnej. Wyniki badań optymalizacyjnych geometrii głowic pozwoliły na ich zoptymalizowanie. Optymalne parametry geometrycznych głowicy do drążenia otworów to:

- średnica komory wirowej D=25 mm,
- wysokość komory wirowej H=15 mm,
- szerokość powierzchni pierścieniowych komory wirowej SP=6 mm,
- kąt natarcia komory wirowej λ =120°,
- średnica otworów bocznych d₂=2 mm,
- średnica dyszy wlotowej d₁=2,5 mm,
- wysokość dyszy wlotowejh₁=12 mm,
- średnica dyszy wylotowej d₃=4 mm.

Optymalne parametry geometryczne głowicy do obróbki powierzchni to:

- średnica komory wirowej D^{II}=6,2 mm,
- wysokość komory wirowej H^{II}=3,2 mm,
- szerokość powierzchni pierścieniowych komory wirowej SP^{II}=1,4 mm,
- kąt natarcia komory wirowej $\lambda^{II}=120^{\circ}$,
- średnica otworów bocznych d₂^{II}=0,6 mm,
- średnica dyszy wlotowej $d_1^{II}=0,6$ mm,
- wysokość dyszy wlotowejh^{1II}=1,5 mm,
- średnica dyszy wylotowejd³^{II}=0,8 mm.

Takie parametry geometryczne samowzbudnych głowic pulsacyjnych, dzięki powstającym wewnątrz komory wirowej intensywnym zawirowaniom wody, umożliwiają generowanie pulsującej strugi wodnej. W wyniku optymalizacji tych głowic uzyskuje się impulsową strugę wodną o zwiększonej dynamice i właściwościach erozyjnych.

Na podstawie badań przeprowadzonych w niniejszej dysertacji pojawiła się tematyka prac przyszłościowych, które w pierwszej kolejności mają zwiększyć efektywność erozyjną strugi pulsującej, drogą wprowadzania przez otwory boczne samowzbudnej głowicy pulsacyjnej odpowiedniego materiału ściernego, tworzącego impulsową strugę wodno-ścierną

9. **BIBLIOGRAFIA**

- [1] Argyropoulos C.D., Markatos N.C., *Recent advances on the numerical modelling of turbulent flows*, Applied Mathematical Modelling 39 (2015) 693–732
- [2] Bai C., Chandra S., Daniels B., Ren B., Yan W., Tieu A. Vijay M.M.: *Abrasive-Entrained High-Frequency Pulsed Waterjet: Basic Study and Applications, VLN* Advanced Technologies Inc, Ottawa, Canada, 2006 pp. 325-335
- [3] Bodnárová L., Sitek L., Hela R., Foldyna J.: New potential of highspeed water jet technology or renovating concrete structures. Slovak Journal of Civil Engineering Vol. XIX, 2011, No. 2, 1-7
- [4] Bogusławski A., Drobniak S., Tyliszczak A.: *Turbulencja od losowości do determinizmu*, Instytut Maszyn Cieplnych, Politechnika Częstochowska, 2008
- [5] Borkowski P. J.: Obróbka powierzchni wysokociśnieniową strugą wodno-ścierną, Centrum Technik Proekologicznych, 2002
- [6] Borkowski P. J.: *Teoretyczne i doświadczalne podstawy hydrostrumieniowej obróbki powierzchni*. Wydawnictwo Uczelniane Politechniki Koszalińskiej, Koszalin, 2004
- [7] Borkowski J., Borkowski P.: *Wysokociśnieniowe technologie hydrostrumieniowe*, Wydawnictwo Uczelniane Politechniki Koszalińskiej, Koszalin 2008.
- [8] Borkowski J., Szada-Borzyszkowska M., Borkowski P.: *Charakterystyka* wysokociśnieniowej strugi wodnej wytwarzanej w samowzbudnej głowicy pulsacyjnej, Mechanik, 8-9, 2014 s. 88-93
- [9] Borkowski J., Szada-Borzyszkowska M.: *Przydatność samowzbudnej głowicy pulsacyjnej do hydrostrumieniowego czyszczenia pojazdów samochodowych*, AUTOBUSY Technika, Eksploatacja, Systemy Transportowe, Słupsk 2015, s. 43-48
- [10] Borkowski J., Szada-Borzyszkowska M.: Zastosowanie hydrostrumieniowej samowzbudnej dyszy pulsacyjnej do efektywnego czyszczenia pojazdów samochodowych, AUTOBUSY Technika, Eksploatacja, Systemy Transportowe, Słupsk 2014, s.66÷71
- [11] Borkowski P. J.: Optymalizacja konstrukcji koncentrycznej dyszy wielootworowej z uwagi na użytkowe właściwości wysokociśnieniowego strumienia hydrościernego, Praca doktorska, Koszalin 1997
- [12] Borkowski P., Borkowski J., Szada-Borzyszkowska M.: Research into self-excited head for generation of a pulsed water-jet for application in oil and gas mining. 21st International Conference on Water Jetting Ottawa, Canada; 19-22 September 2012 s.433-446
- [13] Bouffanais R., Advances and challenges of applied large-eddy simulation, Computers & Fluids 39 (2010) 735–738
- [14] Brennen, CH. E.: *Fundamentals of Multiphase Flow*. Cambridge University Press, 2005
- [15] Bresee J.C., Cristy G.A., Mc Clain W.C.: Some Comparison of Continuous and Pulsed Jets for Excavation. First International Symposium on Jet Cutting Technology, April 1972, Coventry
- [16] Bresee J.C., Cristy G.A., Mc Clain W.C.: Some Comparison of Continuous and Pulsed Jetsfor Excavation. Proceedings of the 1st International Symposium on Jet Cutting Technology. Cranfield, April 1972, pp.stronyustalę w Koszalinie
- [17] Bridgman, P.W.: *The Physics of High Pressure*, T.Bell and Sons London (1949)
- [18] Chahine, G.L., Conn, A.F., Johnson, V.E.: *Cleaning and cutting with self-resonating pulsed water jets.* In: 2nd U.S. Water Jet Symposium, pp. 238–253 (1983).

