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INTRODUCTION 

 The methods of linear algebra (LA) make a basis for mathematical models in various 

fields of science, engineering and technology [4] such as signal and image processing, 

system theory, statistical and numerical analysis, biomedical researches, physical 

experiments, etc. For example, modeling of many real life problems requires solving 

complex systems of difference equations, which using finite elements method are finally 

reduced to a linear systems, created for finite number of elements or nodes. Thus, when 

solving the majority of problems, the main computing procedures of these methods can 

be reduced to operations over large size matrices. Here are some of the specific problems 

to be solved by modern systems of real-time signal processing: matrix multiplications for 

covariance estimation, solving linear systems in adaptive processing, computing 

eigenvalues/eigenvectors for high-resolution array processing and adaptive beamforming 

[4]. However, most of LA methods are characterised by high computational complexity 

[1, 2]  (O(N3) multiplication with addition operations, where N is the order of input 

matrix A). This implies the necessity of solving these problems on high performance 

consequential or parallel computers. However, the universality of these systems causes 

their high hardware overhead and few hardware utilisation. Therefore, the application-

specific parallel systems (ASPS) destined to implementation of several applied 

algorithms and adapted to their properties are more suitable to real time processing. The 

application areas of these computers demand a large degree of reliability of output 

results. However, along with the increasing of computational complexity and complexity 

of  computers, the probability  of physical failures increases. Since a single temporary or 

permanent failure in a processor can break down an entire computing system, fault 

tolerance should be provided in these cases or on hardware, or(and) on software levels. 

Recent advantages in VLSI technology have stimulated research in application-

specific architectures which are tailored to particular application and intended for 

implementation as ASICs or FPGA-based devices. Among these architectures are, in 

particular, VLSI processor arrays [ 3,6-8,10,11,22,29,30,33]. Although advances in 

semiconductor manufacturing permit an unprecedented number of transistors on a single 

processor die, the several fundamental technological limits are existed, which cause 

technological as well as methodological requirements to designing of VLSI systems. 
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     For example, while the realization of internal connections into VLSI chips is a actual 

problem, the fundamental technological requirement is the locality and regularity of 

interconnections between processor elements (PE) of the ASPS. Hence, maximum 

efficiency of the algorithm realization may be derived only when it is prepared (modified) 

in such a way, that data streams between PEs adequately correspond to the information 

dependencies in the implemented algorithm and the PEs loading is balanced [22,26-28]. 

Thus, fundamentally, the two ways in which a larger volume of resources (e.g., more 

transistors) improves performance are parallelism and locality [8]. 

     Another technological requirements are regularity of the ASPS structure and minimal 

numbers of external I/O channels and different types of PEs. Moreover, in the case of 

location together (on a common chip surface) analog and digital parts of a of mixed 

analog-digital VLSI system, the important requirement is the minimization of the 

switching noise, generated by the digital part of a system on the it analog part [92,97]. 

     From above mentioned technological requirements directly follow the methodological 

requirements and problems of VLSI ASPS systems: using „up-to-down” approach to the 

system designing, adapting algorithms to effective VLSI realisation (i.e., VLSI algorithm 

designing) and system fault tolerance. And if the most technological requirements are 

satisfied the FPGA chips implemented on the base of current-mode gates [88,90,93], then 

satisfying mentioned methodological requirements are actual problems mainly due to 

requirement of system fault tolerance which guaranties the confidence of computations. 

Thus, the elaboration of methods of fault tolerant VLSI ASPS designing is the actual 

problem.  

 Therefore, the manuscript purpose is the improving methods of the application-

specific parallel processor design and their using for the synthesis of the fault-tolerant 

processor arrays destined to the implementation on the FPGA’s with the low level of the 

switching noise current-mode gates, and the deriving of the fault-tolerant versions of the 

main linear algebra algorithms. 

 In according to this purpose, the following problems are solved in the manuscript: 

1.  requirements to algorithms and application-specific architectures for their effective 

realization in VLSI, and selection of the architectural platform for the realization of 

main LA tasks; 
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2.  analysis of known fault tolerance methods and selecting of most suitable from them 

for the designing of fault-tolerant VLSI parallel systems; 

3.  requirements to methods of the application-specific architectures designing and 

analysis of the known mapping methods for searching of most suitable for the 

designing of fault-tolerant VLSI parallel processors; 

4.  modification of the weighted checksums (WCS) method and deriving of the fault 

tolerant versions of main LA algorithms; 

5.  designing of FPGA-based parallel system architecture for the fault tolerant realization 

of main linear algebra algorithms; 

6.  approaches to the minimization of current-mode logical functions and designing of 

binary current-mode digital circuits; 

7.  designing of the current-mode prototype of basic block of the FPGA XC4000 series 

cell.  

 

METHODS OF RESEARCHES. 

The methods of linear algebra, graph theory, linear operators, set theory, theory of system 

design.  

SCIENTIFIC INNOVATIONS OF MANUSCRIPT: 

1.  The modification of the origin WCS method is carried out and sufficient conditions of 

it using for LA algorithms were formed. The proposed method operates with wider set 

of LA algorithms and allows to design the effective fault-tolerant versions of 

algorithms. 

2.  The fault tolerant versions of the Gauss elimination, LU-decomposition, Choleski and 

Jordan-Gauss algorithms were designed using modified WCS method. They enable to 

detect and to correct a single error in an arbitrary row or column of the input matrix at 

the each algorithm step. Hence, it is possible to correct up to N2/2, N2/4 and N2  single 

errors during realization of the whole Gauss, Choleski and Jordan-Gauss algorithms 

respectively.  

3.  the new method for the construction of the lattice DGs of algorithms given by nested 

loops has been proposed. In a contrast with known analytical methods, the proposed 

method is more simple and feasible for the implementation in CAD systems, and 



 7 

allows operating with a wider class of algorithms such as, for example, non-uniform 

recursive algorithms corresponding to non-perfect (or composite) loop nests.  

4.  the structure of the application-specific parallel system destined to the fault-tolerant 

implementation of proposed algorithms is designed. Thus, was  proved the 

confirmation, that using FPGA-chips and libraries of files with configuration data for 

these chips, it is possible to construct the fast adapted (to the implemented algorithms) 

application-specific system with high performance and lowest cost/performance ratio. 

5.  The logical properties of  the current-mode gates and logic and the several identities 

for the conversion of expressions from the Boolean algebra were proposed. They are a 

base of the proposed approach to the design of the digital current-mode circuits and 

allow to reduce the hardware overheads for circuits realization.  

6.  Using proposed approach,  the functional schemes of the several current-mode digital 

circuits were derived. They are characterized by smaller hardware overhead in 

comparison with similar ones based on others gate types. 

 

REALIZATION OF SCIENTIFIC INNOVATIONS: 

The theoretical and practical results of manuscript are support by grant KBN 8T11B 049 

10. 

 

APPROBATION OF SCIENTIFIC INNOVATIONS OF THE MANUSCRIPT: 

 The main scientific results of the manuscript are discussed at: 

 - International Conference CAD DD’95, Мinsk, Bielarus, 1995г. 

 - International Workshop „Parallel Numerics’95”, Sorrento, Italy, 1995; 

 - „International Conference on Signal Processing Applications&Technology”, 

ISPAT’95, Boston, USA, 1995; 

 - International Workshop „Parallel Numerics’96”, Gozd Martujek, Slovenia, 1996; 

 - „9-th European Workshop on dependable computing”, Gdansk, Poland, 1998 

 - XXI Conference KKTOiUE, Poznan, Poland, 1998 

 - XXII Conference KKTOiUE, Warszawa, Poland, 1999 

 - International Workshop „Parallel Numerics’99”, Salzburg, Austria, 1999; 

 - 6-th International Conference MIXDES’99, Krakow, Poland, 1999 
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 - 2-th Conference „RUC’99”, Szczecin, Poland, 1999 

 - 3-th International Conference PPAM’99, Kazimierz Dolny, Poland, 1999 

 

PUBLICATIONS. Theme of manuscript are connected with 17 scientific papers. 

STRUCTURE OF MANUSCRIPT. Manuscript consists of introduction, four chapters, 

conclusions and references with 103 papers. Manuscript consist        pages, including         

tables and            figures. 

 In the first chapter, the requirements to algorithms and application-specific 

architectures for their effective realization in VLSI are determined, and the selection of 

the architectural platform for the realization of main LA tasks are performed. Moreover, 

the analysis of known fault tolerance methods and selecting of most suitable from them 

for the designing of fault-tolerant VLSI parallel systems are carried out. 

In the second chapter, the modification of the origin WCS method is carried out 

and sufficient conditions of it using for LA algorithms were formed. Based on the 

proposed method the fault tolerant versions of the Gauss elimination, LU-decomposition, 

Choleski and Jordan-Gauss algorithms were designed. They enable to detect and to 

correct a single error in an arbitrary row or column of the input matrix at the each 

algorithm step. Hence, it is possible to correct up to N2/2, N2/4 and N2  single errors 

during realization of the whole Gauss, Choleski and Jordan-Gauss algorithms 

respectively.  

In the third chapter, the new method for the construction of the lattice DGs of 

algorithms given by nested loops has been proposed. In a contrast with known analytical 

methods, the proposed method is more simple and feasible for the implementation in 

CAD systems, and allows operating with a wider class of algorithms such as, for 

example, non-uniform recursive algorithms corresponding to non-perfect (or composite) 

loop nests. Then the processor array architectures performing fault-tolerant version of 

Jordan-Gauss algorithm with the partial pivoting, Cholesky, Gauss elimination and back 

substitution algorithms has been designed. Note, that in the order to deriving of the array 

architectures with desired features, some purposive transformations of the basic algorithm 

dependence graphs are employed. Based on these architectures, the structure of the 
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application-specific parallel system destined to the fault-tolerant implementation of 

proposed algorithms is designed.  

In the fourth chapter, the logical properties of  the current-mode gates and logic 

and the several identities for the conversion of expressions from the Boolean algebra is 

proposed. They are a base of the proposed approach to the design of the digital current-

mode circuits and allow to reduce the hardware overheads for circuits realization. Then, 

using proposed approach,  the functional schemes of the several current-mode digital 

circuits were derived. The proposed circuits are characterized by smaller hardware 

overhead in comparison with similar ones based on others gate types. 

In the conclusions, the main scientific innovates of manuscript are formulated. 

 

IT IS DEFENDED: 

1.  Algorithm-based fault tolerance method for main linear algebra tasks; 

2.  Fault-tolerant versions of the Gauss elimination, LU-decomposition, Choleski and 

Jordan-Gauss algorithms and fixed size processor array architectures for their 

realization.  

3.  Method of deriving dependence graphs of regular algorithms. 

4.  Main identities of the current-mode logic and approaches to the minimization of 

binary current-mode function. 

5.  current-mode prototypes of main standard digital circuits and basic block of FPGA 

cell. 
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CHAPTER 1. MAIN DESIGNING PROBLEMS OF APPLICATION-SPECIFIC 

PARALLEL PROCESSORS FOR LINEAR ALGEBRA (LA) TASKS 

 

1.1. Requirements to algorithms and application-specific architectures for their 

effective realization in VLSI. Determination of the architectural platform for the 

realization of main LA tasks 

 

 Advances in semiconductor manufacturing permit an unprecedented number of 

transistors on a single processor die. But what architecture will make the best use of these 

riches? During an informal discussion about the future of microprocessors and billion-

transistor architectures at „Computer” journal, several architectural platforms had a 

boisterous arguments over the direction that next-generation processor architectures will 

take. They are [9, 12, 13, 15, 16]:  

 - reconfigurable parallel computing engines (FPGA-based and raw-computers); 

 - specialized, very long instruction word (VLIW) machines; 

 - wide, simultaneous multithreaded (SMT) uniprocessors; 

 - single-chip multiprocessors (CMP); 

 - memory-centric computing engines, such as intelligent RAM (IRAM); 

 - very wide conventional superscalars; and 

 - wide superspeculative processors. 

   The choice of a best from the mentioned architecture platforms mainly depends from 

the intention of a target computer system, i.e. from a set of tasks which should be realized 

by this system and needed performance. Therefore, the properties of main linear algebra 

algorithms should be firstly considered. 

There are few numbers of main LA tasks. They are the solving linear systems and 

least squares problem, matrix multiplication and inversion, and matrix eigenvalues (or 

singular values) problem [19, 20, 21, 23]. However, many methods and algorithms for 

their solution are existed (see Fig.1). The selection of a method mainly depends from the 

input matrix type (symmetrical, band, squared, etc.) and as well as from the parameters of 

the SPCS (such as numbers, performance and instruction set of PEs, numbers and 

throughout of I/O channels, etc.) [22, 24, 25, 27]. 
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 The common properties of the most LA methods are a high computational complexity 

[19, 21, 24, 25, 26]  (O(N3) multiply-addition operations, where N is the order of an input 

dense matrix A) and regularity. The regularity means here that identical transformations 

are carried out with nearly all elements of input matrix at the each algorithm step. 

Moreover, the order of the computations is independent from the values of the input data. 

More details, the most of LA methods (algorithms) consists of the computation on the 

any i-th algorithm step (may be not one time) the elements of leading (i-th) row or/and 

column of matrix Ai = {aji
i}. Then the modification others matrix rows (columns) by 

means leading rows are performed. The example of corresponding algorithm fragment is 

represented by means construction (1.1), were values of the variables K, K1, K2 and 

functions f1, f2 are depended from the selected algorithm.  In this example, the input 

matrix A = A1 = {aji} is recursively modified during K computation steps to the resulting 

matrix  AK+1. 

 

for i:=1 to K  do  

      begin 

{Phase1:computation of the leading column elements aji
i+1 } 

         for j:=i+1 to K1   do 

  aji
i+1 := f1(aji

i , aii
i )                                               (1.1) 

{Phase2: computation of the elements of the matrix Ai+1 } 

         for j=i+1 to K1   do 

           for k:=i+1 to K2   do 

                ajk
i+1  := f2(ajk

i , aji
i+1 , aik

i ).  

       end 

 

The analysis of the construction (1.1) shows that assignment statement of any loop body 

would be performed simultaneously for the all elements aji
i+1  and ajk

i+1. Therefore, the 

main LA algorithms may be effectively solved by different kinds parallel computers.  

The real time LA applications is the object of this manuscript. Only specialized or 

reconfigurable parallel architectures (destined for the further realization as ASIC, FPGA-

based or Raw-processors devices) may be effectively used for these applications. 

Therefore, the problems of designing of such specialized parallel architectures for main 
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LA algorithms is considered in this paper. The VLSI processor arrays [3, 7, 8, 22, 26, 27] 

are typical examples of such architectures. 

 

M A I N  L I N E A R  A L G E B R A  T A S K S  A N D  M E T H O D S

    M a t r i x  i n v e r s i o n      M a t r i x           S o l v i n g  o f   E i g e n v a l u e s  a n d

            a n d m u l t i p l i c a t i o n      l i n e a r  s y s t e m s  a n d s i n g u l a r  v a l u e s  ( a n d

   p s e u d o - i n v e r s i o n a n d  a d d i t i o n    l e a s t  s q u a r e s  p r o b l e m   v e c t o r s )  p r o b l e m

 D i r e c t  m e t h o d s          I t e r a t i o n  m e t h o d s

J o r d a n - G a u s s      Q R - ,  Q L -

   m e t h o d L U - ,  L L
t
- J a k o b i        m e t h o d s

a n d  Q R - m e t h o d

  F a d d e e v a           d e c o m p o s i t i o n        J a k o b i

  m e t h o d s   m e t h o d s   G a u s s       m e t h o d

   . . .   . . . - S e i d e l ’

  m e t h o d       H e s t e n e s ’

      B a c k  s u b s t i t u t i o n         G a u s s ’          m e t h o d

m e t h o d  . . .             e l i m i n a t i o n   S O R

       m e t h o d s m e t h o d     E x p o n e n t i a l

   . . .        m e t h o d

      C h o l e s k i ’

       m e t h o d         B a c k

       i t e r a t i o n

      H o u s e h o l d e r ’ s         G i v e n s ’         m e t h o d

        r e f l e c t i o n s        r o t a t i o n s

m e t h o d        m e t h o d         . . .

 

Fig.1.1. Main linear algebra tasks and methods 

 

In an arbitrary case, devices will be realized in the VLSI technology. Therefore, the VLSI 

technology requirements also should be taken into account during target architecture and 

parallel algorithm design [1, 5]. 

VLSI technology needs from the designer the solving of such important problems, as 

high complexity of the designing, communication problems, effective utilization of a chip 

area, fault tolerance and low level of switching noise (for mixed analog-digital systems), 

problems of control and synchronization, etc. However, the fundamental factor is the very 
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higher cost of the data transmission in a comparison to the data transformation and 

storage [5]. Moreover, the critical factors are also I/O channel widths (due to limit of the 

chip pins) and their throughout. Therefore, in the order to obtaining of the better cost, 

performance, scalability, and control organization parameters, the implemented in VLSI 

systems should be application specific and parallel systems, consisting of mainly 

identical PEs with local interconnections [2]. Moreover, the maximal efficiency of the 

such system will be derived in the case when data streams between PEs adequately 

correspond to the information dependencies in the implemented algorithm and the PEs 

loading is balanced [2,3]. Thus, fundamentally, the two ways in which a larger volume of 

resources (e.g., more transistors) improves performance are parallelism and locality [8]. 

     Therefore, the organization of the parallel computations needs the modification of the 

numerical algorithms base, which was designed to the sequential computers, because the 

criteria’s of the VLSI algorithms designing and evaluating are differences. The reduction 

of the criteria of the algorithm computational complexity corresponds now the increasing 

of the criteria’s of the regularity and locality of data dependencies in the algorithm [3, 22, 

26, 27, 28, 29, 30]. It will be shown in the chapter 3, that such parameters for the selected 

algorithm can be very simple determined by means analysis of its dependence graph [3, 

7, 31, 33, 73]. Following definitions is needed for this. 

     Definition 1.1. Assumes, that algorithm is determined, if are determined: 

 -  set of algorithm variables; 

 -  set of algorithm operations; 

 -  data dependencies in the algorithm. 

     Definition 1.2. Let each functional operator in the algorithm corresponds to one node 

I=(i1,...,in) belonging to the some integer lattice In named iteration space of an algorithm. 

Moreover, if the function operator corresponding to a node I2 depends on the functional 

operator corresponding to another node I1, this dependence is represented by the arc 

(vector) d=I2-I1 between these nodes. Obtained by a such way graph is named the 

dependence graph of an algorithm. 

In further, the all algorithms will be considered at the function operation level.  

Definition 1.3. Algorithm, for which dependence graph is independent from the input 

data values is named as unconditional algorithm. 
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Definition 1.4. Regular algorithm is the algorithm represented by the regular dependence 

graph. Such graphs are characterized by the almost identical set of arcs belonging to the 

each graph node.  

Hence, if dependence graph of the applied algorithm is a regular graph with short arcs 

and few numbers of node types (i.e. numbers of different functional operators in the 

algorithm), then  such algorithm can be effectively implemented in VLSI processor 

arrays.  

Thus, VLSI algorithms should be characterized by following properties: 

1.  to posses the regular dependence graph with short arcs and few numbers of different 

node types;  

2.  to provide the load balance between different graph fragments;  

3.  to provide the some level of the fault tolerance (or confidence computing).  

 In the case when target VLSI system should be realized several different algorithms 

in the real time mode is it needed to provide the flexibility (reconfiguration) of the system 

structure and its fault tolerance. In the Ref.[67] is shown, that for VLSI processor arrays 

effective methods of fault tolerance are the reconfigurations methods [43-45] and 

algorithm-based fault tolerance (ABFT) methods [58-69]. However, the ABFT methods 

are needs in lower overhead for their realization [67, 74, 77, 80, 81]. 

Thus, VLSI parallel system architectures should be satisfied to following requirements: 

1.  Regularity and locality of data links between PE; 

2.  Locality of control links; 

3.  Correspondence of the system performance to the throughout of I/O channels; 

4.  Correspondence of the PEs performance to the throughout of data links between PEs; 

5.  Minimal numbers of the I/O channels; 

6.  Scalability and programmability (possibility of the system programmed 

reconfiguration to the implementation of the selected algorithm); 

7.  Fault tolerance and low level of switching noise (for mixed analog-digital systems) 

It is follows from the above demands, that reconfigurable computers are most 

suitable for the VLSI parallel system architectures. At present time, researchers have 

proposed reconfigurable computers that employ large arrays of highly programmable 

building blocks. Typical examples are complex programmable logic devices (CPLD) and 
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field-programmable gate arrays (FPGA) [6, 10, 11, 17]. These devices rely on powerful 

soft ware tools to map application to the reconfigurable hardware. The intent is to 

construct powerful, specialized computing engines at a relatively low cost with very short 

turn-around time. FPGA-based machines achieve their speeds by exploiting fine-grained 

parallelism and fast static communication. An FPGA’s software has access to its low-

level details, allowing the software to optimize mapping of the user application. Users 

can be also bind commonly used instruction sequences into configurable logic. As a 

result, these special-purpose instruction sequences can execute in a single cycle. This 

approach’s performance scalability has yet to be demonstrated beyond some specialized 

applications. Note, that a Raw-machine [16] also incorporates most of these features. 

However, Raw-computers are reconfigurable devices at a higher level - the level of the 

processor elements. Each PE has the fixed size data and instruction memory, and ALU 

with the fixed instruction set and data width. However, such fixed parameters are not 

always optimal for different algorithms. Therefore, the utilization of this devises typically 

is lower in comparison with FPGA-based devices. 

However, for the minimization of the switching noise, generated by the digital part 

of mixed analog-digital VLSI system on the it analog part it is needed to apply the 

corresponding methods. In the chapter 4 will be shown, that the radical solution of this 

problem is based on the implementation of the digital part of the system (FPGA chip 

here) with the current-mode gates [88-98]. Moreover, using such gates allows to reduce 

the hardware overhead for the digital circuit realization (for example, adders, decoders, 

counters, etc.) [82—85,90,91].  

Thus, the problem of the VLSI parallel system designing reduces to the designing:  

1. parallel versions of the applied algorithms suitable to the VLSI realization; 

2. reconfigurable system architecture which to provide the maximal efficiency and 

confidence of the computation and to satisfied to the VLSI technology demands. 

It was be shown above, that the most LA algorithms are the unconditional and 

regular. Therefore, in the following manuscript chapters the theoretical results obtained 

into chapter 2 will be used for the designing of the VLSI parallel processor architectures 

for the solving of main linear algebra tasks. 
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1.2. Analysis of known fault tolerance methods and selecting of most suitable from 

them for the designing of fault-tolerant VLSI parallel systems 

 

 Modern computer systems is so more complex and so more susceptible to failure. In 

some instance failures are no more than annoyances; in others (for example, for real-time 

processing) they result in significant losses. Now it is needed to explore ways to deliver 

high-confidence computing to most users. The industry needs techniques that add 

reliability without adding significant cost [37].  

The ideal system would be perfectly reliable and never fail. This, of course, is 

impossible to achieve in practice: System builders have finite resources to devote to 

reliability and consumers will only pay so much for this feature. Therefore, fault-

tolerance is a best guarantee that high-confidence systems will not betray the intentions of 

their users by succumbing to physical, design, or human-machine interaction faults, or by 

allowing viruses and malicious acts to disrupt essential services [39, 40, 57]. 

A. Avizienis originally formulated the concept of fault-tolerance in 1967: „The 

system is fault-tolerant if its programs can be properly executed despite the occurrence of 

logic faults [34]. Systems fail for many reasons. Five classes of faults are relevant: 

physical, design, operator, environmental, and reconfiguration [38]. However, in either 

case, faults will cause errors. In this manuscript, we consider only physical (or hardware) 

and environmental faults that occur while the system is in use and which are independent 

from human actions. They are permanent and transient faults [36]. Note, that as we move 

to smaller and smaller VLSI implementations, transient hardware faults will predominate; 

today about 80 percent of all hardware faults are transient [38]. Transient faults are 

difficult to diagnose and, worse, can corrupt data. Therefore, the methods of transient 

faults detection, location and correction are considered in this manuscript.  

The basic principle of fault-tolerant design is redundancy [36, 37, 39, 57], and 

there are three basic approaches to achieve it: spatial (redundant hardware) [45-49], 

informational (redundant data structures) [ 41, 42, 63] and temporal (redundant 

computation) [43, 44, 50-55]. 