- [19] Chatterjee, A., Ruina, A.L.: Two interpretations of rigidity in rigid-body collisions. J. Appl.Mech. 65(4), 894–901 (1998).
- [20] Chorin A. J.: *The Evolution of a Turbulent Vortex*, Commun. Math. Phys. 83, 517-535 (1982)
- [21] Chudy J.: Próba wielokryterialnej optymalizacji obróbki na przykładzie wysokociśnieniowego przecinania hydrościernego wybranych materiałów skalnych, Praca doktorska, Koszalin 1998
- [22] Dehkhoda S., Hood M., Alehossein H., Buttsworth D., *Analytical and Experimental Study of Pressure Dynamics in a Pulsed Water Jet Device*. 29 March 2012© Springer Science+Business Media B.V. 2012, pp 97–119.
- [23] Dehkhoda S., Hood M.: *The internal failure of rock samples subjected to pulsed water-jet impacts*, Journal of Rock Mechanics and Mining Science 66 (2014) 91-96.
- [24] Dehkhoda, S. 2011. *Experimental and Numerical Study of Rock breakage by Pulsed Water Jets.* PhD Thesis, University of Queensland
- [25] Dehkhoda S.: *Experimental Study of Rock Breakage with Pulsed Water-jet*, 8th Asian Rock Mechanics Symposium, 14-16 October 2014, Sapporo, Japan.
- [26] Diakun J., Mierzejewska S., Kukiełka K.: *Równanie regresji zapotrzebowania* energetycznego w procesie mycia rurociągu metodą CIP, Polish Journal of Food Engineering, tom 1, nr 1 /2012, s.1–23
- [27] Drobniak S., *Lepkość wirowa w osiowo-symetrycznych strugach zawirowanych*, Mechanika Teoretyczna i Stosowana, Częstochowa, 3,19 (1981)
- [28] Dvorsky R., Sitek L., Sochor T.: *Pulsed water jet generated by pulse multiplication*. Technical Gazette. v.23, no.4, 2016 August, p.959(9)
- [29] Edney, B.: *Experimental studies of pulsed water jets*. In: 3rd International Symposium on Jet Cutting Technology, pp. B2:11–B2:26 (1976).
- [30] Edwards D.G., Smith R.M., Farmer G.: *The coherence of impulsive water jets*. 6thInt.Symp.on Jet Cutting Technology. Surrey, 1982, pp.123-140.
- [31] Elsner J., Drobniak S.: *Metrologia turbulencji przepływów*. Wydawnictwo Polskiej Akademii Nauk 1995.
- [32] Foldyna J., Habán V., Pochylý F., Sitek L.: Transmission of acoustic waves Proceedings of the International Congress on Ultrasonics, Vienna, April 9-13, 2007, Paper ID 1456, Session R12: High power ultrasonic processing pp.1732-1736.
- [33] Foldyna J., Heiniger K., Mettler S., Sitek L., Ščučka J.: Enhancing of Water Jet Effects by Pulsations, Manufacturing Engineering/výrobné inženierstvo. Roč. 6, č. 4 (2007), pp. 30-33.
- [34] Foldyna J., Klich J., Hlaváček P., Zeleňák M., Ščučka J.: *Erosion of metals by pulsating water jet*, Tehnički vjesnik, Vol.19 No.2 Lipanj 2012, pp. 381-386.
- [35] Foldyna J., Říha Z., Sitek L., Švehla B.: *Numerical simulation of transmission of acoustic waves in high-pressure system*, Proceedings of the International Congress on Ultrasonics, Vienna, April 9-13, 2007, Paper ID 1456, Session R12: High power ultrasonic processing pp.1-4.
- [36] Foldyna J., Sitek L, Ščučka J., Martinec P., Valiček J., Páleniková K.: *Effects of pulsating water jet impact on aluminium surface*. 1st International Conference on Abrasive Processes. Volume 209, Issue 20, 19 November 2009, pp. 6174–6180.
- [37] Foldyna J., Sitek L., Habán V.: *Acoustic wave propagation in high-pressure system*. Ultrasonics 44 (2006) e1457–e1460.
- [38] Foldyna J., Svehla B.: *Method of generation of pressure pulsations and apparatus for implementation of this method.* Institute of Geonics, ASCR, v.v.i. Patents June 22, 2010.

- [39] Foldyna J.: Use of Acoustic Waves for Pulsating Water Jet Generation, Acoustic Waves-From Microdevices to Helioseismology, 14, November, 2011, Pages 323-342.
- [40] Foldyna, J., Sitek, L., Svehla, B., Svehla, S.: *Utilization of ultrasound to enhance high-speed water jet effects*. Ultrason. Sonochem. 11, 131–137 (2004).
- [41] Fox R.W., Pritchard P.J., McDonald A.T.: *Introduction to fluid mechanics*, 7th edn. Don Fowley (2009)
- [42] Grinenko, A., Gurovich, V.T., Krasik, Y.E., Sayapin, A., Efimov, S., Felsteiner, J.: *Analysis of shock wave measurements in water by a piezoelectric pressure probe*. Rev. Sci. Instrum. 75(1), 240–244 (2004)
- [43] Heymann, F. J.: *High-Speed Impact betveem a Liquid Drop and a Solid Surface*. Journal of Applied Physics. 40, 13(1969), pp. 5113-5122
- [44] Hongjian N., Ruihe W. Numerical simulation study on pulse water jet crashing rock. Petroleum Drilling Techniques, 29(5), 12-14, 2001.
- [45] Hongjian N., Ruihe W., Yukun D.: *Numerical simulation and experimental study on rock breaking under pulse water jet*, Electronic Journal of Geotechnical Engineering, vol. 16, January 2011, pp. 797-810.
- [46] Hongjian Ni, Yukun Du, Ruihe Wang, Yi Chen, Huifang Song., Experiment Study on Modulation Principle of Pulsed Particle Jet Directly Modulated at Bottom-Hole. Electronic Journal of Geotehnical Engineering Vol. 17, 2012, Bund. R, pp. 2619-2629.
- [47] Hongjian Ni, Zhiwen Tang, Hongjun Huo, Leilei Huang and Ruihe Wang, Experimental Study of Rock-Breaking by Spring Valve Blocking Pulse Jet, Electronic Journal of Geotechnical Engineering Vol. 16, 2011, Bund. F.
- [48] Huang Y. C.; Hammitt F. T.; Yang W. J.: Mathematical Modelling of Normal Impact between a Finite Cylindrical Liquid Jet and Non-Slip, Flat Rigid Surface.
 Proceedings of the 1 st International Symposium on Jet Cutting Technology / Cranfield, 1972, pp. A4-57 – A4-68
- [49] Igra, D., Takayama, K.: *Numerical simulation of shock wave interaction with water column*, Shock Waves 11, 219–228 (2001).
- [50] Jackson M.K., Davies T.W.: Optimization of nozzle flow/head requirements for Chna Clay Mining. 7th International Symposium on Jet Cutting Technology. Ottawa, Canada. June 26-28, 1984. Paper F1, s. 293-314.
- [51] Jeżowiecka-Kabsch K., Szewczyk H.: *Mechanika Płynów*. Oficyna Wydawnicza Politechniki Wrocławskiej Wrocław 2001.
- [52] Joseph D. D.: *Cavitation and the state of stress in a flowing liquid*. University of Minnesota, Minneapolis, MN Printed March 1, 2001
- [53] Kinslow R.: *Rain Impact Damage to Supersonic Radomes*. Final Report, Tennesee Technological University, No DAA H 01-72-C-0375, 1972.
- [54] Kubala M.: *Teoretyczna analiza wpływu wybranych czynników na propagację zanieczyszczeń w sieci wodociągowej.* rozprawa doktorska Politechnika Krakowska Wydział Inżynierii Środowiska Kraków 2005.
- [55] Kukiełka L., Kukiełka S.: Zastosowanie programu Experiment Planner 1.0 do wspomagania eksperymentu w technologii nagniatania, Obróbka kształtująca i powierzchniowa nagniataniem, Koszalin 2004 Zeszyty Naukowe Wydziału Mechanicznego nr 34, Wydawnictwo Uczelniane Politechniki Koszalińskiej, s.131-140
- [56] Kukiełka L., Szcześniak M.: Wpływ kąta wierzchołkowego regularnej nierówności trójkątnej powierzchni wyjściowej na chropowatość powierzchni wyrobu po procesie zgniatania, Mechanik nr 03/2015, s.299-308