Redundancy costs both money and time. The designers of fault-tolerant systems, 

therefore, must optimize the design by trading off the amount of redundancy used and the 
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desired level of fault tolerance. Temporal redundancy usually requires recomputation and 

typically results in a slower recovery from failure compared to spatial redundancy. On the 

other hand, spatial redundancy increases hardware costs, weight, and power 

requirements. 

Many fault tolerance techniques can be implemented using only special hardware or 

software, and some techniques require a combination of these. Which method is used 

depends on the system requirements: hardware techniques tend to provide better 

performance at an increase hardware cost; software techniques increase software design 

costs. Software techniques, however, are more flexible because software can be changed 

after the system has been built.  

Below the brief characteristics of the most widely used hardware and software techniques 

are represented [37]. 

Modular redundancy uses multiple, identical replicas of hardware modules and a 

voter mechanism. The voter compares the outputs from the replicas and determines the 

correct output using, for example, majority vote. Modular redundancy is a general 

technique - it can tolerant most hardware faults in a minority of the hardware modules. 

N-version programming can tolerate both hardware and software faults. The basic 

idea is to write multiply versions of a software module. A voter receives outputs from 

these versions and determines the correct output. The different versions are written by 

different teams, with the hope that these versions will not contain the same bugs. N-

version programming can therefore tolerate same software bugs that affect a minority of 

the replicas. However, it does not tolerate correlated faults, which may be catastrophic.  

Replication is effective but expensive. For certain applications, such as RAM and 

buses, error-correcting codes can be used, and they require much less redundancy than 

replication. Hamming and reed-Solomon codes are among those commonly used. 

A checkpoint is a copy of an application’s state saved in some storage that is 

immune to the failures under consideration. A rollback restarts the execution from a 

previously saved checkpoint. When a failure occurs, the application’s state is rolled back 

to the previous checkpoint and restarted from there. This technique can be used to recover 

from transient as well as permanent hardware failures and certain types of software 

failures. Both uniprocessor and distributed applications can uses rollback recovery. 
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The recovery block technique uses multiply alternates to perform the same 

function. One module is the primary module; the others are secondary modules. When the 

primary module completes executions, its outcome is checked by an acceptance test. If 

the output is not acceptable, a secondary module executes, and so on, until either 

acceptable output is obtained or the alternates are exhausted. Recovery blocks can 

tolerate software failures because the alternates are usually implemented with different 

approaches (algorithms).  

 Thus, the known methods which use hardware or time redundancy, essentially 

increase the cost or degrade the performance of computational systems. Therefore, they 

are few suitable for real-time computing systems and parallel processors. The algorithm-

based fault tolerance (ABFT)  methods [58-68] are more suitable for such systems. ABFT 

is an error detection, location and correction scheme which uses redundant computations 

within the algorithms to detect and correct errors caused by transient failures in the 

hardware , concurrently with normal operation [58]. In ABFT, the input data are encoded 

in the form of error detecting or (and) correcting codes. The algorithm is modified to 

operate on encoded data and produce encoded outputs, from which useful information 

can be recovered very easily. The modified algorithm will be more complexity 

(approximately on 1-10%) and therefore, will take more time to operate on the encoded 

data when compared to the original algorithm. This time overhead must not be excessive. 

Thus, ABFT methods establish the rules of the original (applied) algorithms and input 

data arrays modification. From this, it is clear that this methods are not a general 

mechanism as other methods (e.g. the triple modular redundancy TMR), because they are 

varied from algorithm to algorithm. However, when the modified algorithm is actually 

executed on a target architecture, the overheads are required to be minimum in 

comparison to TMR. 

Module-level faults are assumed [15] in the algorithm-based fault tolerance. A 

module (processor or PE for parallel computers here) is allowed to produce arbitrary 

logical errors under physical failure mechanism. This assumption is quite general since it 

does not assume any technology-dependent fault model. Without loss of generality, a 

single module error is assumed in this manuscript. Also, communication links  are 

supposed to be fault-free. 
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 The most known ABFT method called weighted checksum  (WCS)  one, which is 

specially tailored for matrix  algorithms  and  array architectures, has been proposed by 

Abraham et al. [58,59]. In their scheme, redundancy is encoded at the matrix level by 

augmenting the original matrix with  weighted checksums. Since the checksum property 

is preserved for various matrix operations, these checksums are able to detect and correct 

errors in the resultant matrix. Furthermore, the complexity of correction process is much 

smaller than that of the original computation. For example, the computational complexity 

of the modified fault-tolerant version of the matrix multiplication algorithm 

A(N,N)*B(N,N)=C(N,N) increases on the 2N2 operations and is equal to (N3+ 2N2) 

multiply-add operations. However, this version allows to detect and corrects the single 

error among elements of each column of an input matrix A(M,N) occurred during 

algorithm implementation. Consequently, it enables to correct up to N single  errors 

during solving the whole matrix multiplication task. Note, that the detail description of 

this algorithm is represented in the section 2.1.  

However (it will be proved bellow), the original WCS method don’t suitable for 

most LA algorithms (for example, such as Gauss elimination, Choleski  algorithm, 

Householder reflections and Givens rotations algorithms, etc.),  since  a   single transient 

fault in processor or processor elements (PE) of an array during computation might cause 

multiple output errors, which can not be located.  

Therefore, in this manuscript, we improve Abraham's WCS method and to extend it for 

the LU- LLT - and QR- decomposition,  linear systems solution and matrix inversion, i.e. 

to design  ABFT modifications (versions) of above mention algorithms. 
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1.3. Requirements to methods of the application-specific architectures designing. 

Analysis of the known mapping methods for searching of most suitable for the 

designing of fault-tolerant VLSI parallel processors 

 

At present time, there exists the hierarchical procedure of the digital systems design 

which consists of the following more or less formalized stage: structural (system), 

logical, technological and software design [2,12]. Several stage are yet realized on the 

base of corresponding CAD systems. The structural design stage is the least investigated 

one. The input data of this stage are the set of functions fi which system must perform, 

and structural, timing and others parameters. The result of this stage is the architecture of 

the target system, i.e. system structure (in the functional blocks level) and computational 

algorithms for realization of the each function fi . In according to the functional-structural 

designing approach, this stage corresponds to the transformation (mapping) of the 

mathematical description of applied algorithm into the architecture of the target system. 

Therefore, the structural designing methods based on this approach are named as the 

mapping methods.  

The mapping methods should be satisfied to following requirements: 

1. The applied algorithm should be represented by the mathematical description (for 

example, by equations, recurrence expressions, or nested loops); 

2. Simple and correctional computer form of algorithms and structures representation;  

3. Guaranty of deriving the correctional architecture designs, i.e. both system structure 

and execution algorithms with the synchronization function of computations. 

4. Possibility of deriving the fault-tolerant architectures.  

At present time, the several mapping methods there exist [26, 27, 28, 31-33]. They differ 

by level of formalization and feasible for the CAD implementation, the classes of suitable 

algorithms, and : 

 forms of applied algorithm representation; 

 approaches to determination of the data dependencies of the algorithm; 

 searching of mapping functions; 

 approaches to verification of the derived solutions. 
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The known mapping methods, as a rule, are based on the representation of applied 

regular algorithm expressed by systems of recursive equations or nested loops by its 

dependence graph (may be indirectly). Each node of such a DG corresponds to a certain 

operator (or iteration) of the original algorithm, and is associated with the integer vector 

K = (k1,...,kn). All its nodes are located in the vertices K of a lattice Kn  Zn , where Kn  is 

called the index space. If the iteration corresponding to a node K2 depends on the 

iteration corresponding to another node K1, this dependence is represented by the 

dependence vector d = K2 - K1. 

In the course of mapping, a given algorithm AL with the dependence graph G is 

transformed into a set of structural schemes C = <S,T,> of arrays architectures 

implementing this algorithm, where S is a directed graph called the array structure, T is 

the synchronization function specifying the computation time of nodes in the DG, and  

is the set of operation algorithms of PEs.  

The analysis of the known mapping methods showed that:  

1.  The dependence graph DG of the algorithm is most widely used form of the 

algorithm representation. However, this form is suitable only for regular 

algorithms. Moreover, for deriving of the algorithm DG it is needed to use the 

special methods which are complicated, few feasible for the CAD implementation 

and can operate with only uniform recursive algorithms. They are not suitable , for 

example, to the  non-uniform recursive algorithms corresponding to non-perfect 

(or composite) loop nests. Note, that most of LA algorithms are non-uniform 

recursive ones. Therefore, the creating the method of DGs construction for 

algorithms given by both perfect and composite nested loops with regular and 

quasi-regular data dependencies is the actual problem. 

2.  All known mapping methods operate only with unconditional regular algorithms 

which can be represented by regular or quasi-regular directed graphs (or can be 

reduced to such algorithms). 

3.  All known methods are formalized and not whole automatic ones, and therefore, 

needs to user intervention. Therefore, the CAD implementation of mapping 

method must be interactive one. 
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4.  Using the existing mapping methods, for example, [3, 28, 31-33], the set of array 

architectures for implementing algorithms with regular data dependencies can be 

derived. These architectures is directly determined by input algorithm DG 

properties, and not always effective ones. Therefore, in a order to deriving the 

array architecture with desired features, the purposive transformations of the basic 

algorithm DG may be performed before space-time mapping of graph into array 

architecture. These transformations can be isomorphic and/or geomorphic ones and 

correspond to reducing the original algorithm to the VLSI algorithm (i.e. suitable 

to the parallel implementation in VLSI). The examples of several such DGs 

transformations are represented in the chapter 3. 

5.  All known mapping methods are not allow to obtain the fault-tolerant solutions. 

However, in the case when ABFT methods are used, the increasing of fault 

tolerance of target system is derived automatically, due to mapping of the fault 

tolerant version of the origin algorithm. Hence, arbitrary mapping method can be 

used for deriving of the tolerant to transient faults architecture without using any 

others fault tolerance methods. Therefore, in following chapters the mapping 

method [31] will be used. 

     Modern application specific system (for example, signal processing systems) 

composes both digital and analog parts, where first part is the specialized parallel 

processor while last part is the interface unit between digital parts and external world. 

Advances of the modern VLSI technology permit to implement such mixed systems on a 

single die. Single-chip integration offers many advantages such as size and cost 

reduction, greater reliability and yields enhancement coupled with an improvement in 

high-frequency performance thanks to the reduced package interconnection parasitics. 

Moreover, the programmable (reconfigurable) analog circuits there exist (for example 

field programmable analog array - FPAA). This enables to design and to implement on a 

common semiconductor substrate the whole programmable specialized mixed analog-

digital system. However, the problem of influence of digital part to the analog part of the 

mixed system must be solved during system designing. The main problem is the substrate 

interferences. Switching transients (noise) of the digital part can perturb its analog part of 

a system by means of coupling through the substrate [97].  
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There are several known solutions for substrate interference reduction - the use of 

physical separation of analog and digital circuits , guard rings, and a low inductance 

substrate bias [92-98]. Each of these methods has own advantages and drawbacks. For 

example, remedial approaches used to diminishing of substrate cross-talk are signal 

frequency dependent, e.g. SOI-based process provides high isolation from cross-talk at 

low operating frequencies, while guard rings appear as the technique which is better 

suited for preventing cross-talk at high operating frequencies. Another alternative 

approach for minimizing substrate cross-talk, is a design of interference-resistant analog 

circuits together with low-level interference-generating digital circuits [88-94]. One of 

methods for the last approach realization is based on the implementation of the mixed 

system digital part with the current mode gates [88-91]. Due to the nearly constant value 

of power supply current at the different gate states (for example, logical”0” and „1”), the 

level of its noise is essentially lower in comparison with the classical voltage type gates. 

Besides, based on the current-mode gates, digital circuits with lower hardware overheads 

may be designed (see, for example, [82-85]). However, the logical properties of the 

current-mode logic, as well as the rules of current-mode digital circuit design and 

analysis are not derived. Therefore in this manuscript, the problem of digital circuits 

design with the current-mode gates will be investigated.  

 

1.4. Conclusions of the chapter 1. 

 

1. The common properties of the most LA methods are a high computational 

complexity and regularity. Moreover, the order of the computations is independent from 

the values of the input data. Therefore, most LA algorithms may be effectively solved by 

different kinds parallel computers. 

2. Based on the determined requirements to algorithms and application-specific 

architectures for their realization in VLSI, the properties of the VLSI algorithms were 

derived, and was be shown, that the regularity and locality of data dependencies are more 

important criteria’s of the VLSI algorithm, instead its computational complexity. 

Moreover, it was be shown, that reconfigurable computers are most suitable for the VLSI 
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parallel system architectures destined for the further realization as FPGA-based or Raw-

processors devices. 

3. The known fault tolerance methods which use hardware or time redundancy, 

essentially increase the cost or degrade the performance of computational systems. 

Therefore, they are few suitable for real-time computing systems and parallel processors. 

The algorithm-based fault tolerance (ABFT) methods are more suitable for such systems. 

      4. The original WCS method don’t suitable for most LA algorithms (for example, 

such as Gaussian  elimination, Choleski  algorithm, Householder reflections and Givens 

rotations algorithms, etc.), since a single transient fault in processor or processor elements 

(PE) of an array during computation might cause multiple output errors, which can not be 

located. Therefore, the important problem is improving Abraham's WCS method for 

designing of the fault tolerant versions of main LA algorithms. 

     5. The analysis of the known mapping methods showed that:  

 The dependence graph DG of the algorithm is most widely used form of the 

algorithm representation. However, for deriving of the algorithm DG it is 

needed to use the special methods which are complicated, few feasible for the 

CAD implementation and can operate with only uniform recursive algorithms. 

They are not suitable , for example, to the  non-uniform recursive algorithms 

corresponding to non-perfect (or composite) loop nests. Note, that most of LA 

algorithms are non-uniform recursive ones. Therefore, the creating the method 

of DGs construction for algorithms given by both perfect and composite nested 

loops with regular and quasi-regular data dependencies is the actual problem. 

 Using the existing mapping methods, for example, [3, 28, 31-33], the set of 

array architectures for implementing algorithms with regular data dependencies 

can be derived. These architectures is directly determined by input algorithm 

DG properties, and not always effective ones. Therefore, in a order to deriving 

the array architecture with desired features, the purposive transformations of 

the basic algorithm DG may be performed before space-time mapping of graph 

into array architecture. These transformations can be isomorphic and/or 

geomorphic ones and correspond to reducing the original algorithm to the 

VLSI algorithm (i.e. suitable to the parallel implementation in VLSI). 
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 All known mapping methods are not allow to obtain the fault-tolerant solutions. 

However, in the case when ABFT methods are used, the increasing of fault 

tolerance of target system is derived automatically, due to mapping of the fault 

tolerant version of the origin algorithm. Hence, arbitrary mapping method can 

be used for deriving of the tolerant to transient faults architecture without using 

any others fault tolerance methods. 

6. Advances of the modern VLSI technology permit to implement on a common 

semiconductor substrate the whole programmable specialized mixed analog-digital 

system. However, the problem of influence of digital part to the analog part of the mixed 

system must be solved during system designing. The main problem is the reducing of 

switching noise of the digital part which can perturb analog part of a system by means of 

coupling through the substrate. 

7. The best approach for minimizing of switching noise is based on the 

implementation of the mixed system digital part with the current mode gates. Due to the 

nearly constant value of power supply current at the different gate states (for example, 

logical”0” and „1”), the level of its noise is essentially lower in comparison with the 

classical voltage type gates. Besides, based on the current-mode gates, digital circuits 

with lower hardware overheads may be designed. However, the logical properties of the 

current-mode logic, as well as the rules of current-mode digital circuit design and 

analysis are not derived. Therefore, the problem of digital circuits design with the 

current-mode gates should be investigated.  
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CHAPTER 2. MODIFICATION OF THE WEIGHTED CHECKSUM METHOD 

AND DERIVING OF THE FAULT TOLERANT VERSIONS OF MAIN LA 

ALGORITHMS 

 

2.1. Weighted checksums (WCS) method and its modification for deriving of the 

fault tolerant versions of main LA algorithms 

 

 The WCS code has been adopted by Jou and Abraham [59]in matrix arithmetic 

operations for algorithm-based fault tolerance. The idea is to compress the information 

contained in the row/column elements of matrix into a single element which named a 

check element. Information is compressed in such a way that it is preserved during 

algorithm implementation. In their scheme, redundancy is encoded at the matrix level by 

augmenting the original matrix with  weighted checksums. Since the checksum property 

is preserved for various matrix operations, these checksums are able to detect and correct 

errors in the resultant matrix. Furthermore, the complexity of correction process is much 

smaller than that of the original computation. For example, a WCS encoded data vector 

v(N) with Hamming distance equal three which can correct a single error (SEC) can be 

expressed as  

 

 QCSPCSvvvV Ν21
Τ  ,     (2.1) 

 

where  vi is a element of a data vector  v(N),   

 

 

 N21
T

N21
T

vvvqQCS

vvvpPCS








,        (2.2) 

 

and  p(N), q(N)  - are encoder vectors.   

Possible choices for vector pares  p  and q are, for example, [ 59 ] 

 

 111p
T       and     110 22  N2q

T     (2.3) 
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(were q is named the exponential weighted encoder vector), or [ 62 ] 

 

 111p
T       and      N21q

T         (2.4) 

(were q is named the linear weighted encoder vector). 

The difficulty with the first choice is loss of the numerical accuracy due to large weights, 

while the second choice leads to larger extra computations necessary to correct an error. 

 Based on the, for example, linear encoding vector (2.4), a matrix  A(M,N) can be 

encoded as either a row encoded matrix  AR given by 

 

   QRSPRSAqApAAAR  )()( NN ,   (2.5) 

where  
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a column encoded matrix AC  
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M
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
  , 

or a full encoded matrix ARC  [ 60, 62 ] given by 

 



















10QCS

01PCS

QRSPRSA

ARC .       (2.7) 

 

For example, for matrix multiplication  A(M,N) * B(N,K) = C(M,K) , the column 

encoded matrix AC  of form (2.6) is exploited [ 62  ]. Then , the following expression is 

computed: 

 

CC CBA  .         (2.8) 
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To verify the computation, syndromes S1 and S2 for the j-th column of  matrix C should 

be calculated (j = 1, ... , K) :  





M

1i

jij1 PCScS         (2.9) 

and 





M

1i

jij2 QCSciS        (2.10) 

In order to correct a single error, the following procedure is used:  

 if   S1 = S2 = 0  then no error has been detected; 

 if   S1  0  and   S2 = 0  then PCSj  is inconsistent; 

 if   S2  0  and   S1 = 0  then QCSj  is inconsistent; 

 if   S1  0  and   S2  0   then S2 / S1 = i  and element cij is erroneous, 

and the correction procedure is:  

1ijij Scc  .          (2.11) 

 

Thus, the computational complexity of the modified version of the matrix multiplication 

algorithm increases only on the 2N2 operations and is equal to (N3+ 2N2) multiply-add 

operations. This version allows to detect and to correct the single error among elements 

of  each column of an input matrix A(M,N) occurred during algorithm implementation. 

Consequently, it is possible to correct up to N single  errors during solving the whole 

task.  

However, the original WCS method is not suitable for most LA algorithms (for 

example, such as Gaussian elimination, Choleski algorithm, Householder reflections and 

Givens rotations algorithms, etc.), since a single transient fault in processor or processor 

elements (PE) of an array during computation might cause multiple output errors, which 

can not be located. In fact, the common property of all above mentioned algorithms is the 

computation on the any i-th algorithm step (may be not one times) the elements of 

leading (i-th) row or/and column of matrix Ai = {aji
i} and then modification others matrix 

rows (columns) by means leading ones. The example of corresponding fragment of such 

algorithms with leading column computations is represented by means construction 

(2.12), were values of variables K, K1, K2 and functions f1, f2 are depended from 
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selected algorithm. Note, that in this example the input matrix A = A1 = {aji} is 

recursively modified during K computation steps to obtain the resulting matrix  AK+1. 

 

for i=1 to K  do  

       begin 

{Phase1:computation of the leading column elements aji
i+1 } 

         for j=i+1 to K1   do 

  aji
i+1 = f1(aji

i , aii
i );                                              (2.12) 

{Phase2: computation of the elements of the matrix Ai+1 } 

         for j=i+1 to K1   do 

           for k=i+1 to K2   do 

                ajk
i+1  = f2(ajk

i , aji
i+1 , aik

i );  

       end 

 

 As shown from the (2.12), if at the i-th algorithm step the element aji
i+1 of leading (i-

th) column is wrongly calculated, then errors will appear in all elements ajk
i+1 of j-th row 

of Ai+1 . Analogously, if any element  aik
i of the leading (i-th) row was wrongly 

calculated,  then errors appear in the all elements of j-th column of Ai+1 . In both cases, 

these errors can not be  corrected by WCS method. If the correction of elements ajk is 

performed during calculations, then the computational complexity of the original 

algorithm increases  more than twice.  

For removing of this defects by means a modification of the original WCS 

method, the following confirmations were proved for each above mentioned algorithm 

(see sections 2.2, 2.3 of this manuscript): 

 - If during i-th step of computations the element ajk
i+1  is wrongly calculated, then 

errors will not appear among others elements of matrix Ai+1 , while j-th row will not 

become the leading one (i.e. while i=j ). 

 - If the element  ajk
i   (j=i,i+1,...,N) was wrongly calculated several times q (q<i) 

before performing of the i-th step of algorithm (2.12), then it is possible to correct its 

using the WCS method for the row encoded matrix AR (2.5) at the beginning of the i-

th step of the algorithm.  
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 - If an element ajk
i   (j=i,i+1,...,N) was wrongly calculated during executing of the first 

phase  at the i -th step of algorithm (2.11), then it is possible to correct its using the 

WCS method for the column encoded matrix  AC  (2.6) after executing of this phase. 

 

The main consequence of these confirmations is the possibility to perform the 

detection and correction procedures during each i-th algorithm step among only elements 

of the leading (i-th) row and leading (i-th) column of matrix Ai. Based on these 

confirmations, the modifica-tion of the origin WCS method was performed. The main 

idea of the proposed unified WCS method (scheme) destined for main linear algebra 

algorithms is the performing of check procedures concurrently with algorithm 

computations or more exactly, the performing of the detection and correction procedures: 

  - at each i-th algorithm step; 

  - among only elements of the leading (i-th) row and leading (i-th) column of the 

matrix Ai. 

Note, that proposed modified method may be used for designing the fault-tolerant version 

of an arbitrary matrix algorithm for which above mentioned confirmations are corrected. 

Therefore, these confirmation may be considered as sufficient conditions for using of the 

modified WCS method. 

 As a result, the proposed checksums scheme increases the computational complexity 

of original algorithm 2.12 on O(N2 ) operations (such as multiply-add operations). 

Consequently, proposed modification of WCS-method do not increase its computational 

complexity. However, using of the proposed uniform scheme enables to correct one 

single error among elements of an arbitrary column (or row) of an input matrix A(M,N) 

on any from K steps of algorithm implementation. Consequently, it is possible to correct 

up to K (where K=(N-1) for case M=N) single errors during solving the whole task.  

Therefore, in next sections of this manuscript, we will try to use proposed 

modified WCS method to the designing of the fault tolerant versions of  LU-, LLT - 

decomposition, linear systems solution and some other linear algebra algorithms. 
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2.2. Designing of the fault tolerant versions of the Gauss elimination and LU- 

decomposition algorithms 

 

Matrix triangular decomposition is one of the most important problems in linear 

algebra.  By triangularisation many problems are reduced to simpler problems with 

triangular matrices. Due to own computational complexity (equal to N3/3 multiply-add 

operations), Gauss elimination algorithm 

M(N,N)  A(N,N) =  U(N,N)                          (2.15) 

 

(or LU - decomposition  A = LU) with partial pivoting is most suitable for the 

triangularisation of non-symmetric matrix A(N,N). 

At first, the design of fault tolerant version of Gaussian elimination algorithm 

without pivoting will be represented. This algorithm may be written by construction 

(2.16). Note that the input matrix A = A1 = {aji} is recursively modified during (N-1) 

computation steps to obtain the upper triangular matrix U = AN . Note, that at the i-th 

algorithm step (i=1,...,N-1) the i-th row of matrix Ai  is the pivoting (or leading) row. 

 

   ajk
1 = ajk  ,    mkk=1,      j=1,2,...,N,        k=1,2,...,N. 

       for i=1 to N-1  do 

         begin 

           for j=i+1 to N   do 

            if aii
i <> 0 then mji = aji

i / aii
i  

       else  mji = 0;              (2.16) 

          for j=i+1 to N   do 

             for k=i+1 to N   do 

                ajk
i+1  = ajk

i - mji  aik
i  ; 

        end 

 

where mji  is a data element of the lower triangular matrix M. 

It is followed from the construction (3.16), that if during computation the element 

mji (or lji  for LU-decomposition A = LU) is wrongly calculated, then errors  will appear 
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in all elements ajk
i+1 of j-th row of Ai+1 . Moreover, if any element  aik

i of the leading row 

is wrongly calculated,  then errors appear in all elements of k-th column of Ai+1 . In both 

cases, these errors can not be corrected by the original WCS-method. Therefore, in a 

order to deriving of a fault tolerant version of this algorithm, the proposed modified WCS 

method must be used. However, the truth of the represented in the section 2.1 

confirmation must be proved.  

For the algorithm (2.16) these confirmations are transformed in the theorems 2.1, 2.2 and 

2.3 respectively. 

     THEOREM 2.1. If during the i-th step of computations the element ajk
i+1  is wrongly 

calculated, then errors will not appear among others elements of matrix Ai+1  , until the j-

th row becomes the pivoting one. 

The proof of this theorem directly follows from the algorithm (2.16), where each element  

ajk
i takes part in calculations only elements ajk

i+1  , ajk
i+2 ,..., ajk

i+p , where (i+p)j and 

(i+p)k. 

 

     THEOREM 2.2. Let the element  ajk
i   (j=i, i+1,..., N) was wrongly calculated q times 

(q<i) before executing the i-th step of algorithm (2.16). Then it is possible to correct its 

value only once, using WCS method for row encoded matrix Ar , at the beginning of the 

i-th step of the algorithm (2.16). 

PROOF. Without the loss of a generality, we assume that i<j, i<k and q=2 for element  

ajk
i . Let the element  ajk

i   was wrongly calculated at the (i-1)-th step of algorithm (16). 

Then its value will be equal to  

                      ajk
iz = ajk

i  + zjk
i ,  

 

where  zjk
i - is the calculation error. Then, in accordance with (2.16), after the next step 

we obtain: 

 ajk
i+1  = ajk

i - mji  aik
i   = ajk

iz - zjk
i - mji  aik

i          (2.17) 

 

We assume now that expression (2.17) was also wrongly calculated. In similar way, we 

obtain that the true value of the element ajk
i+1  will be equal to 
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 ajk
i+1  = ajk

(i+1)z - zjk
i+1  = ajk

iz  - zjk
i - zjk

i+1  - mji  aik
i  = ajk

iz - zjk- mji  aik
i ,              (2.18) 

 

where zjk = zjk
i + zjk

i+1 .    

Thus, the computation errors of the element  ajk  are accumulated in the variable zjk. 

Consequently, the wrongly calculated element  ajk  may be corrected only at the j-th step 

of the algorithm (2.16), i.e. when the j-th row will become the leading row (j=i). 

 

CONSEQUENCE. It is possible during algorithm computation to correct only elements 

of the leading (pivoting) row of the matrix A using WCS method for row encoded matrix 

AR  (2.5). 

 

Now, we should derive the method for detection and correction of erroneous elements  mji 

of the matrix M. In order to this, we prove the following theorem.  

     THEOREM 2.3. The values of checksum CSi and weighted checksum WCSi  of the i-

th column of the matrix M are respectively equal to the values of checksum PCSi 
(i+1)  and 

weighted checksum QCSi
(i+1) of the i-th column of matrix  A(i+1)  (i.e. the values of 

checksum and weighted checksum of i-th column of matrix AC after performing of the i-

th step of the algorithm (2.16)).  

PROOF. At the beginning of the i-th step of algorithm (2.16) the values PCSi
i  and QCSi

i  

of the matrix AC in accordance with (2.6) are equal to the following expressions: 

 

PCSi
i  = aii

i  + a(i+1)i
i +...+ aNi

i      

and     QCSi
i  = iaii

i  + (i+1) a(i+1)i
i +...+ NaNi

i          (2.20) 

respectively. 

After performing of the i-th step of the algorithm 2.16 with the column encoded matrix 

AC , these values will be equal to 

 

                       PCSi
(i+1)  = PCSi

i / aii
i         and          QCSi

(i+1)  = QCSi
i  / (iaii

i  ) . (2.21)  
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In other side, the values of checksum CSi  and weighted checksum WCSi  of the i-th 

column of the matrix M in accordance to the expression (2.6) and algorithm (2.16) are 

equal to the following expressions: 

 

CSi = 1 + m(i+1)i
  + m(i+2)i +...+ mNi  = 1 + a(i+1)i

i / aii
i  + ...+ aNk

i / aii
i  =  PCSi

i / aii
i   

and  WCSi = 1+ (i+1) m(i+1)i
  + (i+2) m(i+2)i + ...+  NmNi = 

= 1 + (i+1) a(i+1)i
i / (iaii

i ) +...+ NaNk
i / /(iaii

i )=  WCSi
i / (iaii

i ). (2.22) 

 

Thus, the truth of the represented in the section 2.1 confirmations (which were 

transformed in the theorems 2.1, 2.2 and 2.3) is proved. Therefore, in a order to deriving 

of a fault tolerant version of this algorithm, the proposed modified WCS method 

checksum scheme may be used.  

However, we should be certain that the elements of i-th column of matrix Ai were 

calculated correctly  at the (i-1) step of the algorithm (2.16). It is proved below, that it 

may be verified using WCS-method for i-th column of matrix Ai
C  analogously to (2.9) - 

(2.11).  

In accordance with (2.6) and (2.16), at the (i-1)-th algorithm step the value of 

checksum PCSi
(i-1)  of the i-th column of the matrix A is equal to the following 

expression: 

  

 PCSi
(i-1)  = a(i-1)i

(i-1)  + aii
(i-1)  + ...+ aNi

(i-1) .      (2.23) 

 

In other side, the values PCSi
i  calculated in accordance to the algorithm (2.16) will be 

equal to the following expression: 

 

    PCSi
i  = PCSi

(i-1) - a(i-1)i
(i-1)  PCS(i-1)

(i-1) /a(i-1)(i-1)
(i-1)  =(a(i-1)i

(i-1)  + aii
(i-1) + ...+ aNi

(i-1)) - 

 - a(i-1)i
(i-1) /a(i-1)(i-1)

(i-1)  ( a(i-1)(i-1)
(i-1)  + ai(i-1)

(i-1) + ...+ aN(i-1)i
(i-1) ) =  (aii

(i-1)  + a(i+1)i
(i-1) + 

+ ...+ aNi
(i-1) ) - a(i-1)i

(i-1) / a(i-1)(i-1)
(i-1) ( ai(i-1)

(i-1)  + a(i+1)(i-1)
(i-1)  + ...+ aN(i-1)

(i-1) ).   

      

At the same time, the value PCSi
i should be equal to the following expression: 
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   PCSi
i = aii

i + a(i+1)i
i + ...+ aNi

i  = ( aii
(i-1)  - a(i-1)i

(i-1)  ai(i-1)
(i-1) / a(i-1)(i-1)

(i-1)  ) +  (a(i+1)i
(i-1)  - 

- a(i-1)i
(i-1)  a(i+1)(i-1)

(i-1) / a(i-1)(i-1)
(i-1) )+ ...+ (aNi

(i-1) - a(i-1)i
(i-1)  aN(i-1)

(i-1) /a(i-1)(i-1)
(i-1) ) =   

= (aii
(i-1)+a(i+1)i

(i-1)+...+ aNi
(i-1) ) - a(i-1)i

(i-1)/a(i-1)(i-1)
(i-1)(ai(i-1)

(i-1)+ a(i+1)(i-1)
(i-1)+...+ aN(i-1)

(i-1) ).  

 

Note, that the truth of this confirmation for the variable QCSi
i is proved analogously. 

Consequently, it is possible to correct only elements of the i-th column of matrix Ai at the 

beginning of the i-th step of the algorithm (2.16) using the WCS method checking 

procedures for the column encoded matrix AC.  

     Finally, the fault tolerant version of Gauss elimination algorithm without pivoting will 

consist of  performing the following stages: 

  1. The original matrix A is represented in the form of the full encoded matrix ARC (see 

expression 2.7). 



























10QCSQCSQCS

01PCSPCSPCS

QRSPRSaaa

QRSPRSaaa

QRSPRSaaa

A

N21

N21

NNNNN2N1

222N2221

111N1211













,  

 

where, in the case of using the linear encoded vector (2.4), the values of the checksums 

and weighted checksums are represented by following expressions:  

 

iNi2i1i aaaPRS1]Na[i,   , 

iNi2i1i aNa2a1QCS2]Na[i,   , 

Nj2j1jj aaaPCSj]1,a[N      (2.24) 

Nj2j1jj aNa2a1QCSj]2,a[N    

  2. For i=1, 2, ..., N-1 , stages 3-6 are repeated. 

  3. At the beginning of the i-th step of the algorithm the detection and correction within 

elements belonging to the i-th row and the i-th column of Ai
RC matrix are performing in 

according to the expressions (2.20) and (2.9)-(2.11). 

This stage needs to perform 2(N-i) multiply-add operations and 2(N-i) additions. 
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  4. The elements mji  are calculated. 

  5. The detection and the correction of the elements mji  are performed in according to the 

following expressions (2.22) and (2.9)-(2.11). 

This stage requires (N-i) multiplications with additions and (N-i) additions. 

  6. The elements of matrix ARC
(i+1)  are calculated. 

In the Pascal-like form the fault tolerant version of Gauss elimination algorithm 

may be represented by the following construction, were   is the small machine depended 

constant (roundoff value): 

 

for i := 1 to N-1 do  

  begin 

{ Errors detection and correction within  elements of the i-th column of Ai } 

     PCSi :=0;  QCSi :=0; 

     for j := i  to N do begin PCSi := PCSi + aji ;  QCSi := QCSi + j* aji; end; 

     S1 := PCSi  - aN+1i ;   S2 := QCSi  -  aN+2i ; 

     if  abs (S1) >  and abs (S2) <   then aN+1i  := PCSi ; 

     if  abs (S2) >  and abs (S1) <   then aN+2i  := QCSi ; 

     if  abs (S1) >  and abs (S2) >   then begin j:= S2 /S1 ;  aji := aji - S1; end; 

{ Errors detection and correction within  elements of the i-th row of Ai } 

     PRSi :=0;  QRSi :=0; 

     for k := i  to N do begin PRSi := PRSi + aji ;  QRSi := QRSi + k* aji; end; 

     S1 := PRSi  - ai,N+1 ;   S2 := QRSi  -  ai,N+2 ; 

     if  abs (S1) >  and abs (S2) <   then ai,N+1  := PRSi ; 

     if  abs (S2) >  and abs (S1) <   then ai.N+2  := QRSi ; 

     if  abs (S1) >  and abs (S2) >   then begin k:= S2 /S1 ;  aik := aik - S1; end; 

  {Computation of the elements of the matrix M} 

     for j := i + 1 to N+2  do 

          mji := aji / aii ; 

{ Errors detection and correction within  elements of the i-th column of matrix M } 

     CSi :=1;  WCSi :=j; 

     for j := i+1 to N do begin CSi := CSi + mji ;  WCSi := WCSi + j* mji; end;   (2.25) 
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     S1 := CSi  - aN+1,i ;   S2 := WCSi  -  aN+2,i ; 

     if  abs (S1) >  and abs (S2) <   then aN+1i  := CSi ; 

     if  abs (S2) >  and abs (S1) <   then aN+2i  := WCSi ; 

     if  abs (S1) >  and abs (S2) >   then begin j:= S2 /S1 ;  aji := aji - S1; end; 

{Elimination of the elements of matrix A}   

     for j := i  + 1 to N+2  do 

       for k := i  + 1 to N+2  do 

          ajk := ajk - mji * aik; 

  end; 

 

Note, that the linear weighted encoder vector (2.4) is used here for coding of the QRS and 

OCS values. 

REMARK 2.1. Theorems 2.1-2.3 and all stages of the fault tolerant version of the Gauss 

elimination algorithm without pivoting are also truth for the Gauss algorithm with partial 

pivoting. However, for partial pivoting algorithm version, at stage 3, the error detection 

and correction within the elements of i-th column of the matrix Ai
RC is performed first. 

Then the pivoting row is determined, and the detection and the correction procedure for 

this row is carried out. 

REMARK 2.2. Theorems 2.1 - 2.3 and all their consequences are also true for the LU-

decomposition algorithm, if the elements mji will be replaced with corresponding 

elements lji . Consequently, the all stages of the fault tolerant version of the LU-

decomposition algorithm will be the same ones, as in the Gauss elimination algorithm. 

Thus, using modified version of the WCS-method, the fault-tolerance versions of 

Gauss elimination and LU-decomposition algorithms were designed. 

 Comparison of the constructions (2.16) and (2.25) shows that inserting the error 

detection and correction procedures increases the computational complexity of original 

algorithm (2.16) on the each i-th step on the 3(N-i) operations of multiplication with 

addition and 3(N-i) additions. This means, that the computational complexity of the  

whole algorithm  increases on 1,5N2 multiply-add operations and 1,5N2  additions. 

Besides, due to the increasing of input matrix sizes, the computational complexity of the 

proposed algorithm (2.25) also is increased on 2N2 multiply-add operations. As a result,  



 38 

the computational complexity of the whole fault-tolerant algorithm is increased 

approximately on 3.5N2 + O(N) multiply -add operations in comparison with the original 

algorithm (2.16).  However, new algorithms enable to detect and to correct a single error 

in an arbitrary row or column of the input matrix A at the each algorithm step. Hence, it 

is possible to correct up to N2/2 single errors during solving the whole decomposition 

task (2.15).  

 

2.3. Designing of the fault tolerant version of the Choleski algorithm 

 

 The Choleski algorithm is used for the triangular decomposition of the positively 

defined symmetric matrix A(N,N) ( 0detA ) in such a way, that  

A(N,N) = L(N,N)  LT
(N,N) ,       (2.26) 

where L(N,N) is the lower triangular matrix. It is represented below by the construction 

(2.27) 

 

for i = 1 to N do 

 begin 

     aii
i+1 = i

iia ; 

     for j = i+1 to N do 

            aji
i+1 = aji

i / aii
i+1;  

     for j = i+1 to N do                              (2.27) 

      begin 

        for k = i+1 to j do 

            ajk
i+1 = ajk

i - aji
i+1  aki

i+1; 

     end 

       end 

 

Note that the input matrix A = A1 = {aij} (where i=1,...,N; j=1,..., j) is recursively 

modified during N computation steps to obtaining the lower triangular matrix L = AN . 
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Moreover, at the i-th algorithm step (i=1,...,N) the i-th row and i-th column of the matrix 

Ai  are the pivoting (or leading) ones. 

It is followed from the construction (2.27), that if during computation step the 

element aji
i+1  is wrongly calculated, then errors  will appear in all elements of the j-th 

row and the j-th column of the matrix Ai+1 . Note, that these errors can not be corrected by 

the original WCS-method. Therefore, in a order to deriving of a fault tolerant version of 

this algorithm, the proposed modified WCS method must be used. However, the truth of 

the below represented theorems 2.4 - 2.6 (which correspond to the represented in the 

section 2.1 confirmations) must be proved.  

THEOREM 2.4. If during the i-th step of algorithm implementation the element ajk
i+1  is 

wrongly calculated, where j=i+1,..., N and k=i+1,..., j,  then errors will not appear among 

others elements of matrix Ai+1  , until the k-th column becomes the pivoting one. 

The proof of this theorem directly follows from the algorithm (2.27), in which each 

element  ajk
i  

takes part in calculations only elements ajk
i+1  , ajk

i+2 ,..., ajk
i+p , where (i+p)k. 

 

THEOREM 2.5. Let the element  ajk
i  was wrongly calculated q times (q<i) before 

executing the i-th step of algorithm (2.27). Then it is possible to correct its value only 

once, using WCS method for column encoded matrix AC , at the beginning of the k-th 

step of the algorithm (2.27). 

PROOF. The proof of this theorem is similar to that of theorem 2.2.  

CONSEQUENCE. It is possible, at the beginning of the i-th step of computations, to 

correct only elements of the i-th (pivoting) column of the matrix Ai using WCS method 

for the column encoded matrix Ai
C  (2.6). 

Now, we should derive the scheme for the detection and the correction of 

erroneous elements belonging to the leading column of the matrix A. In order to this, we 

prove the following theorem.  

THEOREM 2.6. The calculated values of the elements belonging to the i-th (pivoting) 

column of the matrix Ai+1 can be verified using the original WCS -method checking 

procedures for the i-th column of the column encoded matrix  AC
(i+1) at the i-th step of the 

algorithm (2.27)  
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PROOF. At the beginning of the i-th step of algorithm (2.27) the values of checksums 

PCSi
i  and QCSi

i  of the i-th column of the matrix AC in accordance with (2.6) are equal to 

the following expressions: 

 

PCSi
i  = aii

i  + a(i+1)i
i +...+ aNi

i      

and    QCSi
i  = iaii

i  + (i+1) a(i+1)i
i +...+ NaNi

i         (2.28) 

respectively. 

According to the algorithm (2.27), after performing of the i-th step,  with the column 

encoded matrix AC , these values will be equal to 

 

       PCSi
(i+1)  = PCSi

i / aii
i+1  = PCSi

i /  aii
i       (2.29) 

and          QCSi
(i+1)  = QCSi

i  / (i aii
i  ) .  

 

In other side, the values of checksum PCSi
i+1 of the i-th column after performing i-th 

algorithm step will equal to the following expressions: 

 

PCSi
i+1  = aii

i+1  + a(i+1)i
i+1 +...+ aNi

i+1 =  aii
i  + a(i+1)i

i / aii
i +...+ aNi

i / aii
i = 

= (aii
i  + a(i+1)i

i +...+ aNi
i)/  aii

i = PCSi
i /  aii

i 

 

Note, that the truth of this theorem for the values of weighted checksum QCSi
i is 

performed in a similar way. 

The theorem 2.6 is proved.          

Thus, the truth of the represented in the section 2.1 confirmations (which were 

transformed in the theorems 2.4, 2.5 and 2.6) is proved. Therefore, in a order to deriving 

of a fault tolerant version of this algorithm, the proposed modified WCS method 

checksum scheme may be used.  

However, as in the case of the Gauss elimination algorithm, we should be certain that the 

elements aji
i of i-th column of matrix Ai were calculated correctly at the previous (i-1)-th 

step of the algorithm (2.27) (when this column was not a pivoting one). It is proved 

below, that it may be verified using WCS-method checking procedures for the k-th 

column of the matrix Ai
C  analogously to (2.9) - (2.11).  



 41 

In accordance with (2.6) and (2.27), after performing of the (i-1)-th algorithm step 

the value of checksum PCSk
(i-1)  of the k-th column of the matrix Ai

C is equal to the 

following expression: 

 PCSi
i  = a(i+1)k

i  + a(i+2)k
i  + ...+ aNk

i = (a(i+1)k
(i-1) -a(i+1)i

i  aki
i ) + (a(i+2)k

(i-1) -a(i+2)i
i  aki

i) + 

+...+ (aNk
(i-1) -aNi

i  aki
i) = (a(i+1)k

(i-1) +a(i+2)k
(i-1) + ...+ aNk

(i-1) ) -  

- (a(i+1)i
(i-1) + a(i+2)i

(i-1) +...+ aNi
(i-1))  aki

(i-1) / aii
(i-1). 

 

In other side, the values PCSi
i  calculated in accordance to the algorithm (2.20) will be 

equal to the following expression: 

 

    PCSk
i  = PCSk

(i-1) - aik
i  PCSi

i = PCSk
(i-1) - aik

(i-1)  PCSi
(i-1)/aii

(i-1)  = (aik
(i-1) + a(i+1)k

(i-1) + 

+...+ aNk
(i-1)) - (aii

(i-1) + a(i+1)i
(i-1) +...+ aNi

(i-1))  aki
(i-1) /aii

(i-1) =  (a(i+1)k
(i-1) +a(i+2)k

(i-1) + ...+  

+ aNk
(i-1) ) - (a(i+1)i

(i-1) + a(i+2)i
(i-1) +...+ aNi

(i-1))  aki
(i-1) / aii

(i-1) . 

      

Note, that the truth of this confirmation for the variable QCSi
i is proved analogously. 

Consequently, it is possible to correct only elements of the i-th column of matrix Ai after 

performing of the i-th step of the algorithm (2.27) using the WCS method checking 

procedures for the column encoded matrix AC.  

     Finally, the fault tolerant version of the Choleski algorithm will consist of the 

performing of following stages: 

1.  The original matrix A is represented in the form of the column encoded matrix AC 

(2.6). 
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where    Nj2j1jj aaaCSj]1,a[n    
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and   Nj2j1jj aNa2a1WCSj]2,a[n   . 

  2. For i=1, 2, ..., N-1 , stages 3-6 are repeated. 

  3. At the beginning of the i-th step of the algorithm, the detection and correction 

procedures within elements belonging to the i-th column of Ai
C matrix are performing in 

according to the expressions (2.28) and (2.9)-(2.11). 

This stage needs to perform (N-i) multiply-add operations and (N-i) additions. 

  4. The new elements of the i-th (pivoting) column are calculated. 

  5. The detection and the correction procedures for the computed elements belonging to 

the i-th column are performed in according to the expressions (2.28) and (2.9)-(2.11). 

This stage requires (N-i) multiplications with additions and (N-i) additions. 

  6. The elements of matrix AC
(i+1)  are calculated. 

In the Pascal-like form the fault tolerant version of Choleski algorithm may be 

represented by the following construction, were   is the small machine depended 

constant (roundoff value): 

 

for i = 1 to N do 

   begin 

     { Errors detection and correction within  elements of the i-th column of Ai } 

            PCSi :=0;  QCSi :=0; 

            for j := i  to N do begin PCSi := PCSi + aji ;  QCSi := QCSi + j* aji; end; 

            S1 := PCSi  - aN+1i ;   S2 := QCSi  -  aN+2i ; 

            if  abs (S1) >  and abs (S2) <   then aN+1i  := PCSi ; 

            if  abs (S2) >  and abs (S1) <   then aN+2i  := QCSi ; 

            if  abs (S1) >  and abs (S2) >   then begin  j:= S2 /S1 ;  aji := aji - S1; end; 

      aii
 = iia ; 

     for j = i+1 to N do 

            aji = aji / aii;  

    { Errors detection and correction within new elements of the i-th column of matrix Ai } 

           CSi :=0;  WCSi :=0; 

            for  j := i to N do begin CSi := CSi + aji ;  WCSi := WCSi + j* aji; end;   (2.30) 

            S1 := CSi  - aN+1i ;   S2 := WCSi  -  aN+2i ; 
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            if  abs (S1) >  and abs (S2) <   then aN+1i  := CSi ; 

            if  abs (S2) >  and abs (S1) <   then aN+2i  := WCSi ; 

            if  abs (S1) >  and abs (S2) >   then begin j:= S2 /S1 ;  aji := aji - S1; end; 

        {Computation of the elements of the matrix Ai+1} 

     for j = i+1 to N do   

      begin 

        for k = i+1 to j do 

            ajk = ajk - aji  aki; 

     end 

   end 

 

Note, that the linear weighted encoder vector (2.4) is used here for coding of the QRS and 

OCS values. 

Thus, using modified version of the WCS-method, the fault-tolerance versions of 

Choleski algorithm was designed. 

 Comparison of the constructions (2.27) and (2.30) shows that inserting the error 

detection and correction procedures increases the computational complexity of original 

algorithm (2.27) on the each i-th step on the 2(N-i) operations of multiplication with 

addition and 2(N-i) additions. This means, that the computational complexity of the  

whole algorithm  increases on  N2 multiply-add operations and  N2  additions. Besides, 

due to the increasing of input matrix sizes, the computational complexity of the proposed 

algorithm (2.30) also is increased on N2 multiply-add operations. As a result,  the 

computational complexity of the whole fault-tolerant algorithm is increased 

approximately on 2N2 + O(N) multiply -add operations in comparison with the original 

algorithm (2.27).  However, new algorithm enable to detect and to correct a single error 

in an arbitrary row or column of the input matrix A at the each algorithm step. Hence, it 

is possible to correct up to N2/4 single errors during solving the whole decomposition 

task (2.26).  