- [57] Kukiełka L.: Podstawy badań inżynierskich. Wydawnictwo PWN, Warszawa 2002
- [58] Li R., Ashgriz N., Chandra S.: *Droplet generation from pulsed micro-jets*, Experimental Thermal and Fluid Science, 2008, 32(8): 1679-1686
- [59] Li, Y.H.: *Equation of state of water and sea water*, Journal Geophystcal Reserch Vol. 72, No.10, May 15, 1967, pp. 2665–2678 (1967).
- [60] Lilly D. K., On the application of the eddy viscosity concept in the inertial sub-range of turbulence, NCAR Manuscript No. 123, National Center for Atmospheric Research, Boulder, CO, 1966, pp.1-19.
- [61] Lilly, D.K., A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4 (3), 1992, 633–635
- [62] Mazurkiewicz M.: An Analysis of One Possibility for Pulsating a High Pressure Water Jet, Water Jet Conference May 24-26, 1983 Rolla, Missouri
- [63] Mazurkiewicz M.: Niektóre aspekty intensyfikacji obróbki materiałów wysokociśnieniową strugą cieczy, Wydawnictwo Politechniki Wrocławskiej, Wrocław 1977
- [64] Mitosek M.: *Mechanika Płynów w inżynierii i ochronie środowiska*. Oficyna Wydawnicza Politechniki Warszawskiej Warszawa 2007.
- [65] Mohaupt U.H, Burns D.J, Yie G.G, Mellors W.: Design and dynamic response of a pulse-jet pavement breaker. 4th International Symposium on Jet Cutting Technology. Canterbury, U.K. April 12-14, 1978. Paper D2.17-D2.28.
- [66] Mohaupt U.H., Burns D.J., Yie G.G., Mellors W.: *Design and dynamic response of a pulse-jet pavement breaker*. 4 th Int. Symp. on Jet Cutting Technology. Canterbury, U.K. 1978. Paper D2, pp. D2.17-D2.28.
- [67] Nagnajewicz S.: Badania erozyjnej skuteczności wysokoprędkościowego strumienia wody intensyfikowanego kawitacją, praca doktorska, Koszalin 1998
- [68] Nebecker, E.B. and Rodriguez, S.E.: *Percussive Water Jets for Rock Cutting*, Proc. 3rd Int. Symp. on Jet Cutting Technology, Chicago, Illinois, May 1976.
- [69] Nebeker E. B., Standoff Distance Improvement Using Percussive Jets May 24-26, 1983 Rolla, Missouri
- [70] Nebeker E.B., Rodriguez S.E.: Percussive Water Jets for Rapid Excavation. Final Report. Contract No DAA K 02-73-C-0163 prepared for US Army Mobility Equipment, Fort Belvoir. Virginia. Dec. 1973.
- [71] Nebeker, E.B., Rodriguez, S.E.: *Percussive water jets for rock cutting*. In: 3rd International Symposium on Jet Cutting Technology, pp. B1:1–B1:9 (1976).
- [72] O'Keefe, J.D., Wrinkle, W.W., Scully, C.N.: *Supersonic liquid jets*. Nature 213(5071), 23–25 (1967).
- [73] Oczoś K.: *Kształtowanie materiałów skoncentrowanymi strumieniami energii.* Wydawnictwo Uczelniane Politechniki Rzeszowskiej. Rzeszów, 1988.
- [74] Oczoś K.: Obróbka wysokociśnieniowym strumieniem wody. Mechanik, 1989, nr 2-3, s.85-98
- [75] Patyk R., Kukiełka L.: *Modelowanie i symulacja zjawisk kontaktowych w procesie nagniatania gładkościowego powierzchni chropowatych w aspekcie jakości wyrobu,* PAK vol. 54, nr 7/2008, s.433-435.
- [76] Perec A.: Oddziaływanie warunków kreacji wysokociśnieniowej strugi hydrościernej na parametry przecinania materiałów w aspekcie obniżenia ciśnienia roboczego, Praca doktorska, Koszalin 1995
- [77] Polański Z., Metody optymalizacji w technologii maszyn. PWN, Warszawa 1977
- [78] Polański Z.: *Metodyka badań doświadczalnych*, Kraków, Wydawnictwo Politechniki Krakowskiej, 1981
- [79] Polański Z.: Planowanie doświadczeń w technice. Warszawa, PWN, 1984

- [80] Prosnak J. W.: *Mechanika Płynów*. Państwowe Wydawnictwo Naukowe Warszawa 1970.
- [81] Przyklenk K., Schlatter M.: Simulation of the cutting process in water jetting with the finite element method. 8 th Int. Syp. on Jet Cutting Technology. Durham, U.K. 1986. Paper No. 12, pp. 125-136.
- [82] Rehbinder, G.: Investigation of water jet pulses generated by an impact piston device. Appl. Sci. Res. 40, 7–37 (1983)
- [83] Ridah, S.: Shock waves in water. J. Appl. Phys. 64(1), 152–158 (1988).
- [84] Říha, Z.; Foldyna, J. Ultrasonic pulsations of pressure in a water jet cutting tool. Technical Gazette. 19, 3(2012), pp. 487-491
- [85] Ruihe W., Yukun D., Hongjian N.: *Large eddy simulation of self-oscillation pulsed water jet drawing in annulus fluid*. Chinese Journal of Hydrodynamics, (ISSN: 1000-4874) 2009.
- [86] Sagaut P., *Large eddy simulation for incompressible flows*, An introduction, Third Edition, Berlin, Germany: Springer, 2006.
- [87] Sanders M. J., Bond R. D.: *The use of high pressure water jetting to remove the corrosion deposit from samples of the WSGHWR primary circuit pipework.* 7 thInt. Symp. on Jet Cutting Technology. Ottawa, Canada. 1984. Paper C1, pp. 99-118.
- [88] Sanders M.J., Bond R.D.: The use of high pressure water jetting to remove the corrosion deposit from Samples of the WSGHWR primary circuit pipework. 7th Int. Symp. on Jet Cutting Technology. Ottawa, 1984, pp. 99-118.
- [89] Shavlovsky S.S.: Osnovy dinamiki struji pri razruszenii gornogo massiva. Izdatelstwo Nauka. Moskwa, 1979.
- [90] Shimizu S., Yamaguchi A.: Discrete-vortex simulation of two-dimensional turbulent impigning jets with and without periodic excitation. 8th Int. Symp. on Jet Cutting Technology. Durham, 1986, pp.137-145.
- [91] Sitek L.: Využití oscilujících vodních paprsků při odstraňování povrchových vrstev degradovaného betonu in situ, Tunel 21. ročník č. 2/2012 pp.16-26.
- [92] Smith, D. G.; Kinslow, R. *Pressure Due to High-velocity Impact of a Water Jet*. Experimental Mechanics. 16, 1(1976), pp. 21-25.
- [93] Soutas-Little, R.W., Inman, D.J., Balint, D.S.: Engineering Mechanics: Dynamics, Computa-tional Edition, SI edn. Cengage Learning, Toronto, ON (2009)
- [94] Tieu A., Yan W. Vijay M.M.: Considerations in the use of pulsed water jet techniques for the removal of hvof coatings, American WJTA Conference and Expo, August 19-21, Houston, Texas 2007.
- [95] Tuliszka–Sznitko E. Kiełczewski K.: Direct numerical simulation of the Taylor-Couette flow with the asymmetric end-wall boundary conditions, Arch. Mech., 68, 5, pp. 395-418, Warszawa 2016
- [96] Tuliszka–Sznitko E.: *Wybrane zagadnienia z mechaniki płynów wirujących*, WPP, Poznań, 2011
- [97] Vijay M.M., Foldyna J., Remisz J.: *Ultrasonic modulation of high-speed water jets*, in Z Rakowski (ed.), Geomechanics 93: Proceedings of the International Conference, Hradec Ostrava Czech Republic, 1994,pp. 327-32.
- [98] Vijay M.M., Foldyna J., Remisz, J.: Ultrasonic modulation of high-speed water jets. In: Proceed-ing of International Conference Geomechanics 93 Rotherham, 1993, pp. 327–332.
- [99] Vijay M.M., Remisz, J., & Shen, X.: *Potential of pulsed water jets for cutting and fracturing of hard rock formations*, International Journal of Surface Mining, Reclamation and Environment, vol. 7, no. 3, pp. 121-32,1993.