 



 44 

2.4. Designing of the fault tolerant versions of Faddeev and Jordan-Gauss 

algorithms  

 

 Starting with NN, NK, PN and PK input matrices A,B,C and D, respectively, 

the Faddeev algorithm is intended [20, 21, 29] for solving matrix equations of the type 

DBACX  1         (2.31) 

were the four input matrices form an (N + P)(N + K) joint matrix F
~

when arranged in 

the following way: 













DC

BA
F
~

         (2.32) 

The idea of the Faddeev algorithm consists of reducing the lower left quadrant of the 

matrix F
~

(i.e. C-matrix) to zero matrix, while in the lower right quadrant of the matrix F
~

 

(i.e. in a place of D-matrix), the resultant PK matrix X is formed. In a order to 

performing above-stated operations with A being a non-singular matrix, the Gauss 

elimination algorithm is used.  Hence, in the course of computation, the joint matrix F
~

 is 

being transformed into the following matrix:  









 

XO

BR
FF n

*
' 1          (2.33) 

where R is the upper triangular matrix.  

The main practical advantage of Faddeev algorithm is its versatility. This stems 

from the fact that expression (2.31) allows to solve a set of problems. Some of them are 

listed below: 

 - solving a system AX = B of linear algebraic equations with one or more right-hand 

sides (depending upon the numbers of columns in X), i.e.  

   BAX 1   for 0,  DIC ,  

    where I is the identity matrix; 

 - matrix multiplication X = CB for A = I., D = 0; 

 - matrix multiply - add operation  X = CB + D  for  A = I; 

 - matrix inversion  
1 AX  for C = B = I, D = 0. 
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There are other important modifications of the Faddeev algorithm. As a result, it can be 

employed, for example, in fast solving of linear programming problems using the 

Karmarkar algorithm.  

 To provide numerical stability of the Faddeev algorithm, Gaussian elimination with 

partial pivoting within columns [21, 23, 24] is usually used. As a result, at the i-th step 

(i=1,...,N) of the algorithm, the elimination of elements 
i

jif  (j=i+1,..., N+P.), which 

belong either to the original matrix 1~
FF  (for i=1) or to the partially transformed matrix 

iF
~

(for i > 1), preceded by successive comparisons of 
i

jif  (j = i + 1,   ,N) with the pivot 

element 
i

jif . If 

i

ii

i

ji ff   

then the i-th and j-th rows of the matrix iF
~

 are interchanged and a Boolean variable vji is 

set to 1. In the opposite case, the row interchange does not take place, and vji is set to 0. 

After completing all comparisons and interchanges for a given step, the pivoting (i-th) 

row with the pivoting element i

iif  is finally derived. Then the original Gauss elimination 

of the elements 
i

jif  (j=i+1,...,N+P) starts. It is accompanied by transformations of rows of 

the matrix  F
~

, from the (i+1) row to the (N+P) row.  

However, to provide a correct realization of the algorithm, the selection of pivoting 

elements as well as corresponding interchanges are limited only to the upper 

(corresponding to the matrices A and B) quadrants of matrices 
iF

~
. Note, that the 

elimination process is carried out within all quadrants of iF
~

. Naturally, in the N-th step, 

the element N

NNf  is immediately taken as a pivoting one, without any comparison. 

 The described above version of the Faddeev algorithm can be expressed in the 

following form: 

 

for  j:=i+1 to N do 

    begin 

       if  abs(fii
i ) < abs (fji

i)  

         then begin s:= fii 
i ; fii

i := fji
i ; fji

i :=s; vji =1; end 

         else vji =0; 
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   {row interchanges} 

       for  k=i+1 to N+K   do  

        if  vji =1 then begin s:= fik 
i ; fik

i := fjk
i ; fjk

i :=s; end; 

   end {j}; 

   {calculation of multipliers mji } 

         for  j:=i+1 to N+P do          (2.34) 

            mji := fji
i / fii

i; 

    {elimination} 

        for  j=i+1 to N+P do  

          for  k=i+1 to N+K   do  

             fjk
i+1 = fjk

i - mji * fik
i ; 

   end; 

 

 The Jordan-Gauss algorithm [23, 24] is an efficient alternative to classical Gauss 

elimination for the solution of dense linear systems of the form  

bxA           (2.35) 

where A is NxN matrix of the system coefficients. The main advantage is that it gathers 

together two phases, triangularisation and back substitution [24]. In the case when X and 

B are NxK matrices, this algorithm is the particular case of Faddeev algorithm in which 

the two input matrices A and B  form an joint (N+N)x(N+K) matrix F
~

  of the following 

form:  

 













OI

BA
F
~

,           (2.36) 

 

where  I  is the identity matrix, and O is a zero matrix. Then the N step of Gaussian 

elimination is performed for transforming the matrix F
~

 into the matrix F’ (2.33).  

To provide numerical stability of this algorithm, the Gaussian elimination with partial 

pivoting may be used.  

The described above version of Jordan-Gauss algorithm can be expressed in the 

following form: 
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for i:=1 to N  do 

  begin  

  {selection of the pivot element} 

   for  j:=i+1 to N do 

     begin 

       if  abs(fii
i ) < abs (fji

i)  

         then begin s:= fii 
i ; fii

i := fji
i ; fji

i :=s; vji =1; end 

         else vji =0; 

   {row interchanges} 

       for  k=i+1 to N+K   do  

        if  vji =1 then begin s:= fik 
i ; fik

i := fjk
i ; fjk

i :=s; end; 

   end {j}; 

   {calculation of multipliers mji } 

         for  j:=i+1 to N+i do                     (2.37) 

            mji := fji
i / fii

i; 

    {elimination} 

        for  j=i+1 to N+i do  

          for  k=i+1 to N+K   do  

             fjk
i+1 = fjk

i - mji * fik
i ; 

  end; 

where  fjk
1 = ajk        ,              j=1,2,...,N,        k=1,2,...,N; 

         fj(N+p)
1 =  bjp  ,             j=1,2,...,N,        p=1,2,...,K; 

        f(N+1)i
1 = -1    ,             i=1,2,...,N;  

        f(N+i)l
1 =   0 ,     i=1,2,...,N,        l=i+1,i+2,...,N+K. 

 

As a result of the execution of this algorithm, the desired elements of the matrix X are 

determined as follows: 

xjp = f(N+j)(N+p)
(N+1) ,  j=1,2,...N,  p=1,2,...K      (2.38) 

 

The analysis of  Faddeev and Jordan-Gauss algorithms and comparison the corresponding 

constructions (2.34) and (2.37) allow to make the conclusion, that they differ from Gauss 

elimination algorithm (2.16) only more range of changes of the indices j and k. Therefore, 

it is easy proved that the theorems 2.1, 2.2, 2.3 and their consequences are corrected for 
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Jordan-Gauss and Faddeev algorithms. Consequently, the fault tolerant versions of these 

algorithms will also consist of the all stages of the above described fault tolerant Gauss 

elimination algorithm. 

However, for the realization of the detection and correction of the elements of i-th 

column of matrix iF
~

 and  mji it is necessary to perform 2*N multiply-add operations and 

2*N additions in the case of Jordan-Gauss algorithm, and 2*(N-i+P) multiply-add 

operations and 2*(N-i+P) additions in the case of Faddeev algorithm. For realization of 

the detection and correction procedure for the elements of i-th (leading) row of the matrix 

iF
~

 it is necessary to perform (N-i+K) operations of multiplication with addition and (N-

i+K) operations of addition for both Jordan-Gauss and Faddeev algorithms. Moreover, 

for both mentioned algorithms, the resulting elements xjp are not correct during 

computations. Therefore, these elements should be checked and corrected after 

calculations by original checking procedure of the WCS method. For the realization of 

this stage, it is necessary to perform N*K operations of multiplication with addition and 

N*K operations of addition. 

In the Pascal-like form the fault tolerant version of Faddeev algorithm without 

pivoting may be represented by the following construction, were   is the small machine 

depended constant (roundoff value): 

 

for i := 1 to N do  

  begin 

{ Errors detection and correction within  elements of the i-th column of Fi } 

     PCSi :=0;  QCSi :=0; 

     for j := i  to N+P do begin PCSi := PCSi + fji ;  QCSi := QCSi + j* fji; end; 

     S1 := PCSi  - fN+P+1,i ;   S2 := QCSi  -  fN+P+2,i ; 

     if  abs (S1) >   and abs (S2) <   then fN+1+i,i  := PCSi ; 

     if  abs (S2) >   and abs (S1) <   then fN+2+i,i  := QCSi ; 

     if  abs (S1) >   and abs (S2) >   then begin j:= S2 /S1 ;  fji := fji - S1; end; 

{ Errors detection and correction within  elements of the i-th row of Fi } 

     PRSi :=0;  QRSi :=0; 

     for k := i  to N+K do begin PRSi := PRSi + fji ;  QRSi := QRSi + k* fji; end; 
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     S1 := PRSi  - fi,N+K+1 ;   S2 := QRSi  -  fi,N+K+2 ; 

     if  abs (S1) >   and abs (S2) <   then fi,N+K+1  := PRSi ; 

     if  abs (S2) >   and abs (S1) <   then fi,N+K+2  := QRSi ; 

     if  abs (S1) >   and abs (S2) >   then begin k:= S2 /S1 ;  fik := fik - S1; end; 

  {Computation of the elements of the matrix M} 

     for j := i + 1 to N+P+2  do 

          mji := fji / fii ; 

{ Errors detection and correction within  elements of the i-th column of matrix M } 

     CSi :=1;  WCSi :=j; 

     for j := i+1 to N+P do begin CSi := CSi + mji ;  WCSi := WCSi + j* mji; end;  (2.25) 

     S1 := CSi  - fN+P+1,i ;   S2 := WCSi  -  fN+P+2,i ; 

     if  abs (S1) >   and abs (S2) <   then fN+P+1,i  := CSi ; 

     if  abs (S2) >   and abs (S1) <   then fN+P+2,i  := WCSi ; 

     if  abs (S1) >   and abs (S2) >   then begin j:= S2 /S1 ;  fji := fji - S1; end; 

 {Elimination of the elements of matrix F}   

     for j := i  + 1 to N+P+2  do 

       for k := i  + 1 to N+K+2  do 

          fjk := fjk - mji * fik; 

  end; 

where   fjl
1      =   ajl  ,              j=1,2,...,N,        l=1,2,...,N; 

         fj(N+k)
1 =  bjk  ,              j=1,2,...,N,        k=1,2,...,K; 

        f(N+p)l
1 = -cpl ,              p=1,2,...,P         l=1,2,...,N; 

        f(N+p)k
1 =  dpk ,             p=1,2,...,P,        k=1,2,...,K. 

 

Note, that the linear weighted encoder vector (2.4) is used here for coding of the QRS and 

OCS values. 

Thus, the proposed fault tolerant versions of Jordan-Gauss and Faddeev algorithms 

permit to correct a single error in the each column of matrix 
iF

~
. This means, that it is 

possible to correct up to N2 errors during whole time of the algorithm implementation.  
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2.5. Numerical properties of  WCS method in the case of floating point realization 

 

In [ 99 ] the numerical properties of single error correction (SEC) codes based on linearly 

and exponentially weighted encoder vectors was considered in detail for the case of 

ABFT floating - point implementation. The main result is next. In the cases when encoder 

vectors (2.3) and (2.4) are applied, respectively log2N and log2(log2N)  extra bits are 

needed to provide numerical accuracy of computation, i.e. to provide that no false alarms 

occur in worst-case round errors. Therefore both (2.3) and (2.4) encoder vectors are few 

suitable for ABFT floating-point realization. 

 In  [ 61 ] the three various stages of ABFT technique which are prone to numerical 

errors were identified: the coding phase, actual data computation phase, and  error 

correction phase. Note, that the round errors of second stage is determined only numerical 

properties of applied algorithm. For example,  in [ 60 ] the value of tolerance   (so that a 

row (column) of resulting matrix will be accepted as error-free if the difference between 

the computed row (column) sum and checksum is less than  ) was determined for case of 

floating point implementations of LU- and QR- decomposition algorithms. In particular, 

it was be shown, that the  value of tolerance  is necessarily large for the LU - 

decomposition and Gaussian elimination with pairwise pivoting, but is acceptably small 

for the Gaussian elimination with partial pivoting and QR-decomposition. 

 It has been proved in the ref. [ 70 ], that the maximum round error during of data 

vector a(N) coding, is given by 

 

E  a2x2,          (2.39) 

 

where  x(N) - encoder vector , 2 -  Euclidean norm of vector,  and  - machine 

dependent parameters. Thus, the straightforward way to reduce the amount of error 

during coding is to minimize x2 . However, it has been shown in [ 61 ], that we can not 

select an x2  as small as we wish because such vector  x  would not have the high 

reflectively, i.e. that the ratio of the change in the code value to the change in the data 

element would very small. High reflectivity of a code is essential in the error correction 

phase, because if the reflectivity of code is very small, two errors in the data element, 



 51 

which are almost equal in value, but at the same time distinctly observable, will reflect 

the same amount of error in the check element which makes the discrimination of these 

two errors very difficult. Therefore, the strategy should be to make a compromise in 

selecting the norm of encoder vector which will give a small, and at the same time, will 

have moderately high reflectivity. What is why in the ref. [ 61 ] were presented some 

examples of experimental designed encoder vectors which have small value of Euclidean 

norm and high value of reflectivity. Its are, in particular, next: 

1)  average and weighted average  encoder  vectors:  

  

pT = [ 1/N  1/N ... 1/N ]   and   qT = [ 1/N  2/N ... N/N ];   (2.40) 

 

2) normalised encoder vectors  

a)  for vector a(N) 

  pT = [ c/a2    c/a2  ...   c/a2 ]     (2.41) 

 

b) for matrix A(M,N) 

 qT = [c/A    c/A  ...  c/A],      (2.42) 

 

where A  is the average value of matrix columns (or rows) Euclidean norms and  c  is 

a constant fixed by user. 

 Experimental evaluation of numerical error for proposed encoder vectors also were 

researched in [ 61 ]. The main result are next: when round errors are the larger problem, 

one should use normalized encoder vectors; for overflow problems, one should use 

average encoder vectors. 

In order to estimating of the tolerance of the proposed algorithms to transient faults and 

evaluation of numerical error for different encoder vectors, the programmed environment 

„ABFT” (Algorithm-Based Fault Tolerance) was designed in Borland Delphi package 

using Object Pascal language. 

This program allows: 

 to examine the corrected executing of the proposed algorithms for different input 

data and checksums types : Single, Real, Double; 
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 to select the type of the encoded vector: Linear, Average or Normalized; 

 to select the numerical accuracy of computations;  

 to select the error values and to inject the single errors: for the each algorithm, in an 

arbitrary algorithm step, into an arbitrary matrix element; 

 to type the results of the algorithm implementation and detected errors; 

 to select the breakpoints: step over or after error finding; 

 to read of input data from files and to write of the results to output files; 

The environment was designed with Polish language user interface. Therefore, in the 

Appendix 1 the description of this environment is also represented in Polish language. 

The main results of the proposed algorithms testing are following: 

 - the proposed fault tolerant Gauss elimination, Choleski, Jordan-Gauss and Faddeev 

algorithms permit to detect and to correct a single error in the each column of input 

matrix at each step of the corresponding algorithm implementation;  

 - for different input matrix elements and checksum data types (Single, Real or 

Double), the value of tolerance   (so that a row (column) of resulting matrix will be 

accepted as error-free if the difference between the computed row (column) sum and 

checksum is less than  ) in the algorithms (2.25), (2.30) and (2.34) must be selected 

the same value for small size input matrix or more value for large matrix. For 

example, for input data of Single format (accuracy is equal 10E-7) and input matrix 

size equal 100, the error more than  =10E-5 may be detected and corrected in the 

case of Choleski algorithm with the linear weighted encoded vector (2.4). Thus, the 

increasing of input matrix sizes needs in increasing of the tolerance value  . 

 

2.5. Conclusions of the chapter 2 

 

   1. The common property of the selected LA algorithms is the computation on the any i-

th algorithm step (may be not one times) the elements of leading (i-th) row or/and column 

of matrix Ai = {aji
i} and then modification of others matrix rows (columns) by means 

leading ones. Therefore, if at the i-th algorithm step the element of leading column (or 

row) is wrongly calculated, then errors will appear in all elements of the corresponding 
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row (or column) of Ai+1 . In both cases, these errors can not be corrected by original WCS 

method.  

   2. The several theorems were proved for the Gauss elimination, LU-decomposition, 

Choleski, Jordan-Gauss and Faddeev algorithms, which allowed to perform the 

modification of the origin WCS method. The main idea of the proposed modified WCS 

method (scheme) is the performing of the detection and correction procedures: 

  - at each algorithm step; 

  - among only elements of the leading row and leading column of input matrix. 

   3. The sufficient conditions of using of the modified WCS method for others LA 

algorithms were formed. 

   4. The fault tolerant versions of the above mentioned algorithms were designed using 

modified WCS method. The computational complexity of the whole fault-tolerant 

algorithm is increased approximately on O(N2) multiply -add operations in comparison 

with the original algorithm. However, new fault tolerant algorithms enable to detect and 

to correct a single error in an arbitrary row or column of the input matrix at the each 

algorithm step. Hence, it is possible to correct up to N2/2, N2/4 and N2  single errors 

during realization of the whole Gauss, Choleski and Jordan-Gauss algorithms 

respectively.  

   5. Numerical properties of  WCS method in the case of floating point realization were 

researched and the encoder vectors [61], which have small value of Euclidean norm and 

high value of reflectivity, were selected for using in the proposed algorithms. For 

estimating of the tolerance of the proposed algorithms to transient faults and evaluation of 

numerical error for different encoder vectors, the programmed environment „ABFT” 

(Algorithm-Based Fault Tolerance) was designed. The testing of the proposed algorithms 

proved that they are correct and enable to detect and to correct a single error in an 

arbitrary row or column of the input matrix at the each algorithm step. 
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CHAPTER 3. DESIGN OF FPGA-BASED PROCESSOR ARRAY 

ARCHITECTURES FOR LINEAR ALGEBRA ALGORITHMS 

IMPLEMENTATION 

 

It was be shown in the chapter 1 of this manuscript, that the main LA algorithms 

may be effectively solved by different kinds parallel computers. Moreover, only 

specialized or reconfigurable parallel architectures (destined for the further realization as 

ASIC, FPGA-based or Raw-processors devices) may be effectively used for the real time 

LA applications. Therefore, the problems of designing of such specialized parallel 

architectures for main LA algorithms is considered in this chapter. The VLSI processor 

arrays [3, 7, 8, 22, 26, 27] are typical examples of such architectures. Using massive 

pipelining, these arrays exploit the regularity inherent in many algorithms to achieve high 

performance while keeping local communications and low I/O requirements. 

 

3.1. Method for deriving dependence graphs of recursive algorithms  

 

VLSI processor arrays can be designed systematically by applying linear (or 

affine) mappings to algorithms that are expressed as systems of recursive equations or, 

equivalently, by nested loops [2, 3, 7, 8, 25 - 33]. Such algorithms can be represented by 

regular or quasi-regular, lattice  dependence graphs, or a composition of such dependence 

graphs (DGs). Each node of such a lattice DG corresponds to a certain iteration of the 

original algorithm, and is associated with an integer vector K = (I1, ... , In) because all the 

nodes are located in the vertices K of an integer lattice Kn subset Zn. Arcs between nodes 

of this DG, or data dependencies between iterations of the algorithm, are compactly 

represented by the dependence matrix D, in which the j-th column is a dependence vector 

dj. If the iteration corresponding to a node K2 depends on the iteration corresponding to 

another node K1, this dependence is represented by the difference d = K2 - K1. For strictly 

regular (or uniform) DGs, these dependence vectors (or simply dependencies) are 

constant for all nodes K (i.e. independent of K in Kn). Algorithms with regular data 

dependencies occur frequently in signal/image processing, and numerical applications 

[3].  
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For an algorithm given by nested loops with regular data dependencies, its lattice 

DG with the index set Kn and dependence matrix D can be constructed, in an analytic 

way, either using the methods described, e.g.,in Ref. [32, 100], or a method proposed in 

this paper. In comparison with known analytical methods, our method is more simple and 

feasible for the CAD implementation, and allows us to operate with a wider class of 

algorithms. For example, opposite to [32,100], we can deal not only with uniform 

recursive algorithms corresponding to perfect loop nests [101], but also with non-uniform 

ones  which correspond to non-perfect (or composite) loop nests. 

Our method is aimed to a construction of lattice DGs for algorithms given by 

composition of perfect and composite nested loops with regular or quasi-regular data 

dependencies. Starting with the program corresponding to the original algorithm, this 

method also allows us to find the dependence matrix D, which is employed by most of 

the known mapping methods. This feature becomes especially important for algorithms 

with a large dimension n. 

 We assume that an elementary loop nest (ELN) consists of a multilevel construction 

of nested  do-statements including one another, and the corresponding loop body  

without any exit from it. The description of the nest in a Fortran-like notation is as 

follows:  

  

   do I1 := a1 to b1 step c1  

      do I2 := a2 to b2 step c2 

     . . . . . . . . . . . . . . . . . . . . . 

do In := an to bn step cn 

  {statements of the loop body}           (3.1) 

enddo  

    . . . . . . . . . . . . . . . . . . . . . 

      enddo 

   enddo 

 

Here aj , bj and cj are expressions denoting the lower, upper limits and step of the loop at 

nesting level j (j=1,2,...,n). Moreover, a1 , b1 and cj are constants,  while others of aj and 
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bj  are given by affine functions of Ij [102]. The number of nodes in the DG 

corresponding to loop (3.1) is determined by differences wj = bj - aj. While constructing 

DGs of algorithms with regular or quasi-regular dependencies, we assume that all these 

differences are fixed numbers. The statements of the loop body contain some indexed 

variables Xm1,...,mQ , whose indices m are functions of Ij . 

     Each elementary nest is characterized by its dimension n (which is equal to the 

number of do-statements) and defines the corresponding iteration space. Each of its 

vertices represents a single execution of the loop body, and is defined by an iteration 

vector K={i1,i2,...,in} , where ij is equal to the value of Ij during the corresponding 

iteration. If between two consequent do-statements there exist a loop body, then such  

loop construction will be called the composite loop nest. It can be written in the Fortran-

like form as follows: 

 

do I1 := a1 to b1 step c1  

    [{loop body 1} ] 

   [enddo] 

     do I2 := a2 to b2 step c2 

       [ {loop body 2} ] 

     [enddo] 

   . . . . . . . . . . . . . . . . . . . . . 

do In := an to bn step cn 

  {loop body t}                 (3.2) 

enddo  

    . . . . . . . . . . . . . . . . . . . . . 

       [ {loop body 2} ] 

      [enddo] 

    [ {loop body 1} ] 

   [enddo] 

 

Here square brackets are used to denote that the corresponding statements may be 

absented, and t is the number of different loop bodies (t  n). Besides, the each loop body 

s (s=1,2,...,t) may be included only one times into the construction (3.2). 

Note that the construction (3.2) can be splitted into t  elementary loop nests. Each s-th 

ELN can be represented in the form (3.1) with  n = ns .  

     We restrict our analysis to nests in which the lexicographical order of executing its 

iterations is unambiguously determined before computations. It means, that each iteration 

has own lexicographical number, and, for two different iterations, firstly will be executed 
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the iteration with the smaller lexicographical number. Without a loss of a community we 

also assume in this paper that the arbitrary loop body consists of one assignment 

statement. As a result, algorithms under consideration can be written by composition of 

the elementary and/or composite loop nests. 

 

3.1.1. Derivation of dependence graph for elementary loop nest 

 

In order to derive the lattice DG of an elementary nest, the following parameters should 

be determined:  

1) the dimension n  of its iteration space;  

2) the coordinates of all nodes in the DG ;  

3) coordinates of all arcs (vectors) between the nodes.  

The dimension n is equal to the number of do-statements in the nest.  

To find the coordinates of nodes in the DG , we propose to use expressions denoting the 

lower, upper limits and step of the each loop variable Ij (j=1,2,...,n). Note that they are 

equaled to the values aj , bj and cj  correspondingly in the construction (3.1). 

For determining arcs between the nodes and their direction (i.e. coordinates of the 

connecting vectors), we base on the following confirmation.  

Confirmation 3.1. If statement of the n-dimensional ELN (3.1) consists of the r different 

indexed variable Xk
m1,...,mQ (k=1,2,...,r) where indices mp (p=1,2,...,Q) are the affine 

functions from loop parameters Ij (j=1,2,...,n), then variable Xk
m1,...,mQ will transmit 

between DG nodes along vector-arc dk with the coordinates dk = (h1, h2, ..., hn), where hj 

= cj, if arbitrary index mp is not a function from the variable Ij, and hj = 0 in the opposite 

case.  