- [100] Vijay M.M., Yan W., Tieu A., Ren B.: *Ultrasonic Waterjet Apparatus*, US Patent 7,594,614 B4, Sep.29, 2009
- [101] Vijay M.M.: *Pulsed Jets: Fundamentals and Applications*, Proceedings of the 5th Pacific Rim International Conference on Water Jet Technology, New Delhi, India, 1998, pp. 610-627.
- [102] Vijay M.M.: *Ultrasonically Generated Cavitating or Interrupted Jet*, US Patent No. 5,154,347, October 13, 1992 (International patent pending).
- [103] Vijay, M.M.: Power of pulsed liquid jets, in Z Rakowski (ed.), Geomechanics 93: Proceedings of the International Conference, Hradec Ostrava Czech Republic, 1994, pp. 265-74.
- [104] Vreman B., Geurst B., Kuerten H.: Large-eddy simulation of the turbulent mixing layer, J. Fluid Mech. (1997), vol. 339, pp. 357-390
- [105] Wang P., Ni H., Wang R., Li Z.: *Modulating downhole cuttings via a pulsed jet for efficient drilling-tool development and field testing*, Journal of Natural Gas Science and Engineering 27 (2015) 1287-1295
- [106] Wang R., Du Y., Ni H., Ma L.: *Hydrodynamic analysis of suck-in pulsed jet in well Drilling*, Journal of Hydrodynamics, 2011,23(1):34-41
- [107] Wylie E.B., Rodriguez S.E.: Pipeline Dynamics and the Pulsed Jet. Proceedings of the 1st International Symposium on Jet Cutting Technology. Cranfield, April 1972
- [108] Wylie E.B.: Pipeline Dynamics and the Pulsed Jet. First International Symposium on Jet Cutting Technology, April 1972, Coventry
- [109] Xunming W., Leqin W., Lei J.: The energy loss analysis of the self-excited oscillation pulsed jet with parameters'change. Journal of Engineering Thermophysics, 2008, 29(5): 780-782
- [110] Yanajda K.: Flow characteristic of water jets. Proceedings of 2nd Symp. on Jet Cutting Technology. Cambridge, 1974, pp.19-32.
- [111] Yukun D., Ruihe W., Hongjian N., Lin M., Shupeng Z., Zhiyong H.: *Study on the Rock-breaking Performance of Particles Jet Drilling Technology*, Electronic Journal of Geotechnical Engineering Vol. 16, 2011, Bund. D, pp.431-440.
- [112] Zhiyin Y., *Large-eddy simulation: Past, present and the future*, Chinese Journal of Aeronautics, (2015), 28 (1): 11–24