The proof of this confirmation is based on the following properties of a DG. The presence 

of an arc between two nodes of the DG means that a certain indexed variable is 

transferred between these nodes. Hence, this arc will exist only if this variable has the 

same values of its indices in both nodes. Moreover, the vector-arc will be directed from 

the node with the less value of the lexicographical number. In according to above 

assumed definitions, the variable Xm1,...,mQ  has same values of its indices m1,...,mQ at the 

various iterations of the algorithm, i.e. for various values of one or more loop parameters 
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Ij (j=1,2,...,n) only in the case when all its indices are not dependent from these 

parameters. Therefore, for example, if for variable Xm1,...,mQ  such parameter Ij (one or 

more) exists then this variable should be transmitted to the all DG nodes which have 

same values of the all remained coordinates. The vectors-arcs will connect only such 

nodes in DG, which are differed only in the values Ij and are neighboring.  

It is follows from regularity of the algorithm given by ELN (3.1) that derived vectors will 

connect the all nodes in its DG. 

Consequence 3.1. If the statement of the ELN includes e different indexed variables with 

the same indices (index expressions) then e same vectors will connect the all nodes in its 

DG. 

     Note that the Confirmation 3.1 allows to determine the coordinates of the all vectors-

arcs in ELN DG only if there are no variables with the same name presented on the left 

and right sides of assignment statement of the loop body in program (3.1), for example 

Xk
m1,...,mQ  and Xk

u1,...,uQ  respectively (such variables are named recomputing ones). In the 

opposite case, the DG may to have extra arcs between its nodes because a variable 

Xk
m1,...,mQ which has been computed in a certain iteration K={i1,i2,...,in} is then used as an 

argument Xk
u1,...,uQ for an iteration K’={(I1+h1), (I2+h2) ,..., (In+hn)}  (where hj  is the 

constant which is divisible to the value cj  (j=1,2,...,n) and has same sign) executed 

afterwards.  

For determining such vectors-arcs, we use following confirmation which ensues from 

assumed definitions and Confirmation 3.1. 

Confirmation 3.2. Let the variables Xk
m1,...,mQ  and Xk

u1,...,uQ  are presented on the left and 

right sides of assignment statement of the ELN (3.1), respectively, and their indices mp 

and up (p=1,2,...,Q)  are the affine functions from loop parameters Ijm, Iju  (jm, ju  

{1,2,...,n};). Then the calculated in the iteration (node) K={I1,I2,...,In} variable Xk
m1,...,mQ 

will transmit in the capacity of argument Xk
u1,...,uQ to the all nodes K’={(I1+h1), (I2+h2) 

,..., (In+hn)} which belong  to the ELN iteration space, where hj (j=1,2,...,n) are 

determined from systems of the Q equations  

hj = mp - up , (p=1,2,...,Q) .       (3.3) 
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The remained values of the values hj should be determined in according to the 

Confirmation 3.1. 

Consequence 3.2. It is follows from regularity of the algorithm given by ELN (3.1) that 

variable Xk
m1,...,mQ will transmit along vector dk = K’- K=(h1’, h2’, ..., hn’) to the all nodes 

K’={(I1+h1), (I2+h2) ,..., (In+hn)} which belong  to the ELN iteration space, where 

hj’=min(| hj|) , if sign(hj’)=sign(cj)  and  hj’=0 in the opposite case. 

Consequence 3.3. If the variables Xk
m1,...,mQ  and Xk

u1,...,uQ  are presented on the left and 

right sides of assignment statement of the ELN (3.1), respectively, and all their indices 

are same , i.e mp = up for p=1,2,...,Q, then derived vector -arc will be equal zero. 

     Assuming that the original loop nest has the form (3.1), the procedure  for constructing 

the DG of the s-th elementary nest is as following:   

1. Determine the dimension  n of the nest. 

2. Determine the coordinates of the all DG nodes. 

In order to this we construct the matrix V(n3) of the limits of the iterations space of DG  

 

         a1  b1  c1  I1 

 V  =         a2  b2  c2  I2          (3.4) 

          . . . . .  . . . . . . . . . 

               an  bn  cn  In 

 

where j-th row finds the lower, upper limits and step of the loop parameter Ij (j=1,2,...,n). 

Note that they are equaled to the corresponding values aj , bj and cj  in the construction 

(3.1). 

Then the coordinates of the first and last executed nodes of DG should be determined. In 

according to the assumed definitions they are equal   

 

K1=(a1, a2, ..., an)  and  Kz=(b1, b2, ..., bn)      (3.5) 

respectively. 

The coordinates of the remaining DG nodes are derived by sequential modification of the 

values of the each coordinate Ij  on step value cj . Note that obtained value should be 

satisfied to the expression 

aj  Ij  bj .           (3.6) 
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3. Construct an n-dimensional integer lattice Kn and locate nodes of the DG in its vertices 

in according to their coordinates. 

4. In according to the Confirmation 3.1  determine coordinates of the r vectors-arcs dk of 

the DG corresponding to transmission  of the all indexed variables Xk
m1,...,mQ (k=1,2,...,r) 

of the ELN loop body. The determined non-zero vectors include into dependence matrix 

D of the ELN and connect the all DG node by derived vectors.  

5. If there are no more variables with the same name and different sets of index functions 

corresponding to opposite  sides of assignment statements of the loop body in program 

(3.1), then the procedure of constructing the DG is completed. In the opposite case, for 

each from these variables find the set of iterations (nodes) K’={(I1+h1), (I2+h2) ,..., 

(In+hn)} in which these variables take part in the calculations and coordinates of vectors-

arcs corresponding to transmission these variables in derived nodes K’. The obtained non-

zero vectors include into dependence matrix D of the ELN and  connect by each obtained 

vector only corresponding nodes K’ of the DG. 

 

3.1.2. Derivation of a dependence graph for the whole algorithm 

The resulting lattice DG of the whole algorithm is constructed on the base of DGs 

of all the t elementary nests. Note that value t  is equal to the amount of the the loop 

bodies of the algorithm and the s-th loop-body corresponds to the s-th ELN (s=1,2,...,t). 

The dimension of the resulting DG will be given by  

n = max {n1, n2,...,nt}, 

where ns - is the dimension of the s-th ELN. 

Thus, for derivation of the DG for the whole algorithm, it is necessary to locate all the 

DGs corresponding to elementary nests inside an n-dimensional integer lattice Kn , in 

accordance with the previously determined coordinates of nodes of these DGs. For  DGs 

with dimensions ns < n, coordinates of their nodes should be completed by (n  - ns) absent 

coordinates. Moreover, the nodes of different elementary DGs should be connected by 

arcs with the unit length [16], according to data dependencies between different 

elementary nests. 

Note that in according to above assumed definitions the data dependencies from the ELN 

s1 to the ELN s2 , where s1 , s2  {1,2,...,t}, s1  s2 ,  exist only if the calculated in the 
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ELN s1 variable Xk
m1,...,mQ , then takes part in the ELN s2 as argument of the loop body 

Xk
u1,...,uQ . Therefore, in order to the determination of the values of (n  - ns) absent 

coordinates of the s-th ELN (ns < n) we apply the following confirmation which is based 

on the ideas described above. 

Confirmation 3.3. If exist data dependencies from the ns1 -dimensional ELN s1 to the ns2 

-dimensional ELN s2 , where s1 , s2  {1,2,...,t}, s1 < s2 , then: 

a) in the case when ns1 < ns2 , (ns1 - ns2 ) = n , the each node of the ELN s1 should be 

completed by n  absent coordinates I , I  (I1, I2, ..., In) and each absent coordinate I  

is equal I = a - c , where a and c  are the lower limit and step values of the coordinate 

I  in the ELN s2 ; 

b) in the case when ns1 > ns2 , (ns2 - ns1 ) = n , the each node of the ELN s2 should be 

completed by n  absent coordinates I , I  (I1, I2, ..., In) and each absent coordinate I  

is equal I = b + c , where b and c  are the upper limit and step values of the 

coordinate I  in the ELN s1 . 

     Then the following confirmation should be used in order to deriving the coordinates of 

vectors-arcs connected the nodes between the different n-dimensional ELN’s  in 

according to the data dependencies of the algorithm. Note that this confirmation is the 

modified Confirmation 3.2.  

Confirmation 3.4. Let the variables Xk
m1,...,mQ  and Xk

u1,...,uQ  are presented on the left and 

right sides of assignment statement of the ELN (3.1), respectively, and their indices mp 

and up (p=1,2,...,Q)  are the affine functions from loop parameters Ijm, Iju  (jm, ju  

{1,2,...,n};). Then the calculated in the iteration (node) K={I1,I2,...,In} variable Xk
m1,...,mQ 

will transmit in the capacity of argument Xk
u1,...,uQ to the all nodes K’={(I1+h1), (I2+h2) 

,..., (In+hn)} which belong  to the iteration space of the algorithm, where hj (j=1,2,...,n) 

are determined from systems of the Q equations (3.3). The remained values of the values 

hj should be determined in according to the Confirmation 3.1. 

Consequence 3.4. It is follows from regularity of the algorithm represented by the 

composition of the elementary and/or composite loop nests that the variable Xk
m1,...,mQ will 

transmit along vector dk = K’- K=(h1’, h2’, ..., hn’) to the all nodes K’={(I1+h1), (I2+h2) 
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,..., (In+hn)} which belong  to the ELN iteration space, where hj’=min(| hj|) , if 

sign(hj’)=sign(cj)  and  hj’=0 in the opposite case. 

     Thus, the method for deriving the DG of the whole algorithm of the algorithm 

represented by the composition of the elementary and/or composite loop nests is 

formulated in the following way:  

1. Look through the program of the algorithm, and assign numbers  s = 1, 2, ..., t  to 

succeeding loop bodies, as well as extract all the t elementary loop nests corresponding to 

these bodies. 

2. Find for each s-th ELN its dimension ns and determine the dimension n of the DG of 

the whole algorithm. 

3. For each elementary nest, construct its DG using the procedure described above. 

4. For each s-th ELN with dimension ns < n  we determine  the values of (n  - ns) absent 

coordinates of its nodes and complete its matrix of the iteration space Vs . 

Then we complete the coordinates of the all obtained vectors-arcs by coordinates Ig (g = 

ns+1,..., n) which are absent in this ELN, where Ig = cj  , if Ig is the function of an 

arbitrary from coordinates  Ij (j=1,..., n) and Ig = 0  in the opposite case. The obtained 

non-zero vectors include to the dependence matrix D of the algorithm. 

5. By means a joining modified matrices  of iteration space of ELN’s  consist the matrix 

V(n3) of the iteration space of the whole algorithm 

 

           a1  b1  c1  

  V  =    a2  b2  c2  

    . . . . .  . . . . . . . 

          an  bn  cn  

  

in which the each row determines lower, upper limits and step of the coordinate Ij 

(j=1,2,...,n) of the algorithm iteration space. Note that these values are equal to minimal 

values of the variables aj, cj and maximal values of the variable bj  from  

the all ELN’s matrices Vs  (s=1,...,t) respectively. 

6. Determine the coordinates of the first and last executed nodes of the algorithm DG. 

They are equal   

K1=(a1, a2, ..., an)  and  Kz=(b1, b2, ..., bn)  

respectively. 
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The coordinates of the remaining DG nodes are derived by sequential modification of the 

values of the each coordinate Ij  on step value cj . Note that obtained value should be 

satisfied to the expression 

aj  Ij  bj . 

 

7. Construct an n-dimensional integer lattice Kn and locate nodes of the DG in its vertices 

in according to their coordinates (I1, I2, ..., In). 

8. In according to the Confirmation 3.4 and its consequence, for each pare of ELN which 

have data dependencies between their variables we determine the set of iterations (nodes) 

K’={(I1+h1), (I2+h2) ,..., (In+hn)} in which these variables take part in the calculations 

and coordinates of vectors-arcs corresponding to transmission these variables in derived 

nodes K’. The obtained non-zero vectors include into dependence matrix D of the ELN 

and connect by each obtained vector only corresponding nodes K’ of the DG. 

 

3.1.3. Example. Deriving DG of the Gauss elimination algorithm 

The algorithm corresponding to Gauss elimination algorithm without pivoting is 

represented by program (2.16) in the chapter 2. The original algorithm includes the 

following two loop body statements : 

first - m( I2, I1 ) := a(I2 , I1 ) / a(I1 , I1 ), 

and  second - a( I2, I3 ) := a(I2 , I3 ) - m(I2 , I1 ) * a(I1 , I3 ).  

Thus, the original algorithm consists of t=2 elementary loop nests, which are given by 

Fortran-like program fragments (3.7) and (3.8) respectively.  

{First ELN} 

   do I1 := 1 to N-1 step 1  

     do I2 := I1 + 1 to N  step 1 

          m( I2, I1 ): = a(I2 , I1 ) / a(I1 , I1 )           (3.7) 

     enddo 

   enddo 

 

 {Second ELN} 

   do I1 := 1 to N-1 step 1  
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     do I2 := I1 + 1 to N  step 1 

       do I3 := I1 + 1 to N  step 1 

          a( I2, I3 ) := a(I2 , I3 ) - m(I2 , I1 ) * a(I1 , I3 )         (3.8) 

       enddo 

     enddo 

   enddo 

1. In according to the proposed method assign numbers  s = 1  and s = 2  the first and 

second ELN’s respectively. 

2. Find for each s-th ELN its dimension ns and determine the dimension n of the DG of 

the whole algorithm : 

ns1 = 2, ns2 =3 and n = 3. 

3. For each elementary nest, construct its DG using the procedure described above. 

   a) Firstly, construct the iteration space matrices Vs1(n s13)  and Vs2(n s23)  for first  

and second  ELN: 

           Vs1= 1  N-1  1  I1  

  I1 + 1  N  1  I2  

 

      1  N-1  1  I1  

          Vs2  = I1 + 1  N  1  I2 

        I1 + 1  N  1  I3 

 

   b) Then determine the coordinates of the first and the last executed nodes of DG. In 

according to the proposed method  they are equal   

- for first ELN K1=(1, 2)  and  Kz=(N-1, N) ; 

- for second ELN K1=(1, 2, 2)  and  Kz=(N-1, N, N) . 

   c) The coordinates of the remaining DG nodes K=(I1, I2) (of the first ELN) are derived 

by sequential modification of the values of the each coordinate I1 , I2 on the step value c1 

= c2= 1. Note that obtained values should be satisfied to the expression 

       1  I1  N-1   

and     I1 + 1  I2  N. 

 

For example, for N=4 the following set of nodes of the first ELN were obtained: 

(1,2); (1,3); (1,4);  (2,3), (2,4);  (3,4). 
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Analogously, for second ELN we obtain the following set of the DG nodes: 

(1,2,2); (1,2,3); (1,2,4); (1,3,2); (1,3,3); (1,3,4); (1,4,2); (1,4,3); (1,4,4);  (2,3,3), (2,3,4);  

(2,4,3); (2,4,4); (3,4,4);. 

   d) Construct the ns1=2 and ns2=3 dimensional integer lattices and locate nodes of the 

DG’s in its vertices in according to their coordinates. 

   e) In according to the Confirmation 3.1  determine coordinates of the r vectors-arcs dk 

of the DG corresponding to transmission  of the all indexed variables Xk
m1,...,mQ 

(k=1,2,...,r) of the ELN loop body.  

The first ELN includes three such variables (r =3): a(I1 , I1 ), a(I2 , I1 ) and  m(I2 , I1 ) . 

However, only indices of the variable a(I1 , I1 )  are not dependent from the loop 

parameter I2 . Consequently, variable a(I1 , I1 )  will transmit between the nodes of the 

ELN DG along the vector d1 = (h1, h2)=(0, c2 )=(0,1).  For remained two variables we 

obtain the vectors d2 = d3 = (0, 0). 

The determined vector d1 is included into dependence matrix Ds1 of the first ELN and 

connect the all DG nodes by this vector.  

The second ELN also includes three such variables: a(I2 , I3 ), a(I1 , I3 ) and  m(I2 , I1). The 

indices of the variable a(I2 , I3 )  are not dependent from the loop parameter I1 . 

Consequently, variable a(I2 , I3 )  will transmit between nodes of the ELN DG along the 

vector d1 = (h1, h2, h3)=(c1, 0, 0)=(1, 0, 0).  For remained variables a(I1 , I3 ) and m(I2 , I1 )  

we obtain the vectors d2 = (0, 1, 0) and d3 = (0, 0, 1) respectively . 

The determined vectors d1, d2 , d3 is included into dependence matrix Ds2 of the second 

ELN and connect the all DG nodes by these vectors.  

   f) There are no variables with the same name and different sets of index functions 

corresponding to opposite  sides of assignment statement in the first ELN. Therefore, the 

procedure of constructing the DG of this ELN is completed. This DG is shown in the 

fig.3.1. 
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     3 , 4

      i 1 2 , 3      2 , 4

i 2

       1 , 2 1 , 3      1 , 4

 

Fig. 3.1. Elementary DGs for first ELN 

 

In the second ELN there are two pare of such variables:  

 a(I2 , I3 ) in the left part and  a(I2 , I3 ) in the right part of the loop body; 

 a(I2 , I3 ) in the left part and  a(I1 , I3 ) in the right part of the loop body. 

In according to Consequence 3.3 determine that the vector corresponding to the data 

dependencies between first pare of the variables is equal zero. 

For second variables pare in according to the Confirmation 3.2 we obtain: 

m1 = I2 , m2 = I3 , u1 = I1 , u2 = I3  

and 

h1 = I2 - I1    ,    h3 = I3 - I3 , 

where I2  { I1 +1, I1 +2,..., N} . Consequently,  h3 = 0  and  h1 {1, 2,..., N - I1 }  and h1’ 

=1 , h3’ = 0. 

The value of the variable h2 we determine by means Confirmation 3.1. In according to 

this confirmation obtain h2 = c2 =1. 

As a result, the vector-arc d4 = (1, 1, 0)  is determined which corresponds to the 

transmission of the calculated in the node K={I1, I2, I3} variable a(I2 , I3 ) to the node 

K’={(I1+1), (I2+1), I3} as the argument a(I1 , I3 ). The obtained vector include into 

dependence matrix Ds2 of the second ELN and  connect by obtained vector only 

corresponding nodes K’ of this DG. 

For example, for N=4 the following nodes pare in the second ELN should be connected: 

(1,2,3) and (2,3,3); (1,2,4) and (2,3,4); (2,3,4) and (3,4,4);. 

The obtained DG of the second ELN is shown in the fig.3.2. 
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 Fig. 3.2. Elementary DGs for second ELN 

 

4. For first ELN with dimension ns1 =2 < n  we determine  the value of (n  - ns)=1 absent 

coordinate of its nodes and complete its matrix of the iteration space Vs1 . 

Such coordinate is the coordinate I3 , and its value for all nodes of the first ELN is equal  

I3 = a3 - c3 = (I1 +1) - 1= I1 , 

where a3  and c3 are the lower limit and step values of the coordinate I3 (in the second 

ELN). 

Then we complete the matrix Vs1  and the all obtained vectors-arcs by coordinate I3. The 

obtained non-zero vectors we include to the dependence matrix D of the algorithm. As a 

result, the following matrices Vs1 and Ds1 are obtained: 

 

      1      N-1  1  I1  

          Vs1  = I1 + 1  N  1  I2 

        I1   I1   1   I3 

 

          0   I1  

          Ds1   = 1  I2 

            0   I3 

 

5. By means  joining the modified matrices  of the iteration spaces of the first and second 

ELN’s  we consist the iteration space matrix V(n3) of the whole algorithm as  
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       1      N-1  1  I1  

          V   = I1 + 1  N  1  I2 

         I1   N   1        I3 

 

6. Determine the coordinates of the first and last executed nodes of the algorithm DG. 

They are equal   

K1=(1, 2, 1)  and  Kz=(N-1, N, N)  

respectively. 

The coordinates of the remaining DG nodes are derived by sequential modification of the 

values of the each coordinate Ij  on step value cj . Note that obtained value should be 

satisfied to the expression (3.6). 

7. Construct an n-dimensional integer lattice Kn and locate the DG nodes in its vertices in 

according to their coordinates (I1, I2, I3). 

8. In according to the Confirmation 3.4 and its consequence, we determine that  the DG 

has vectors-arcs for transmission the calculated in the first ELN variable m(I2 , I1) to the 

second ELN as argument m(I2 , I1), and vectors-arcs for transmission the calculated in the 

second ELN variable a(I2 , I3) to the first ELN as arguments a(I2 , I1 )  and a(I1 , I1 ). 

For the first variables pare in according to the Confirmation 3.4 we obtain the next 

expressions: 

m1 = I2 , m2 = I1 , u1 = I2 , u2 = I1 . 

Consequently,  the values h1 and h2 will be equal to 

h1 = I2 - I2 = 0  and    h2 = I2 - I2 = 0. 

In according to the Confirmation 3.1 the value of the variable h3  is equal to 

h3 = c3 =1.  

As a result, the vector-arc d5 = (0, 0, 1) was determined. It corresponds to the 

transmission of calculated in the node K={I1, I2, I1} variable m(I2 , I1 ) to the node K’={I1, 

I2, (I1+1)} as the argument m(I2 , I1 ). The obtained vector include into dependence matrix 

Ds2 of the second ELN and  connect by obtained vector only corresponding nodes K’ of 

this DG. 

For example, for N=4 the following nodes pares in the algorithm DG should be 

connected: 
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(1,2,1) and (1,2,2); (1,3,1) and (1,3,2); (1,4,1) and (1,4,2);. (2,3,2) and (2,3,3); (2,4,2) and 

(2,4,3); (3,4,3) and (3,4,4). 

Analogously, the vectors-arcs d6 = (1, 0, 0) were derived, which corresponds to the 

transmission of the calculated in the node K={I1, I2, I3} variable a(I2 , I3 ) to the node 

K’={(I1+1), I2, I3} as the argument a(I2 , I1 ), and d7 = (1, 1, 0), which corresponds to the 

transmission of the calculated in the node K={I1, I2, I3} variable a(I2 , I3 ) to the node 

K’={(I1+1), (I2+1), I3} as the argument a(I1 , I1 ). The obtained vectors include into 

dependence matrix D of the algorithm and  connect by obtained vectors only 

corresponding nodes K’ of this DG. 

For the case N=4 the following nodes pares in the algorithm DG should be connected: 

(1,3,2) and (2,3,2); (1,4,2) and (2,4,2);. (2,4,3) and (3,4,3); (1,2,2) and (2,3,2); (2,3,3) and 

(3,4,3). The resulting DG for Gauss elimination is presented in Fig.3.3.  
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     a 1 2  a 2 2
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          a 4 1  

Fig. 3.3. DG of whole Gauss elimination algorithm 

 

 The dependence matrix D of this algorithm is given below. 

 

        1  0  0  1 I1  

          D   =   0  1  0  1 I2 

          0   0  1  0 I3 
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3.2. Design of FPGA-based processor array architectures for the solving of main 

linear algebra tasks  

 

3.2.1. Mapping overview 

 Architectures of VLSI processor arrays can be designed systematically [3, 7, 8, 22, 

26, 26 - 33] using linear (or affine) mappings of algorithms which are expressed by 

systems of recursive equations or nested loops. In the course of mapping, a given 

algorithm AL with the dependence graph G is transformed into a set of structural 

schemes C = <S,T,> of arrays implementing this algorithm, where S is a directed graph 

called the array structure, T is the synchronization function specifying the computation 

time of nodes in the DG, and  is the set of operation algorithms of PEs.  

One of the most promising approaches to mapping recursive algorithms with 

regular dependencies into processor arrays [31] consists of finding linear mapping 

operator F  which transforms the each node K of the algorithm DG to the corresponding 

node of the structure graph S: 

F : Kn  KF
m+1 ,  F(K)= FK, K Kn ,     (3.9) 

 

 where m is the dimension of the PA structure (m+1  n). 

 Operator F represents the (m+1) x n matrix and composes of two components: space 

mapping FS  and time mapping FT : 

 

F
F

F
Z

S

T

m n








 

 ( )1
 .        (3.10) 

 

As a result, the arbitrary DG node K Kn  will be carried out in the processor element 

(PE) with coordinates FSK  at the tact number FTK .  

Note, that the operator F should be satisfied to the following conditions: 

 

1. FTd >0 ,d D ; 

2.  K1, K2  Kn (K1 K2  FK1  FK2);              (3.11) 
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3. rank(F) = m+1. 