mgr inż. Monika Szada-Borzyszkowska

STRESZCZENIE

Wpływ warunków hydraulicznych i geometrii samowzbudnej głowicy pulsacyjnej na charakterystykę wytwarzanej strugi wodnej

Podjęcie tego tematu badawczego wynika z potrzeby zwiększenia wydajności obróbki wysokociśnieniową strugą wodną. Wzrost wydajności obróbki strugą wodną osiąga się zwykle przez generowanie coraz to wyższego ciśnienia wody. Jednak radykalny rozwój innowacyjnych sposobów takiej obróbki umożliwia dopiero użycie strugi wodnej o okresowo zmiennej strukturze i właściwościach dynamicznych. Ze względu na możliwość takiego właśnie rozwoju technologicznych zastosowań wysokociśnieniowej strugi wodnej podjęto realizację tego tematu.

Celem rozprawy jest określenie wpływu geometrycznych parametrów samowzbudnej głowicy pulsacyjnej i hydrodynamicznych warunków pracy na funkcjonowanie takiej głowicy oraz dynamiczną charakterystykę wytwarzanej w niej strugi wodnej a także jej technologiczną przydatność dla erodowania materiałów.

Cel pracy realizowano przeprowadzając zarówno komputerowe badania symulacyjne jak i badania eksperymentalne przy wykorzystaniu samowzbudnej głowicy pulsacyjnej wykonanej na podstawie wyników badań komputerowych. Podczas badań eksperymentalnych określano wpływ parametrów geometrycznych i warunków hydrodynamicznych na charakter i rozkład hydrodynamicznych impulsów strugi wodnej wytwarzanej w opracowanych rozwiązaniach konstrukcyjnych samowzbudnej głowicy pulsacyjnej.

Do realizacji celu przyjęto następujące hipotezy pracy:

1. Takie parametry geometryczne samowzbudnej głowicy pulsacyjnej, jak: średnica i wysokość komory wirowej oraz jej kąt natarcia i średnice otworów bocznych, a zwłaszcza średnica i wysokość dyszy wlotowej, wraz ze średnicą i wysokością dyszy wylotowej; jak również hydrauliczne warunki pracy w postaci ciśnienia rozstrzygającego - wraz ze średnicą dyszy - o natężeniu przepływu wody przez taką głowicę, decydują o jej funkcjonowaniu przejawiającym się w postaci dynamicznych rozkładów ciśnienia oraz zróżnicowanych formach przepływów w komorze wirowej

a także prędkości wypływu strugi z takiej głowicy, które przesądzają o właściwościach wytwarzanej strugi wodnej oraz o jej zachowaniach.

2. Struga wodna wytwarzana w korzystnych warunkach funkcjonowania takiej samowzbudnej głowicy pulsacyjnej o zoptymalizowanych parametrach geometrycznych, przy uwzględnieniu zmienności hydrodynamicznych warunków pracy takiej głowicy, w istotnym stopniu oddziałuje na zmienność jej struktury wewnętrznej oraz jej właściwości dynamiczne (jak wartości siły naporu strugi, rozkłady jej chwilowych nacisków i częstotliwość występowania tych zmian) a także na zwiększenie technologicznej efektywności erodowania materiałów.