 

Thus, in according to the methodology [31], the set of all possible and nonequivalent 

allocation mappings FS(K) satisfying given constraints for links between PEs (which are 

located in vertices of a lattice Km  Zm ) is firstly determined. For each of network 

topologies S corresponding to this set, an optimal schedule mapping which implements 

the algorithm correctly is find then. This mapping is constructed as a linear (or affine) 

function FT with n unknown coefficients. 

Using the existing mapping methods, efficient array architecture for 

implementation of the algorithm with regular data dependencies have been designed. The 

next step of the designing procedure consists of deriving the structure of the target 

application-specific system destined for implementation of several obtained PA 

architectures (corresponding to the set of selected algorithms). Note, that the number of 

different algorithms in this set is the main factor which determines such basic parameters 

of the target system as complexity and uniformity of PE’s, their utilization and 

complexity of inter-processor links. In the case of ASIC-realization, a promising 

approach to solving of this problem is based on the designing processor arrays for such 

versatile algorithms which could solve several distinct problems (for example, in linear 

algebra, Faddeev algorithm [20, 29, 103] is inherently versatile). Only in the case of PA’s 

implementation on the base of programmable devices such as FPGAs a full adaptation of 

implemented structure, highest hardware utilization and lowest cost/performance ratio 

may be derived. Therefore, in next sections, the design of the FPGA-based parallel 

system destined to the realization of main linear algorithms is represented. At first, as a 

example, the design of PA architecture performing Jordan-Gauss algorithm with the 

partial pivoting is described. Note, that to derive array architecture with desired features, 

some purposive transformations of the basic algorithm dependence graph are employed. 

Since the array architectures obtained in this way feature a strong dependence from sizes 

of matrices being processed, we show how these architectures should be modified in 

order to process a large size matrix on fixed-size arrays. At second, we show the different 

PA architectures for the implementation Faddeev, Cholesky, Householder and Hestenes 

algorithms. Finally, the FPGA-based structure of the application-specific parallel system 
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destined to the performing the above algorithms is described. This linear processor array 

consists of  two-ported processor elements with configurable internal structure which are 

connected into a ring and is characterized by high overall performance, scalability and 

hardware utilization. 

 

3.2.2.  Design of linear processor arrays for the original Jordan-Gauss algorithm 

Jordan-Gauss algorithm with partial pivoting is expressed in the form (2.37) (see 

chapter 2 of this manuscript).  

 In spite of using if...then...else statements in the algorithm (2.37), the order of 

execution of its operators is unambiguously determined before computations. This allows 

us to construct its basic dependence graph GB in accordance to the proposed in the section 

3.1 method. Nodes of GB are distributed in nodes of the three-dimensional lattice 

Q1={K=(i,j,k): 1  i  N, (i+1)   j  (N+i), i  k  N+K}. This lattice can be visualized 

as a truncated pyramid possessing a rectangular base with the size of (N+1)(N+K) nodes. 

The height of the lattice is N units (or layers). The graph GB is shown in Fig.3.4, where 

N=3, K=1. It should be note that the i-th layer of GB (i=1,2,...N-1) is composed of two 

sublayers for which we assume z=1 or z=2. We will call these two sublayers pivot or 

elimination sublayer, respectively. The first sublayer with z=1 consists of (N-i+1)(N+K-

i+1) subnodes, and corresponds to the selection of the pivot element within the i-th 

column of the matrix Fi , as well as to the described above interchanges of its rows, from 

the i-th row to the N-th row. These interchanges are carried out under the control of 

variables vji generated during the selection process, where (j=i+1,...,N). The second 

sublayer with z=2 consists of N x (N+K-i+1) subnodes, and corresponds to the 

computation of coefficients mji , where j=i+1,...,N+K, followed by transformations of 

rows of the joint matrix from the (i+1)-st row to the (N+i)-th row. The highest N-th layer 

of GB is composed of only the elimination sublayer with  N(K+1) subnodes. 

    The data dependencies (or arcs) between nodes of the graph GB are represented by the 

five different vectors d1 ,..., d5 which compose the dependence matrix D of the algorithm: 
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
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1 2 3 4 5

1 0 0 1 1

0 1 0 1 1

0 0 1 0 0

    (3.12) 

 

In the graph GB , the critical paths have the length of N(N+5)/2 +K+1 subnodes. It 

gives the lower bound for the total computation time t* required by the algorithm to 

process a particular matrix F. Consequently, when matrices are processed individually, 

all two-dimensional processor arrays will manifest the low processor elements utilization  

 1** )/(  NOMtW . 

Here  2/3NOW   and  2NOM   is the number of subnodes in the graph GB and PEs 

in a 2-D structure, respectively. 

    Before passing on to the design process for one dimensional (or linear) arrays, we note, 

that the presence of global dependencies in GB limits the set of array structures S with 

fully local communication between PEs. Indeed, for 2-D structures, only projection of the 

graph along the vector r*=[0 1 0] satisfies this condition. Hence, to simplify the design 

of 1-D array structures, we transform the three-dimensional graph GB into a 2-D graph G1 

by projecting GB along the vector r*. As a result, all nodes lying at a straight line parallel 

to r* merge into a single macronode, which represents a macrooperation performed on an 

entire column of Fi . Then we again transform the graph G1 by composing the pivot and 

elimination sublayers of the i-th layer of G1 into one layer, where (i=1,2,...N-1). Having 

done this, we get the graph G2 which is shown in the Fig.3.5,a , where N=6, K=1.  

The set of 1-D structures of PAs with fully local interconnections corresponds to the 

following set of mapping operators FS : 

          F f f fS   11 12 13 0 0 1 1 0 1 1 0 0 1 0 1, , ,  (3.13) 

One of them is the structure S1 , which is shown in Fig.3.5,b , where N=6, K=1. This 

structure, which corresponds to the projection of G1 along i-axis, contains N PEs of the 

first type, i.e. having a division unit in addition to a multiplication-addition unit, and K 

PEs of the second type, i.e. without a division unit.   
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Fig.3.4. Basic dependence graph of Jordan-Gauss algorithm 
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Fig.3.5. 2-D DG of Jordan-Gauss algorithm and 1-D architectures of processor arrays 

 



 75 

      i *

 j

                    a 1        a 2          a 3         a 4         a 5         a 6            b
 

 

Fig.3.6. Transformation of Jordan Gauss algorithm DG  

 

The drawbacks of the structure S1 are comparatively large numbers of PEs and I/O 

channels, as well as, the presence of N PEs containing division units. These shortcomings 

can be eliminated by projecting the graph G2 along the vector k-axis. This projection 

results in the structure S2 , which has only N PEs (see Fig.3.5,c). Moreover, only the first 

and the last PEs of this structure perform I/O operations. However, the limitation of the 

structure S2  is that all its PEs must perform divisions in addition to multiply-add 

operations.  

    In a order to obtaining the such array structure which minimizes the number of PEs 

containing a division unit, we try to transform the triangular part of the graph G2. We 

place all diagonal macronodes of the graph G2 along k-axis, and then redraw this graph 

preserving all interconnecting between its macronodes. This transformation can be 

thought as a rotation of the triangular part of G2 by an angle of 45 clockwise. As a result, 

coordinates (i,k) of macronodes of the triangular part are changed according to the 

following formulae: k*=k, i*=N-k+i, where i=1,2,...,N, k=i, i+1,...,N.  Then we complete 

the obtained graph with „empty” macronodes, which provide the input of matrix F in 

accordance with Fig.3.6, where the resulting graph G3 is depicted. After projecting it 

along k*-axis, we obtain the structure S3 shown on the Fig.3.7. Lastly, to complete the 

design of a structural scheme C3 which corresponds to both the graph G2 and structure S3 

, we derive a schedule mapping FT , using the mapping methodology [31]. Aiming at the 

minimization of the algorithm execution time, we obtain the following schedule: 
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FT= Ni* +j+ (N+1)k* + z(N-1)+const .     (3.14) 

    The scheme C3 is a linear array with N PEs; only the last PE contains a division unit, 

while the rest of PEs , which are of the same type, are not provided with it. The internal 

structures of the k*-th (k*N ) and the N –th PEs are detailed in Fig.3.8,a and Fig.3.8,b 

respectively, where 
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Fig. 3.7. Fixed-size array 

structure for Jordan-Gauss 

algorithm 
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Fig. 3.8. Internal structure of i-th and n-th PEs 

 

 

 (N-1) and (N+2) are FIFO-buffers with corresponding lengths, MX denote multiplexes, 

R denote registers, CC is a comparer, DIV and MUL denote a division and multiply units. 

Because a new matrix F can be processed as soon as the input of the previous matrix F is 

completed, the above scheme is characterized by the pipelining period of t=(N+1)(N+K) 

steps and the asymptotic processor utilization   0.5 for K=1.  

A basic requirement in practical system designs for linear algebraic problems is an 

ability to process large size matrices on processor arrays with a fixed number of PEs 
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[3,29]. To provide this ability, two partitioning methods [3] are usually used: locally 

sequential globally parallel (LSGP) method and locally parallel globally sequential 

(LPGS) method. Both of them are based on the decomposition of a dependence graph 

(DG) of an algorithm into a set of regular subgraphs, but differ in the way how these 

subgraphs are mapped onto resulting structural schemes. In the LSPG method, one 

subgraph is mapped to one PE, and each PE sequentially executes the nodes of 

corresponding subgraph. Therefore, an additional local memory within each PE is 

needed. To avoid this disadvantage, one subgraph is mapped to one array in the LPGS 

method. All nodes within one subgfaph are processed concurrently, while all subgraphs 

are processed sequentially. As a result, all intermediate data which correspond to data 

dependencies between subgraphs can be stored in buffers outside the processor array. We 

employ this scheme in order to implement the ABFT Jordan-Gauss algorithm on a linear 

array with n<N PEs, where n is a fixed number. 

    Starting with the graph G2, we try to decompose it into a set of s= ] N/n[  subgraphs 

having the „same” topology, where ]x[ denotes the nearest  integer equal to or greater 

then x. As evident from Fig.3.5, this can be done only if we „cut” the graph G2 using a set 

of straight lines parallel to k-axis. These lines decompose the graph G2 into q regular 

subgraphs with n layers each, where q=1,2,...,s. Then, the above described rotation of the 

triangular part of G2 by the angle of 45 is individually used for every q-th subgraph. 

Lastly, after completing each of subgraphs with „empty” macronodes, a set of s 

subgraphs with the „same” topology is obtained (see Fig.3.9). Note, that such 

decomposition allows to reduce the number of  „empty” nodes in G3 from 3N(N - 1)/2  to  

3n(n-1)(s/2)  nodes. Then we project each resulting subgraph onto  i*-axis in order to 

obtain a fixed-size array structure shown in Fig.3.9. The total execution time T  of the 

Jordan-Gauss algorithm realization is equal to 

 
 





nN

s

nsKNNnNT
/

1

))1(()2()1(

      

      (3.15) 

time steps and the asymptotic processor utilization 1 for N>>n.  
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Fig.3.9. Partitioning of the Jordan –Gauss DG 

 

3.2.3. Design of the fixed-size linear processor array for the fault-tolerant Jordan-

Gauss algorithm 

It was be shown at the chapter 1 of this manuscript, that using algorithm-based 

fault tolerance (ABFT) methods allows to derive the application-specific device which 

will be tolerant to the transient hardware errors occurred during algorithm 

implementation without using others fault tolerance methods. In other words, by means 

mapping the fault tolerant version of the applied algorithm (Jordan-Gauss algorithm here) 

will be obtained tolerant to the transient error processor array architecture. Therefore, we 

try do it. 

The two-dimensional (2-D) DG  G4 of the fault-tolerance version Jordan-Gauss 

algorithm is shown in fig.3.10, where N=6, K=3. Nodes of G4 are distributed in nodes of 

the 2-D lattice Q4={K=(i,g): 1  i  N, (5i-4)   g  (5N+K-1)}. It should be noted that i-

th layer of G4 (i=1,...,N) corresponds the i-th step of algorithm. There are six kind of 

nodes in the DG G4. The nodes with coordinates (i,5i-4) , (i,5i-2) and (i,5i) , i=1,...,N,  

(which are marked by 
            X

          P E  N

          P E  N - 1

       .  .  .  .  .  .  .  .  .

          P E  2

          P E  1

      A , b  ) correspond to, firstly,  the calculations of the values CS and 

WCS of the i-th column and i-th row of matrix Fi   and i-th column of matrix M 

respectively and, secondly, the definition of erroneous elements within these columns. 

The nodes with coordinates (i,5i-3)   (which are marked by  )  correspond to the 

correction of the erroneous elements and selection of a pivot element within i-th column 

of the matrix Fi  .The nodes with coordinates (i,5i-1)  ( which are marked by  )  

correspond to the correction of the erroneous elements  within i-th row (i.e. leading row) 

of matrix Fi   and the calculation of the elements mji of the matrix M. The nodes with 
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coordinates (i,5i+1)  (which are marked by    )  correspond to the correction of the 

erroneous elements  mji 
 and the calculation of the elements fj(i+1)

i+1  ,  j=i+1,i+2,...,N+i . 

The nodes marked by   correspond to the calculation of the elements fjk
i+1  of the j-th 

column or k-th row of the matrix Fi+1 respectively. The nodes marked by  note the “ 

empty” nodes (no operations) and are included for the elimination of the global 

dependencies vectors (or arcs) in the graph. As it will be below shown, these nodes are 

few decrease of the PEs utilization in the proposed fixed size array. 

 

Fig. 3.10. 2-D DG of the fault-tolerant version of Jordan-Gauss algorithm 

 

Thus, this DG is liked to the two-dimensional DG G2 of the original Jordan-Gauss 

algorithm. 

Therefore, in order to deriving of the linear fixed size array architecture for fault tolerant 

version of Jordan-Gauss algorithm, we employ the locally parallel globally sequential 

scheme of partitioning. Thus, starting with the graph G4, we try to decompose it into a set 

of  s  subgraphs having the “same” topology. Note, that this can be done only if the graph 

G4 is “cut” using a set of straight lines parallel to g-axis, as shown in fig.3.10. These lines  

decompose the graph G4 into the set of regular subgraphs Gh  with n layers each (see 

fig.3.11),  

where h = 1,...,s.  Note, that such decomposition allows to reduce the number of  “empty” 

nodes  in G4 from 3N(N - 1)/2  to  3n(n-1)*s/2  nodes.  
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Then we project each resulting subgraph Gh onto  i-axis in order to derive a fixed-size 

array  

architecture shown in fig.3.11 (at right). This array, which is provided with an external 

FIFO buffer, featured simple scheme of fully local communications and a few number of 

I/O channels. The total execution time T of performing of the fault tolerant version of 

Jordan-Gauss algorithm is equal to 

 T = i=1
N/n (N+K-(i-5)n)(N+n-i*n)  

   

times steps and processor utilization   = W/(TM) where M=n  is the number of the PEs 

in the array, and W  is the computational complexity of algorithm,  

 

 W =  N3 /2  + N2 (K+2,5) + 2NK 

 

operations such as multiplication with addition.  

Using these formulae and supposing, for example, that K=1 and K=N for case  s = N/n = 

30  it is obtained  

  = 0,72    and   = 0,84 

Fig.3.11 Partitioning of the fault-tolerant Jordan-Gauss algorithm 
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respectively. Note, that  with an increase in parameters K  or/and s, the value   also 

increases. 

 

3.2.4. Deriving of FPGA-based parallel system architecture for the realization of 

main linear algebra algorithms 

 

The basic dependence graphs of the fault-tolerant versions of following main linear 

algebra algorithms were obtained using our method for deriving dependence graphs of 

recursive algorithms: 

- Gauss elimination algorithm for matrix decomposition and solving linear systems; 

- Choleski algorithm for LLT-decomposition of symmetric matrices; 

- back substitution algorithm for solving linear systems with triangular matrices; 

- Jordan-Gauss algorithm for solving linear equations or matrix inversion; 

- Faddeev algorithm for solving matrix equations of the type X=CA-1B+D ; 

Note, that this graph correspond also some others LA algorithms, for example, 

Householder reflections and QR-algorithms. 

The analysis of the all basic graphs of the above algorithms shown that they can be 

represented by the two-dimensional graph G3 (see Fig.3.12). This means that the all 

mentioned algorithms may be realized on the fixed size processor array architecture 

represented in the Fig.3.12 (at right). Note, that in according to the carried out algorithm, 

the external memory block must to perform here a RAM-function or a FIFO-function. 

Moreover, the internal structure of all processor elements it is the different for the 

different algorithms.  
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Fig.3.12 

 

    The internal structure of the processor elements for realization of Cholesky algorithm 

is shown in Fig.3.13, while the internal PE structure of the array for realization of Jordan-

Gauss, Faddeev and back substitution algorithms is represented in the Fig.3.14. Here the 

blocks denoted (N), (M+1) 

R G

  A U

a / b ,  a

    M X a  b + c

   N

 

Fig.3.13. 

 

     M X R G
N + 1  A U

            a / b

         M X            a  b + c

     2 N + P + 1

 

Fig.3.14. 

and (2N+P+1) are FIFO-buffers with corresponding lengths (where P=1 for the Jordan-

Gauss algorithm), MX denote multiplexers, T denote registers and AU denote a 

arithmetic units. These AU must perform the multiply-add or division or (only for 

Cholesky algorithm) square rooting operations. 

Therefore, the processor array architecture represented in the Fig.3.12  was 

selected as functional prototype of the FPGA-based parallel system for realization of 

linear algebra algorithm. As a result the structure of this system was derived. It is shown 

in the Fig.3.15, where MD, MA, MS and WMS are data bus, address bus, control bus and 

internal control signal bus respectively. This array processor has a linear ring structure 

with three-port RAM unit for data feedback. The system is connected by the ISA or PCI 

bus interface unit (IU) to the external world (or host device, for example, to the AT 
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compatible computer). The input data is loaded from the interface unit into external RAM 

unit. Depending on the implemented algorithm, system control unit (CU) generates three 

groups of address signals to the RAM unit in such a way, that this memory unit performs 

the functions RAM or FIFO.  

 

     3 ports RAM  D3

       MD             (FIFO)    EP1           EP2            EPn

    Interface  D1              D2                    ...

       unit   A1  A2  A3

      MA    A1  A2  A3

     MS  Control unit   WMS

        FPGA XCV800

   PCI Bus

 

Rys.3.15. 

 

In the Fig. 3.16 is represented the more detailed realization of the external memory block. 

It consists of three one-port RAMs with complex multiplexer MUX. In according to the 

control signals X1 and X2 (obtained from the CU) it connects one of RAM unit (for 

example, RAM1) to the data bus of the IU for input data load or resultant data output. At 

the same time, MUX connects the other RAM unit (for example, RAM2) to the input of 

the first PE of array for the data input, and the third RAM unit (for example, RAM3) to 

the output of the n-th PE for the data output. Depending on the implemented algorithm, 

the control unit also performs the load of the selected configuration data file from the 

configuration memory unit PROM to the FPGA-chips. Note, that multiplexer MUX, IO 

and CU units may be also realized on the FPGA or CPLD chips, for example, XC95000 

family , while the processor array may be realized on the one or more FPGA chips of 

Virtex family. Note, that depending on the implemented algorithm, the complexity of 

array PEs is different. Therefore, for realization of different algorithms the different 

number of PEs must be generated in the FPGA-chips. This should be take to attention in 

the configuration data files saved in the PROM. 
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Fig.3.16 

 

Thus, implementation application-specific parallel systems in FPGA has a set of 

advantages, such as full adaptation of implemented in FPGA structure to the applied 

fault-tolerant algorithms, high performance, achieving high rate of calculating precision, 

reducing both the way from idea to the market and development costs. Moreover, only in 

the case of system implementation on the base of FPGA, a highest hardware utilization, 

fault tolerance and lowest cost/performance ratio may be derived.  

 

3.3. Conclusions to the chapter 3 

 

   1. The new method for the construction of the lattice DGs of algorithms given by 

nested loops has been proposed. In a contrast with known analytical methods, the proposed 

method is more simple and feasible for the implementation in CAD systems, and allows operating 

with a wider class of algorithms such as, for example, non-uniform recursive algorithms 

corresponding to non-perfect (or composite) loop nests.  

   2. The basic dependence graph of the Gauss elimination, Jordan-Gauss, Choleski, 

Faddeev, back substitution and some others algorithms and their fault-tolerant versions 
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were obtained using proposed method for deriving DG of regular algorithms for further 

mapping into corresponding processor array architectures. 

   3. The processor array architectures performing fault-tolerant version of Jordan-Gauss 

algorithm with the partial pivoting, Cholesky, Gauss elimination and back substitution 

algorithms has been designed. Note, that in the order to deriving of the array architectures 

with desired features, some purposive transformations of the basic algorithm dependence 

graphs are employed. Since the arrays architectures obtained by mapping of the 

corresponding DGs feature a strong dependence from the input matrix sizes, we showed 

how these architectures should be modified in order to process an arbitrary large task size 

on fixed-size arrays. 

   4. Based on the derived arrays architectures, the structure of the application-specific 

parallel system destined to the fault-tolerant implementation of these algorithms was 

obtained. The system consists of two-ported processor elements with configurable 

internal structure which are connected into a ring and is characterized by high overall 

performance, scalability and hardware utilization. Thus, was  proved the confirmation, 

that using FPGA-chips and libraries of files with configuration data for these chips, it is 

possible to construct the fast adapted (to the implemented algorithms) application-

specific system with high performance and lowest cost/performance ratio. 

   5. Implementation application-specific parallel systems in FPGA has a set of 

advantages, such as full adaptation of implemented in FPGA structure to the applied 

fault-tolerant algorithms, high performance, achieving high rate of calculating precision, 

reducing both the way from idea to the market and development costs. Moreover, only in 

the case of system implementation on the base of FPGA, a highest hardware utilization 

and fault tolerance and lowest cost/performance ratio may be derived.  
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CHAPTER 4.  INVESTIGATION OF THE CURRENT-MODE GATES AND 

LOGIC AND DESIGNING THE BASIC BLOCK OF THE FPGA-CELLS 

 

It was be underlined in the chapter 1, that the serious problem in the modern mixed 

analog-digital systems (ADS) is the noise immunity provision in the case of placing 

together the analog and digital circuit parts on a common chip surface. One of the 

methods for the  solution of this problem is the implementation of the digital part of the 

ADS with the current mode gates [1,2]. Due to the nearly constant significance of the 

power supply current at the different gate states, the level of its noise is essentially lower 

in comparison with the classical (voltage) type of gates. Besides, based on the current-

mode gates the lower hardware overheads digital circuits may be designed (see, for 

example, [3,4,5] ). Therefore in this chapter, the problem of designing digital circuits 

based on the current-mode gates is considered. Firstly, the logical properties of  the 

current-mode logic and the expressions to conversion  of the Boolean functions to the 

current-mode ones are represented. The analysis of these properties and expressions 

causes to  the extension of the set by means including the  double-inverter and half-

inverter gates. Moreover, the several identities of the current-mode logic were derived. 

Then, based on these identities and expressions, the approaches  to minimizing the 

current logic functions and to designing digital current-mode circuits were proposed. By 

means applying the proposed approaches, the functional schemes of the current-mode 

one-bit adders, the four-bit fast adder unit with the parallel carry bit propagation and the 

basic block of FPGA-cells - look-up-table (LUT) were designed. The obtained circuits 

are characterized by smaller (up to 35%) hardware overheads in comparison with the 

similar  circuits based on the classical voltage type of gates. 

 

4.1. Current-mode gates and logic 

 

There are three types of the main operation in the current mode logic: arithmetic 

addition, arithmetic subtraction and inversion [3]. 

The addition operation corresponds, at the physical  level, the addition of currents, each 

from which represents the significance of the corresponding operand. In the functional 



 

 87 

level this means the association of all operand lines into one node. Analogously, a 

arithmetic subtraction operation in this techniques, at the physical level, is performed by 

the subtraction of currents. Therefore, in the functional level, this means (for example, for 

expression (X-Y)) the association the line of the operand X with the output of the anti-

inverter gate connected to the line of the operand Y, where Y  {0,1}.The examples of 

schemes for the implementation of the operations (X+Y) and (X-Y) are shown in the fig. 

4.1. 

 

X+Y

Y

X X-Y

Y

X

 

Fig. 4.1. Realizing arithmetic addition and subtraction operations with the current-mode 

technique 

 

There are only several types of the inverter gates in the current-mode technique [3,4]. For 

example, the inverter gate of the first type is named an inverter. Its graphical image and 

the carried out logical function are shown in the fig. 4.2. 
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


,...3,2,1 if 0
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X

X
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Fig.4.2. Current-mode inverter 

 

Gates of the second type are named the anti-inverters. Their graphical image and the 

carried out logical function are shown  in the fig. 4.3. 
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Fig.4.3. Current-mode anti-inverter 
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The other types of the current-mode inverter gates will be represented in the next paper 

sections. 

It follows from  expression  fig. 4.1, fig. 4.2 and fig. 4.3, that arbitrary logical variable in 

this logic is (in a general case) multivalued one. This means, that appearance of such 

variable at the any input (output) of the current-mode gate corresponds the appearance at 

this input (output) the respective level of the current in the relative digits [2]. Moreover, 

the significance of the variable (or function) appeared on any gate output belongs to the 

set {-1, 0, 1}, while the significance of the variable appeared on any gate input (for 

example, as a result of an addition or subtraction operations) belongs, in a general case, to 

the set of integer numbers from the interval ] -,[.  

Due to such logical properties, the Boolean algebra identities are not suitable for the 

current-mode algebra, however, all Boolean operations can be realized with current-mode 

gates. 

 Confirmation 4.1. The arbitrary binary (Boolean) function can be realized with current-

mode gates using the expressions (4.1) and (4.2) for the conversion of the main Boolean 

operations into corresponding current-mode logical functions. 

Proof. If values of the logical variables or functions a  and b  belong to the set {0,1} 

then following expressions for the conversion of the main Boolean operations into 

corresponding current-mode logical functions are corrected: 

baba   ,  

baba   ,         (4.1) 

a b a b    , 

a b a b    ,         (4.2) 

where symbols „”, „V” and „+” correspond to operations AND, OR and arithmetic 

addition respectively. 

Besides, it is well known, that any binary logical function a  of arbitrary complexity in 

the Boolean algebra may be represented by a logical expression, which uses only AND, 

OR and NOT,  or NOR, or NAND operations. This means, that an arbitrary logical 

function may be transformed from the Boolean algebra to the corresponding current-
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mode logical function by applying the expressions (4.1) and (4.2). Then, using the 

corresponding current-mode gates, the current-mode circuit for realization of the target 

logical function may be constructed. The confirmation is proved. 

Furthermore, the current-mode algebra also has own logical identities. Several from these 

identities are presented below, were a, b and c belong to the set {0,1}: 

 

1. a b b a    

2. ( ) ( )a b c a b c      

3. a a 0  

4. a a 1  

5. a a  

6. a  1 0  

7. a a a   

8. a a a         (4.3) 

9. 1 a a  

10. 11a   

11. a a b a    

12. a b a b b a      

13. a b c a b c        

14. )ˆˆ(
^^

  cbacba  

15. a b a b  


, 

 

where symbol „ - ” corresponds to the arithmetic subtraction operation. 

 

4.2. Approaches to the minimization of current-mode logical functions and 

designing of binary current-mode digital circuits 

 

The first approach to the minimization of the current-mode logical functions follows from 

the expressions (4.1), (4.2). It consists of the deriving the corresponding logical 

expression for a target circuit firstly into Boolean algebra. Note, that the arbitrary from 

the known minimization methods may be used in this step (for example Vetch-

Karnaugh’s diagrams). Then by means  expressions (4.1) and (4.2) the transformation of 

obtained expressions in the current-mode ones is carried out.  

The obtained current-mode expressions are not always optimized. Therefore, the 

criterions which should be applied during minimization of the logical expression into 

Boolean algebra will be now considered.  

It follows from the identities (4.3), that: 
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1) if the logical function X in the Boolean algebra is the function from the n logical 

variables, then corresponding current-mode function also will be the function from the 

(maximum) same n logical variables; 

2) the Boolean function NOR has the simplest implementation in the current-mode logic; 

3) if the variables a and b from the expressions (4.3) are the logical functions from the 

same set of the variables (x1,x2,...,xi) and  

a b   , 

 

(i.e. variables a and b are not equal to the logical „0” or „1” simultaneously) then the 

expressions (4.1), (4.2) are represented by the following more simple expressions: 

a b a b    , 

a b a b    , 

a b a b    ,              (4.4) 

a b a b    . 

 

Thus, in the order to the reduction of the complexity of logical current-mode functions  

the  following criterions should be applied during minimization of the corresponding 

logical expressions into Boolean algebra: 

1) minimum number of the function arguments (x1,x2,...,xi); 

2) maximum number of such functions  a,b,c,... for which the following identity is true: 

 

a b c              (4.5) 

 

3) maximum number of the NOR and OR operations. 

 

The second approach is is based on the following confirmation. 

Confirmation 4.2. The arbitrary current-mode logical function may be represented as an 

algebraic sum of the set of several others current-mode logical functions. 

The proof of this confirmation immediately follows from the fact that the operations of 
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arithmetic addition and subtraction are enabled in the current-mode algebra, and from the 

identities (4.3). 

Thus, the second rule is consisted of (before realization) the minimization of current-

mode target functions by means its representation as an algebraic sum of the set of more 

simple functions (named „radix” functions) which are selected in such a way, that the 

simplest resultant expression will be derived.  

This approach may be better than the first one in the case of the minimization i realization 

simultaneously of the several logical current-mode functions which have the common 

arguments (x1,x2,...,xi).Then the first function (more simple) is minimized by means 

applying the first or the second from the proposed rules, and the each next function uses 

the previous obtained functions as the „radix” functions. Note, that the next reduction of 

the current-mode expression complexity may be derived by the applying the identities 

(4.3). 

And the third proposed approach is consists of the applying the identities (4.3) to the 

minimization of the logical functions into current-mode algebra. This approach may  be 

used for the next reduction of the current-mode expression complexity after applying the 

first or/and the second above discussed approaches. 

The correctness and efficacy of the proposed approaches to the minimization of the 

current-mode logical functions will be shown below at the example of the adder circuits 

designing. 

Based on the represented in the last chapter approaches to the minimization of the 

current-mode functions the following approach to the designing of binary digital circuits 

with the current-mode gates may be proposed. 

In the case, when the target circuit  must realize only one logical function then above 

approach consists of the following steps: 

1) to derive the logical expression for the target function in the Boolean algebra; 

2) by means known minimization methods (for example, Veitch-Karnaugh’s diagrams) to 

obtain a such logical expression (for target function) which consists of: 

 - minimum number of the arguments (x1, x2, ... , xi); 

 - maximum number of such  functions a,b,c,... for which the following identity is true: 
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0 cba          (4.6) 

 

3) by means the De-Morgan’s theorem to substitute the all AND-functions to the 

corresponding NOR functions in the target function expression; 

4) by means the identities (4.1), (4.2) and /or (4.4) to derive the current-mode expression 

for the target function from the Boolean one; 

5) by means the identities (4.3) to minimize the number of the inversion and anti-

inversion operations in the obtained current-mode expression of the target function; 

6) based on the obtained optimized expression and corresponding current-mode gates to 

design the structural scheme of the target circuit. 

 

In the case, when the target circuit  must realize the several logical functions then above 

approach consists of the following steps: 

1) to derive the logical expressions for the all target functions in the Boolean algebra; 

2) by means known minimization methods (for example, Veitch-Karnaugh’s diagrams) 

for each target function to obtain such logical expression which consists of the maximum 

number of the common AND-functions; 

3) by means the above represented approach to minimize the first target function (more 

simple);  

4) each next function to represent as algebraic sum the some previous target functions 

and absented (or excessive) AND-functions; 

5) for each target function by means the De-Morgan’s theorem to substitute the all AND-

functions to the corresponding NOR-functions in the function expression; 

6) by means the identities (4.1), (4.2) and (4.4) to derive the current-mode expression for 

the each target function from the Boolean one; 

7) by means the identities (4.3) to minimize the number of the inversion and anti-

inversion operations in the obtained current-mode expressions for the each target 

function; 

8) based on the obtained optimized expressions and corresponding current-mode gates to 

design the structural scheme of the target circuit. 

 



 

 93 

Example. Designing one-bit adders with the current-mode gates 

One-bit adder is a combinatorial circuit implementing the function of addition of 

two input  operands ai, bi and input carry bit ci . Besides, an adder has  outputs of sum si 

and output carry bit ci+1. An adder is described by truth table 1 and Vetch - Karnaugh’s 

diagrams D1 - D2 (see fig. 4.4). By means these diagrams the following expressions for 

the presentation of the sum si and output carry bit ci+1 in the Boolean basis may be 

obtained: 

 

s abc a b c ab c a bci i i i i i i i i i i i i    ,      

and c a b a c b ci i i i i i i   1  (4.7) 

            ci

            Si

  ai     0     1     0     1

          1     0     1     0

                    bi

 

            ci

           Ci+1

  ai     1     1     1     0

          0     1     0     0

                    bi

 

            ci

           Ci+1

  ai     0     1     0     1

          1     0     1     0

                    bi

 

Fig.4.4. Vetch - Karnaugh’s diagrams of the functions si and ci+i. 

 

Using the expressions (4.1) and (4.2),  these functions in the current-mode algebra may 

be represented by following expressions: 

s a b c a b c a b c a b ci i i i i i i i i i i i                   (4.8) 

and c a b a c b ci i i i i i i      1 .       (4.9) 
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Note, that the corresponding of expressions (4.8) and (4.9) functional scheme of the one-

bit  adder consists of 14 current-mode inverters [3]. 

 

TABLE 4.1. Truth table of an adder 

ai bi ci a i b i c i c i c i+1 ci+1 si 

0 0 0 1 1 1 0 1 0 0 

0 0 1 1 1 0 0 1 0 1 

0 1 0 1 0 1 0 1 0 1 

0 1 1 1 0 0 0 0 1 0 

1 0 0 0 1 1 -1 1 0 1 

1 0 1 0 1 0 -1 0 1 0 

1 1 0 0 0 1 -1 0 1 0 

1 1 1 0 0 0 -1 0 1 1 

 

In order to deriving the more simple adder circuit the above proposed approach to the 

design of the digital current-mode circuits was used. As a result, the following expression 

of the function output carry bit ci+1 was derived: 

 

c a b ci i i i   1  .          (4.10) 

 

For the synthesis of the function si as one of  the arguments of the algebraic sum the 

obtained function ci+1  was used (in according to the proposed approach). It follows from 

the diagrams D1-D3 that the function  si  may be derived by means addition to the 

function  ci  1  the function a b ci i i   and then subtraction the function a b ci i i   from 

the function( c a b ci i i i   1 ). As a result, the function  si  will be represented by 

following expression: 

s c a b c a b ci i i i i i i i      



1 .     (4.11) 
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Note, that corresponding to the expressions (4.7) and (4.8) the functional scheme of the 

one-bit adder is consisted of the eight inverter gates. 

The next reduction of the complexity of  the function si  will be performed by applying 

for this function the following identity:  

a b c a b c         . 

 

As a result, the function  si  will be represented  by following expression 

 

iiiiiiii cbacbacs  

^

1 )ˆˆ(          (4.12) 

 

 

These expression determines (together with the expression (4.10)) the 7-gates versions of 

the one-bit adder correspondingly. This adder is represented on fig. 4.5.  

Ci+1

Si

a

b

c  

 

Fig. 4.5. The 7-th gates version of the one-bit adder  

 

Note, that the last version of the one-bit adders is characterized on 20% smaller hardware 

overheads in comparison with its prototypes based on the classical voltage type of gates. 

 

4.3. Ways to the further reduction of the current-mode functions and circuits 

complexity: introducing of the new types of the current-mode gates 

 

The analysis of the expressions (4.1) and (4.2) shown, that the Boolean operations AND, 

NAND and OR are difficulty realized by means the current-mode inverter and anti-

inverter gates. Therefore the two new types of the current-mode inverter gates were 

constructed for the next reduction of the current-mode functions complexity. The inverter 
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gate of the first type is named an double-inverter. Its graphical image and the carried out 

logical function are shown  at the fig. 4.6. 

X
X

X


  







0 0 1 2

1 1 2 3 4

 if 

 if 

, , ,...

, , , ,...
 

     

XX

 

 

Fig.4.6. Current-mode double-inverter gate 

 

Using double-inverter gate for example, for the realization of the Boolean operation OR 

the following circuit may be derived: 

 a     a  O R  b

 b

 

Fig. 4.7. Realization of the OR operation 

 

Gates of the second type are named the half-inverters. Their graphical image and the 

carried out logical function are shown  at the fig. 4.8. 
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 
XX

 

 

Fig.4.8. Current-mode half-inverter gate 

 

Note, that this current-mode logical operation and the corresponding gate was designed 

for more simple realisation of the Boolean operation XOR in the current-mode algebra. 

The current-mode expressions for the implementation operation XOR and NXOR are 

presented below:  

   bababa ˆˆ  ,       (4.14) 
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   bababa ˆˆ  ,       (4.15) 

 

(where „” is the symbol of the XOR operation). 

Example of the current-mode circuit for realisation of the NXOR operation is shown in 

the fig. 4.9. 

 a                                               a  b

 b  

Fig. 4.9. Realization of the NXOR operation 

 

It is follows from the expression (4.14) and fig. 4.9 that the current-mode realization of 

the NXOR operation has a lower hardware overhead in comparison with the realization 

of this operation in the Boolean algebra. Therefore, it is possible to obtain the such 

current-mode adder circuit which realized the function si in according to the following 

expression  

 

s a b ci i i i   ,          (4.16) 

 

and therefore, is the more simple circuit.  

In the current-mode algebra expression (4.16) may be represented as following: 

  






  cbasi ˆˆ
.        (4.17) 

Corresponding to the expressions (4.17) and (4.10) 6-gates adder circuit is shown in the 

fig. 4.10: 

C i + 1

S i

a

b

c  

 

Fig. 4.10. The 6-th gates version of the one-bit adder  
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Note that the obtained version of the one-bit adder also is characterised on 33% smaller 

hardware overheads in comparison with its prototypes based on the classical voltage type 

of gates [3].  

The extra advantage of the last derived adder circuit is the possibility the 

realisation (on the its base) of the fast n-bit current-mode adders with the parallel 

propagation of the carry bit. Organisation of the parallel carry bit propagation consists of 

the computations of the variables ci+1  in according to the following expression: 

 

C D C Fi i i i  1
 ,         (4.18) 

where  

 F a b a bi i i i i      and  D a bi i i       (4.19) 

For example, for the 4-bit adder the carry out variables c5 - c2  are realized as follows: 

 

C D F D F F D F F F D F F F FC5 4 4 3 4 3 2 4 3 2 1 4 3 2 1 1     , 

C D F D F F D F F FC4 3 3 2 3 2 1 3 2 1 1     , 

C D F D F FC3 2 2 1 2 1 1    , 

and         C D FC2 1 1 1  .  

In the current-mode algebra these expressions are corresponded to the following ones: 

 

C D F D F F D F F F D F F F F C5 4 4 3 4 3 2 4 3 2 1 4 3 2 1 1                

C D F D F F D F F F C4 3 3 2 3 2 1 3 2 1 1           

C D F D F F C3 2 2 1 2 1 1      ,        (4.20) 

and           C D F C2 1 1 1   . 

 

Using the new double-inverter gates the following simple current-mode circuit may be 

designed to the realization of the parallel propagation of the carry bit Ci+1 : 
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C 5
D 4

D 3

F 4

F 4
F 3
D 2

F 4

F 3

F 2

D 1

F 4
F 3

F 2

F 1

C 1  

Fig.4.11. Realization of the parallel propagation of the carry bit Ci+1 

 

Based on these expressions the fast 4-bit current-mode adder with the parallel carry bit 

propagation was derived. Its scheme is presented in the fig. 4.12. 

Note, that derived circuits consists of 35 current-mode inverter gates and characterized on 

the 35% smaller hardware overheads in comparison with its prototypes based on the 

classical voltage gates. 

        S4
 a4

        C5
 b4

        S3
 a3

 b3

         S2

 a2

 b2

         S1
 a1

 b1

 c1

 

 

Fig.4.12. Fast  4-bit adder with the parallel propagation of the carry out bit 
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4.4. VHDL-models of digital circuits with the current - mode gates 

 

Difficulties in a logical level designing of current - mode circuits are connected with 

multivalue logic (current – mode logic), which describes such devices. After all, some 

steps in the designing process are not formal, yet. Therefore, all designed current – mode  

circuits need to verify their work. Modeling is the best way for such verification. In 

general, there are two kinds of modeling digital electronic devices: low – level one 

(“layout” or “transistor” level, which use, for example, SPICE environment) and high – 

level one (“logical” level  - VHDL environment). Low – level simulations make it 

possible to determine the most of basic characteristics of modeling schemes (included all 

time’s parameters). Insufficiently velocity is the main disadvantage of the low level 

modelling. High level simulations based on extracted parameters fixing from low level 

ones. They are quick enough. Particularly, it’s very important in the case of modelling 

digital circuits, which are composed of a great number of basic gates. Therefore in this 

paper, the problem of modelling digital circuits based on the current – mode gates is 

considered in this section.  

 

4.4.1. Modification of standard’s library ieee1164 for current- mode logic needs 

Growing up the number of current – mode gates in circuits causes necessity of adequate 

formal design method and hardware description language (HDL) specialized for current – 

mode logic needs. 

Such HDL should fulfil some requirements: 

 Quick and precise simulations of described circuits; 

 Similar or the same way of designing, modeling and simulations in compare with 

traditional Boolean logic and circuits; 

 Language ought to be relatively easy, well - known and meets contemporary 

requirements for HDL. 

VHDL is one of the hardware description language that fulfil all this requirements.  

Well – known standard IEEE1164, which is the base for all HDL, includes all necessary 

components for traditional voltage – mode circuits and Boolean logic. 
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Programming environment Active – VHDL (product of Aldec Company) consists of a lot 

of different libraries, in which library IEEE1164 plays an important role. All changes 

involved into library IEEE1164 for modelling current – mode circuits refer to the one of 

its elements  - std_logic_1164.  

Standard element std_logic_1164 includes declarations of all types - logical levels 

(voltage – mode logic), declarations of all subtypes of logical levels, definitions and 

declarations of elementary functions (and, nand, or, nor, xor, nxor, not) which are 

described for both alone signals and vectors of signals, conversion functions between 

different types (subtypes) of logical levels, falling and rising edge detection functions and 

table and function of resolution. 

Standard IEEE1164 defines 9 different logic levels for voltage – mode logic. Current 

mode logic needs another logic levels. It is enough for modelling purpose to use 11 

current – mode logic levels (types): ‘U’ –uninitialized, ‘E’ – error, ‘C’, ’B’, ‘A’, ‘0’, ‘1’, 

‘2’, ‘3’, ‘4’, ‘5’  - logical levels respectively from minus three through zero to plus five. 

All logical levels (except ‘U’ and ‘E’) correspond to values and directions of currents in 

the node. With increasing value of current rapidly growing up the consumption of energy. 

Therefore, the number of logical levels will not be considerably expanded. 

In the case of current – mode circuits elementary voltage – mode logic functions (and, 

nand, or, nor, xor, nxor, not) are not useful for both alone signals and vectors of signals. 

Such logic functions may be realized by special connections of elementary current – 

mode gates (inverter, anti – inverter, double – inverter, half - inverter) which are 

described in the next part of this article. 

Resolution table and resolution function determine the resulting value when several 

sources are concurrently feeding the same signal line. The resolution table lists all 

possible signal values in columns and rows and each cell contains information on what 

value will be generated if the two values are mixed. The current – mode resolution table 

consists of 11x11 cells (see table 4.2). Additive property of current – mode logic was 

took into account in building this table. 
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TABLE 4.2. The current – mode resolution table.     

 --|U| --|E| --|C| --|B| --|A| --|0| --|1| --|2| --|3| --|4| --|5| 

-- |U| ‘U’ ‘E’ ‘C’ ‘B’ ‘A’ ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ 

-- |E| ‘E’ ‘E’ ‘E’ ‘E’ ‘E’ ‘E’ ‘E’ ‘E’ ‘E’ ‘E’ ‘E’ 

-- |C| ‘C’ ‘E’ ‘E’ ‘E’ ‘E’ ‘C’ ‘B’ ‘A’ ‘0’ ‘1’ ‘2’ 

-- |B| ‘B’ ‘E’ ‘E’ ‘E’ ‘C’ ‘B’ ‘A’ ‘0’ ‘1’ ‘2’ ‘3’ 

-- |A| ‘A’ ‘E’ ‘E’ ‘C’ ‘B’ ‘A’ ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ 

-- |0| ‘0’ ‘E’ ‘C’ ‘B’ ‘A’ ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ 

-- |1| ‘1’ ‘E’ ‘B’ ‘A’ ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘E’ 

-- |2| ‘2’ ‘E’ ‘A’ ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘E’ ‘E’ 

-- |3| ‘3’ ‘E’ ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘E’ ‘E’ ‘E’ 

-- |4| ‘4’ ‘E’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘E’ ‘E’ ‘E’ ‘E’ 

-- |5| ‘5’ ‘E’ ‘2’ ‘3’ ‘4’ ‘5’ ‘E’ ‘E’ ‘E’ ‘E’ ‘E’ 

 

Descriptions of current - mode gates in VHDL are relatively easy. Here is the example of 

U1 gate (inverter). Descriptions of another gates are very similar. 

 

                  entity U1 is 

                         generic(t_prop:time:=0.856ns); 

                         port ( 

                            S_in      : in    nstd_logic; 

                            S_out    : out   nstd_logic); 

                  end entity U1;  

                  architecture A_U1 of U1 is 

                     begin 

                       process(S_in) 

                          variable s       : nstd_logic; 

                           begin 

                             if S_in'event  

                                then case S_in is 

                                   when '5'|'4'|'3'|'2'|'1' => s:='0'; 

                                   when others  => s:='1'; 

                                  end case;    

                             end if; 

                            S_out<=s after t_prop;  

                    end process; 

                  end architecture A_U1; 
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Each gate may have a few outputs, which realized, in general case, different current – 

mode logical functions. Time’s parameters (for example, delay t_prop:time:=0.856ns) of 

such gates were fixing from SPICE simulations.  

 

4.4.2. Simulations of VHDL-models of digital circuits with the current - mode gates 

The VHDL –models of designed in the previous section the one-bit adder and the four-bit 

ALU with the parallel propagation of the carry bit were designed and investigated. All 

models were specified using structural description (except elementary gates). It doesn’t 

mean that it is impossibly to described them using behavioral description. However, 

structural description makes it possibly to check up structures of circuits. It’s very 

important in the case of huge projects, which consists of a large number of different 

gates. One-bit adder’s model is the example of one of the easiest combinatorial, current – 

mode circuits. Three different current – mode gates were used in this model. Simulation 

of the model has confirmed the correctly work of the designed circuits (compare Fig. 4.13 

with table 4.1). From Fig. 4.13 it isn’t difficult to fix time delay of signal propagation 

through the circuit. 

 

 

 

Fig.4.13. Results of simulation of designed one-bit current – mode adder. 
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Model of ALU 74S181 is more complicated. The set of operations which are 

implemented by Am74S181 unit is represented in the Table 4.3, where A and B - are 

operands, CI - is the input carry bit, M - is the control input of type function choice 

(arithmetic or logic) and E0,..,E3 - are the control inputs of function select.  

 

TABLE 4.3. The set of operations of ALU 74S181. 

  N  E3 E2 E1 E0  Functions 

                 Arithmetic functions (M=0) Logic functions (M=1) 

  0   0  0  0  0  A+CI NotA 

  1   0  0  0  1  (A v B)+CI not(A v B) 

  2   0  0  1  0  (A v notB)+CI notA & B 

  3   0  0  1  1  1+CI 0 

  4   0  1  0  0  A+(A & notB)+CI not(A & B) 

  5   0  1  0  1  (A v B)+(A & notB)+CI NotB 

  6   0  1  1  0  A+notB+CI A(+)B 

  7   0  1  1  1  1+(A & notB)+CI A & notB 

  8   1  0  0  0  A+(A & B)+CI notA v B 

  9   1  0  0  1  A+B+CI not(A(+)B) 

 10  1  0  1  0 (A & B)+(A v notB)+CI B 

 11  1  0  1  1 1+(A & B)+CI A & B 

 12  1  1  0  0 A+A+CI 1 

 13  1  1  0  1 A+(A v B)+CI A v notB 

 14  1  1  1  0 A+(A v notB)+CI A v B 

 15  1  1  1  1 1+A+CI A 

 

This ALU represents the combinatorial circuits and consists from two cascades. The first 

cascade implements the preparation of the operands in accordance in the signals state on 

the M and E0,...,E3 inputs, while second cascade  implements only addition function.  
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Fig.4.14 illustrates the functional circuit diagram of the i-th bit of the first cascade of 

ALU (without the unit of the locking carry bit ci ), were  ai and bi - are outputs of this 

cascade  and  e j
 - are the control  inputs. 