Głównym zadaniem realizowanej rozprawy jest dobór parametrów geometrycznych samowzbudnej głowicy pulsacyjnej, takich jak: średnica i wysokość komory wirowej oraz jej kąt natarcia i średnice bocznych otworów wlotowych, a zwłaszcza średnica i wysokość dyszy wlotowej i dyszy wylotowej. Równie ważnym zadaniem jest określenie hydrodynamicznych warunków pracy takiej głowicy samowzbudnej, w postaci ciśnienia, które wraz ze średnicą dyszy decydują o natężeniu przepływu wody przez tę głowicę. Wszystkie te parametry decydują bowiem o jej funkcjonowaniu przejawiającym się w postaci dynamicznych rozkładów ciśnienia oraz zróżnicowanych formach przepływów w komorze wirowej a także prędkości wypływu strugi z takiej głowicy, które to wielkości mają istotny wpływ na właściwości wytwarzanej strugi wodnej oraz o jej zachowaniach.

Korzystne warunki funkcjonowania takiej samowzbudnej głowicy pulsacyjnej o zoptymalizowanych parametrach geometrycznych, przy uwzględnieniu zmienności hydrodynamicznych warunków pracy takiej głowicy, w istotnym stopniu oddziałują na okresowe zmienności wewnętrznej struktury wytwarzanej strugi wodnej oraz jej właściwości dynamiczne (jak wartości siły naporu strugi wodnej i częstotliwość jej zmian) a także wpływają na zwiększenie technologicznej skuteczności erodowania materiałów.

MSc. Monika Szada-Borzyszkowska

ABSTRACT

Hydraulic conditions and self-excited pulsating head impact on the characteristics of water jet produced

Undertaking this research topic results from the need to increase the efficiency of a treatment with the usage of high-pressure water jets. The increase in water jet efficiency is usually achieved by generating ever higher water pressure. However, a radical development of innovative methods of such treatment is possible thanks to the usage of a water jet with a periodically variable structure and dynamic properties. Due to the possibility of such development of technological applications of high-pressure water jet, the implementation of this topic was undertaken.

The aim of the dissertation is to determine the impact of geometric parameters of the self-excited pulsing head and hydrodynamic working conditions on the functioning of such head and the dynamic characteristics of the water jet, generated in it, as well as its technological suitability for material eroding.

The aim of the dissertation was pursued by conducting both computer simulation tests and experimental tests, using a self-excited pulsing head made on the basis of the results of computer research. During the experimental tests, the impact of geometric parameters and hydrodynamic conditions on the character and distribution of hydrodynamic impulses of the water jet generated in the developed construction solutions of the self-excited pulsing head was determined.

The following working hypotheses were adopted to achieve the aim:

1. Geometric **parameters of the self-excited pulsing head**, such as: the diameter and height of the vortex chamber, its angle of attack and diameters of the side openings, in particular, the diameter and height of the inlet nozzle, with the diameter and height of the outlet nozzle; **as well as hydraulic working conditions** in the form of a pressure - along with the nozzle diameter – determining the flow rate of water flowing through such head, **decide about its functioning** that manifests in the form of dynamic

pressure distributions and diversified flow forms in the vortex chamber as well as the flow velocity of the jet flowing out from such a head, which **determine the properties of the generated water jet and its behaviors.**

2. A water jet generated in favorable conditions of functioning of such self-excited pulsing head with the optimized geometric parameters, taking into account the variability of hydrodynamic operating conditions of such a head, significantly affects the variability of its internal structure and its dynamic properties (such as the value of the jet contact force, distribution of its momentary pressures and the frequency of occurrence of these changes) as well as the increase in the technological efficiency of material eroding.

The main purpose of the dissertation is the selection of geometric parameters of the self-excited pulsing head, such as: diameter and height of the vortex chamber, its angle of attack and diameters of the inlet side openings, in particular, the diameter and height of the inlet nozzle and outlet nozzle. An equally important purpose is to determine the hydrodynamic operating conditions of such a self-excited head in the form of pressure, which together with the diameter of the nozzle, determine the water flow through this head. All these parameters determine its functioning, manifesting in the form of dynamic pressure distributions and diversified flow forms in the vortex chamber as well as the flow velocity of the jet from such head, thus such quantities that have a significant impact on the properties of the generated water jet and its behaviors.

Favorable operating conditions of such self-excited pulsing head, with the optimized geometric parameters and taking into account the variability of hydrodynamic operating conditions of such head, significantly affect the periodic variability of the internal structure of the generated water jet and its dynamic properties (such as the pressure of the water jet and the frequency of its changes) and they also increase the technological efficiency of material eroding.