Ai     bi

     ai

Bi

e3

e2

e1

e0
 

Fig. 4.14. The structure of the first cascade of the ALU 74S181. 

 

 

 

Fig.4.15. Results of simulations of designed current – mode ALU 74S181(m=0; e=1110). 

 

The second cascade  which is illustrated in the Fig.4.12 consists from the fast 4-bit adder 

which compute the final results of operations. Here c1 represents the carry bit from 
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previous adder node, output Si represents the one bit of result, and C5 represents the carry 

out bit of the adder. 

Thus, the whole ALU circuit is consisted of 63 current – mode gates (27 U1 gates, 3 – 

U2, 1 – U3, 4 – U5, 4 – U12, 5 – U13, 4 – U113, 1 – U133, 4– U1111, 4 – U1133, 1 – 

U1333, 1 – U11112, 4 – U55555555). Simulation of one of the function is presented at 

Fig. 4.15  

 

4.5. Basic block of the FPGA XC4000 series cell and designing its current-mode 

prototype 

 

     XC4000 series FPGA (ang. Field Programmable Gate Array) devises (chips) are 

implemented with a regular, flexible, programmable architecture of Configurable Logic 

Blocks,  interconnected by a powerful hierarchy of versatile routing resources (see 

Fig.4.16), 

 

 

Fig 4.16. Simplified block diagram of FPGA XC4000 series cell 

 

and surrounded by a perimeter of programmable Input/Output Blocks. They have 

generous routing resources to accommodate the most complex interconnect patterns 
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[10,11]. The devices are customized by loading configuration data into internal memory 

cells. The FPGA can either actively read its configuration data from an external serial or 

byte-parallel PROM (master modes), or the configuration data can be written into the 

FPGA from an external device (slave and peripheral modes). 

 XC4000 series FPGAs are supported by powerful and sophisticated software, 

covering every aspect of design from schematic or behavioral entry, floorplanning, 

simulation, automatic block placement and routing of interconnects, to the creation, 

downloading, and readback of the configuration bit stream. Because Xilinx FPGAs can 

be reprogrammed an unlimited number of times, they can be used in innovative designs 

where hardware is changed dynamically, or where hardware must be adapted to different 

user applications. 

 XC4000XLA and XC4000XV devices can run at synchronous system clock rate of up 

to 100 MHz, and internal performance can exceed 150 MHz. This is a high performance 

3,3V family based on 0,25 (5-layer metal) CMOS process and consisted of up to 

500000 system gates and 270000 synchronous SRAM bits [11].  

 

 

Fig 4.17. Simplified block diagram of XC4000 series IOB 
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Xilinx user-programmable gate arrays include two major configurable elements: 

configurable logic block (CLBs) and input/output blocks (IOBs). CLBs provide the 

functional elements for constructing the user’s logic, while IOBs provide the interface 

between the package pins and internal signal lines (see Fig.4.17). 

CLBs implement most of the logic in an FPGA. The principal CLB elements are shown 

in Fig, 4.18. Two 4-input function generators (F and G) offer unrestricted versatility. 

Most combinatorial logic functions need four or fewer inputs [11]. However, a third 

function generator (H) is provided. The H function generator has three inputs. Either 

zero, one or two of these inputs can be the outputs of F and G; the other input(s) are from 

outside the CLB. The CLB can, therefore, implement certain functions of up to nine 

variables, like parity check or expandable –identity comparison of two sets of four inputs. 

Each CLB contains two storage elements that can be used to store the function generator 

outputs.  

 

 

Fig 4.18. Simplified block diagram of XC4000 series CLB 
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However, the storage elements and function generators can also be used independently. 

DIN can be used as direct input to either of the two storage elements. H1 can drive the 

other through the H function generator. Function generator outputs can be also drive two 

outputs independent of the storage element outputs. Thirteen CLB input and four CLB 

outputs provide acces to the function generators and storage elements. These inputs and 

outputs connect to the programmable interconnect resources outside the block. 

 Four independent inputs are provided to each of two function generators (F1-F4 and 

G1-G4). These function generators, with outputs labeled F’ and G’, are each capable of 

implementing any arbitrary defined Boolean function of four inputs. The function 

generators are implemented as memory look-up-table (LUT). The propagation delay is 

therefore independent of the function implemented. A third generator, labeled H’, can 

implement any Boolean function of its three inputs. This function generators is also 

implemented as a look-up-table. Two of its inputs can optionally be the F’ and G’ 

functional generator outputs. Alternatively, one or both of these inputs can come from 

outside the CLB (H2,H0). The third input must come from outside the block (H1). 

Thus, the basic blocks of the FPGA cell are two 4-inputs and one 3-inputs look-up-tables. 

Analysis of the LUT operating shows that it can be composed of  2n- cell one-bit FIFO 

block (where n is the number of LUT inputs, n=4 for F’ and G’ LUTs and n=3 for H’ 

LUT) and 2n- inputs multiplexer. The example of such 4-inputs LUT based on the 

classical voltage type gates is represented in the Fig.4.19. 

It composes of 16 D-triggers 1-16, which are a base of the 16-cell one bit FIFO block, the 

multiplexer MUX and the AND gate. The multiplexer output is the output G’ of the LUT, 

while the LUT inputs G1-G4 are the control inputs of the multiplexer. During FPGA 

configuration (i.e. during the process of loading design-specific programming data into 

FPGA), the signal on the PROGRAM input is equal to the logical one. It allows on serial 
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loading (with clock signals CLK) the values of target logical function Y(G4,G3,G2,G1) 

from external pin DIN to corresponding D-triggers. 

 

      G ’

G 4

G 3       M U X

G 2

G 1     0            1    2    1 5

 P R O G R A M

  D i n      D   Q               D   Q         D   Q           .  .  .        D   Q

        1  2         3          1 6

      C              C       C        C

         .  .  .

C L K

 

Fig. 4.19. Example of the internal structure of 4-inputs LUT (function generator G) 

 

For example, the value of the function Y(0,0,0,0) must be written in the D-trigger 1, the 

value of function Y(0,0,0,1) must be written in the D-trigger 2, etc. During normal 

operating, the signal on the PROGRAM input is equal to the logical zero, due to all D-

triggers save the values of the target function. At this time, the code on the LUT inputs 

G4-G1 determined the number of D-trigger which is connected to the LUT output G’. 

Therefore, in order to deriving of the current-mode LUT structure, the current-mode D-

trigger and multiplexer circuits should be designed. D-trigger is the sequential circuit, 

therefore it consists of both flip-flop and combinatorial circuit. Flip-flops are the 

elementary binary memory units used in the all types of sequential digital circuits. The 

set of operations, which are implemented by a flip-flop and structure of the current-mode 

flip-flop circuit is shown in the Fig. 4.20, where f1 and f2 are flip-flop inputs, and Qt and 

Qt+1 are the values on the flip-flop output Q at the time step t and (t+1) respectively. 

In according to the Fig.4.20, the flip-flop do not change its state (Qt+1=Qt) if for the time 

step t, the signals on the input f1 and f2 are equal to the arbitrary value from the sets 

{1,2,3,...} and {1,0,-1,...} or vice versa. When inputs of the flip-flop are equal to , for 

example, f1=0, and f2=1, the flip-flop set in the state of logical one (Qt+1=1).  



 

 111 

 

  f 1           Q

 f 2           Q

 Q
t

f 1  f 2          Q
t + 1

 0         1 , 2 , 3 , . . .    1 , 0 , - 1 , . . .     0

 0        0 , - 1 , - 2 , . . .   1 , 2 , 3 , . . .     1

 1          1 , 2 , 3 , . . .    0 , - 1 , - 2 . . .   0

 1          1 , 0 , - 1 . . .    1 , 2 , 3 , . . .    1

 
 

Fig. 4.20. Current-mode flip-flop circuit and its operations 

 

The table of the D-trigger operations are represented by table 4.4. 

Tabl. 4.4. Table of the current-mode D-trigger operations 

C D Qt Qt+1 f1 f2 

0 0 0 0 1,2,3 1,0,-1 

0 0 1 0 1,2,3 0,-1,-2 

0 1 0 1 0,-1,-2 1,2,3 

0 1 1 1 1,0,-1 1,2,3 

1 0 0 0 1,2,3 1,0,-1 

1 0 1 1 1,0,-1 1,2,3 

1 1 0 0 1,2,3 1,0,-1 

1 1 1 1 1,0,-1 1,2,3 

 

Using the proposed above approaches to the designing of binary current-mode 

circuits, the following expressions for the functions f1 and f2 is derived: 

 

CDfCDf  2,1 .     (4.21) 
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These expressions determined the circuit of the current-mode synchronic low level 

sensitive D-trigger which is shown in the Fig. 4.21. 

 

  Q

  D

  C N Q

 
 

Fig. 4.21. Current-mode low level sensitive D-trigger 

 

However, this version of the D-trigger is not suitable in FIFO blocks, in which each flip-

flop should be triggered on either the rising or falling clock edge. In this case, the Master-

Slave (MS) version of the D-trigger must be used. Such current-mode MS D-trigger is 

shown in the Fig. 4.22. 

              Q

  D

 C             N Q

 
 

Fig. 4.22. Current-mode rising clock edge driven D-trigger 

 

As a result, the current-mode prototype of 16-cells one-bit FIFO circuit is designed. It is 

represented in the Fig.4.23. Note, that the 3-inputs LUT H’ consists of eight these D-

triggers, which compose the 8-cell one-bit FIFO block. 
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                           .  .  .

  D i n

                   1        2           .  .  . 1 6

 C L K                           .  .  .

  Q 1          Q 2            .  .  .       Q 1 6
 

Fig. 4.23. Current-mode 16-cells one-bit FIFO circuit – base of the LUT F’ and G’ 

 

Multiplexer MUX of the function generator H’ has eight inputs, and implements 

the following function in the current-mode algebra: 

123712321231' HHHQHHHQHHHQH    

 

As a result, the current-mode prototype of the H’ LUT multiplexer circuit is represented 

in the Fig.4.24. 

 H 3

 H ’

H 2

H 1

Q 1

Q 2

Q 3

Q 4

Q 5

Q 6

Q 7

Q 8
 

Fig. 4.24. Current-mode prototype of the LUT H’ multiplexer circuit  
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4.6. Conclusions to the chapter 4 

 

   1. The researching of problems of the digital circuits designing with the current-mode 

gates showed the possibility the realization of the effective mixed analogue-digital 

systems with low level of common noise on a common chip.  

   2. The logical properties of  the current-mode gates and logic and the several identities 

for the conversion of expressions from the Boolean algebra were a base of the proposed 

approach to the design of the digital current-mode circuits and allow to reduce the 

hardware overheads for circuits realization. As a result, the functional schemes of the 

several current-mode digital circuits were derived. The obtained circuits are characterized 

by smaller hardware overhead in comparison with similar ones based on others gate 

types. 

   3. Complicated current mode circuits need logical level’s simulations. In a order for 

this, a standard element std_logic1164 of Active – VHDL library IEEE1164 has been 

changed for the current – mode purpose and the library of current – mode gates was 

created. Due to these libraries all designed current – mode circuits: adders, decoders, 

multiplexers, triggers, 32 functions ALU, FPGA function generator, etc., were simulated. 

Simulations of VHDL models have verified both the approach to designing and changes 

introduced into the standard VHDL library IEEE1164. 
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CONCLUSIONS 

 

1. The several theorems were proved for the Gauss elimination, LU-decomposition, 

Choleski, and Jordan-Gauss algorithms, which allowed to improve of the origin WCS 

method (known fault-tolerance technique). Moreover, the sufficient conditions for using 

of the proposed method for others LA algorithms were formed. 

2. The fault tolerant versions of the Gauss elimination, LU-decomposition, Choleski and 

Jordan Gauss algorithms were designed using modified WCS method. The 

computational complexity of the derived fault-tolerant algorithms is increased 

approximately on O(N2) multiply -add operations in comparison with the original 

algorithms. However, new fault tolerant algorithms enable to detect and to correct a 

single error in an arbitrary row or column of the input matrix at the each algorithm step. 

Hence, it is possible to correct up to N2/2, N2/4 and N2  single errors during realization 

of the whole Gauss, Choleski and Jorgan-Gauss algorithms respectively.  

3. For estimating of the tolerance of  proposed algorithms to transient faults and 

evaluation of numerical error for different encoder vectors, the programmed 

environment „ABFT” (Algorithm-Based Fault Tolerance) was designed. The testing of 

the proposed algorithms proved that they are correct and enable to detect and to correct 

a single error in an arbitrary row or column of the input matrices at the each algorithm 

step. 

4. The new method for the construction of the lattice DGs of algorithms given by nested 

loops has been proposed. In a contrast with known analytical methods, the proposed method 

is more simple and feasible for the implementation in CAD systems for the structural design of 

application-specific parallel processors, and allows operating  with a wider class of algorithms 

such as, for example, non-uniform recursive algorithms corresponding to non-perfect (or 

composite) loop nests.  

5. The fixed-size processor array architectures for the implementation of the fault-tolerant 

Jordan-Gauss, Cholesky, Gauss elimination and back substitution algorithms were 

derived. Based on this arrays architectures, the FPGA-based structure of the application-

specific parallel system destined to the fault-tolerant implementation of these algorithms 

was obtained.  
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6. The logical properties of  the current-mode gates and logic, and the identities for the 

conversion of expressions from the Boolean algebra were a base of the proposed 

approach to the minimisation of current-mode logical functions and designing of the 

binary current-mode circuits and allow to reduce the hardware overheads for circuits 

realisation. Using proposed approach, the functional schemes of the several current-

mode digital circuits were derived. The obtained circuits are characterised by smaller 

hardware overhead in comparison with similar ones based on others gate types. 

8. In the order to the simulation of the designed current-mode circuits, a standard element 

std_logic1164 of Active – VHDL library IEEE1164 has been changed and the library of 

current – mode gates was created. Based on these libraries, all designed current – mode 

circuits: adders, decoders, multiplexers, triggers, 32 functions ALU, FPGA function 

generator, etc., were simulated. Simulations of VHDL models have verified both the 

approach to designing and changes introduced into the standard VHDL library 

IEEE1164. 
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APPENDIX 1. 

 

Środowisko do opracowania i badania wiarygodnych wersji 

algorytmów numerycznych 
 

Zadania środowiska 

Środowisko służące do badania wiarygodnych wersji algorytmów numerycznych 

musi pozwalać na: 

 testowanie algorytmów na różnych typach danych wejściowych takich jak: 

Single, Real, Double; 

 wybór wektora kodującego (linear lub average), według którego uzupełniane 

będą dane wejściowe sumami kontrolnymi CS i ważonymi sumami kontrolnymi 

WCS; 

 wprowadzanie błędnych danych w dowolnym kroku wykonywania algorytmów 

Gaussa, Jordana-Gaussa oraz Cholesky’ego; 

 określenie dokładności sprawdzania prawidłowości obliczeń; 

 wybór punktów wstrzymania pracy programu (po wystąpieniu błędu lub co krok) 

w trakcie wykonania algorytmów; 

 odczyt danych wejściowych z pliku oraz zapis danych wyjściowych do pliku; 

 wyświetlenie i drukowanie danych wejściowych, wyników i odnalezionych 

błędów. 

  

Do zaprojektowania środowiska został wybrany pakiet Delphi firmy Borland. 

Delphi jest narzędziem programowym przeznaczonym do szybkiego opracowywania 

aplikacji (pracujących w środowisku Windows), łączy w sobie interfejs graficzny do 

projektowania programów z możliwościami programowania języka Object Pascal. 

 

Środowisko  ABFT (ang. Algorithm-Based Fault Tolerant) pracuje w systemie 

operacyjnym Windows 95 i umożliwia badanie wiarygodnych wersji algorytmów 

(omówionych w punkcie 5): eliminacji Gaussa, Jordana-Gaussa, Cholesky’ego. 
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Formaty danych wejściowych i wyjściowych 

 

Środowisko  ABFT (ang. Algorithm-Based Fault Tolerant) pracuje w systemie 

operacyjnym Windows 95 i umożliwia badanie wiarygodnych wersji algorytmów 

(omówionych w punkcie 5): eliminacji Gaussa, Jordana-Gaussa, Cholesky’ego. 

 

Formaty danych wejściowych i wyjściowych 

Omawiane środowisko jest aplikacją z Interfejsem wielu dokumentów MDI (ang. 

Multiple Document Interface) i daje możliwość jednoczesnej pracy z wieloma plikami 

dokumentów. Każdy z tych dokumentów wygląda tak samo, ma takie same składniki 

i właściwości. 

  

Środowisko ABFT umożliwia edycję wielu plików tekstowych, w których 

zapisane są dane wejściowe i wyjściowe. Przykładowe pliki podczas edycji w środowisku 

zawierające formaty danych wejściowych dla poszczególnych algorytmów:  

Rys.6.2.1. 
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Dane wejściowe pobierane są z pliku po uruchomieniu procedury realizującej 

jeden z algorytmów.   

Rozwiązując układ równań liniowych metodą Jordana-Gaussa, plik z danymi 

wejściowymi powinien zawierać: liczbę elementów macierzy odpowiadającej układowi 

równań, który rozwiązujemy, macierz oraz wektor wyrazów wolnych.   

Jeżeli wykonujemy algorytm eliminacji Gaussa lub Cholesky’ego wystarczy 

podać liczbę elementów macierzy oraz macierz. Przy czym w przypadku algorytmu 

Cholesky’ego macierz danych wejściowych jest macierzą symetryczną. 

 

Dane wyjściowe po wykonaniu poszczególnych algorytmów są następujące: 

 eliminacja Gaussa – macierz trójkątna górna; 

 rozkład Cholesky’ego - macierz trójkątna dolna; 

 metoda Jordana Gaussa – rozwiązanie układu równań. 

 

Struktura środowiska. Podstawowe tryby pracy  

 

Aplikacja (środowisko ABFT) zawiera menu główne, które zawiera menu „Plik”, 

„Edycja” (pojawiające się podczas edytowania plików tekstowych), „Okno”, „Opcje” 

i „Wykonaj”. Pierwsze trzy wymienione składniki menu głównego związane są z 

obsługą i edycją dokumentów, natomiast dwa pozostałe służą do badania 

wiarygodnych wersji algorytmów.   

 

Menu „Opcje” umożliwia użytkownikowi ustalenie danych początkowych i 

wprowadzanie błędów przed rozpoczęciem wykonywania algorytmów Gaussa, 

Jordana-Gaussa, czy Cholesky’ego:  
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Rys.6.3.1. 

 

 

 

Po wybraniu elementu „Dane wejściowe”  otwierane jest okno zbudowane z 

zakładek: 

 

 Typ danych — możliwość wyboru typu danych macierzy wejściowej oraz typu 

elementów CS i WCS. Podczas wykonywania wybranego algorytmu macierz i 

sumy kontrolne, którymi uzupełniana jest macierz mogą być typu (w zależności 

jaki typ wybrał użytkownik): Single, Real lub Double.  

Kod programu z algorytmami zawierającymi różne kombinacje typów danych 

wejściowych i sum kontrolnych przedstawiony w punkcie nr 9. 

Okno wyboru typów danych wygląda następująco: 

Rys.6.3.2. 
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 Typ wektora  — wybór wektora kodującego (linear lub average), według którego 

obliczone będą sumy kontrolne CS i ważone sumy kontrolne WCS: 

Rys.6.3.3. 

 

Fragment programu (realizującego algorytm Jordana-Gaussa) obliczenia  i 

dodania do macierzy wejściowej sum kontrolnych: 

                           

wcsi:=0; csi:=0; 

            n:=n+2; n1:=n1+2; 

for i:=1 to n-2 do 

       begin 

           for j:=1 to n1-2 do 

             if typkod=2 then begin 

                                           csi:=csi+a[i,j]/(n-2); 

                                           wcsi:=wcsi+j*a[i,j]/(n-2); 

                                        end 

             else if typkod=1 then begin 

                                                   csi:=csi+a[i,j]; 

                                                  wcsi:=wcsi+j*a[i,j]; 

                                               end; 

             a[i,n1-1]:=csi; csi:=0; a[i,n1]:=wcsi; wcsi:=0; 

       end; 

for j:=1 to n1-2 do 

       begin 

           for i:=1 to n-2 do 

             if typkod=2 then begin 
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                                            csi:=csi+a[i,j]/(n-2); 

                                            wcsi:=wcsi+i*a[i,j]/(n-2); 

                                         end 

             else if typkod=1 then begin 

                                                     csi:=csi+a[i,j]; 

                                                     wcsi:=wcsi+i*a[i,j]; 

                                                 end; 

             a[n-1,j]:=csi; csi:=0; a[n,j]:=wcsi; wcsi:=0; 

       end; 

a[n-1,n1-1]:=1; a[n,n1]:=1; 

 

 

 Dokładność — określenie dokładności sprawdzania prawidłowości obliczeń.  

Rys.6.3.4. 

  

Dokładność jest liczbą określającą, na którym miejscu po przecinku dopuszczalna 

jest różnica między błędnym elementem a poprawną wartością. Oto przykład 

wykorzystania  wybranej dokładności w programie (w procedurze sprawdzania 

poprawności obliczeń w kolumnie k macierzy w kroku k podczas wykonywania 

rozkładu Cholesky’ego): 

 

             Si:=0; Sj:=0; 

 for i:=k to n-2 do 

  if typkod=2 then begin 

                                 cs:=cs+a[i,k]/(n-2); 

                                 wcs:=wcs+i*a[i,k]/(n-2); 

                             end 

  else if typkod=1 then begin 
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                                        cs:=cs+a[i,k]; 

                                        wcs:=wcs+i*a[i,k]; 

                                     end; 

Si:=a[n-1,k]-cs; 

            if abs(Si)<=abs(t) then Si:=0;  

           {t – wybrana dokładność, jeżeli różnica Si jest mniejsza od t to błędu nie ma} 

Sj:=a[n,k]-wcs; 

            if abs(Sj)<=abs(t) then Sj:=0;         

            wcs:=0; cs:=0;         

            if (Si<>0) and (Sj<>0) then 

  begin 

      d:=Sj/Si;     {nr błędnego elementu} 

       i:=Round(d);  

       {poprawienie błędu:} 

       a[i,k]:=a[i,k]+Si;             

   end;      

  

 Punkty kontrolne — wybór punktów wstrzymania pracy programu (po 

wystąpieniu błędu lub co krok) w trakcie wykonania algorytmów: 

Rys.6.3.5. 

 

Podczas wstrzymania pracy programu wyświetlane są rezultaty obliczeń oraz 

informacje o wystąpieniu błędnych elementów (przykład w punkcie 6.4).    
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 Wybierając element menu „Błędy” mamy możliwość wprowadzania błędnych 

danych w dowolnym kroku wykonywania poszczególnych algorytmów. 

Rys.6.3.6. 

 

Podane przez użytkownika błędy zapisywane są do pliku „faults.dat” i 

podczas realizacji algorytmów są z niego odczytywane, a następnie wprowadzane 

do odpowiedniego elementu w macierzy:  

 

     {.........Odczyt błędów zapisanych w pliku:} 

     if bl=1 then 

      begin 

        rec:=0; 

        nazwpl:='faults.dat'; 

        AssignFile(pl,nazwpl); 

        RecSize:=SizeOf(Data); 

        Reset(pl); 

          repeat 

            Seek(pl,rec); 

            r:=rec+1; 

            Read(pl,Data); 

            tab[r,1]:=Data.num; 

            tab[r,2]:=Data.kr; 

            tab[r,3]:=Data.w; 

            tab[r,4]:=Data.c; 
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            rec:=rec+1; 

          until Eof(pl); 

         CloseFile(pl); 

      end; 

     {..........wpis błędów według danych odczytanych z pliku „faults.dat” :} 

      if bl=1 then 

       begin 

         for i:=1 to r do 

          begin 

             b:=tab[i,2]; 

             if b=k then 

               begin 

                  l:=tab[i,3]; 

                  j:=tab[i,4]; 

                  if (l>n-2) or (j>n-2) then 

                    begin 

                      MessageDlg('Źle podany numer wiersza lub kolumny 

podczas'+Chr(10)+ 

                      'wprowadzania błędów',mtError,[mbOK],0); 

                      Exit; 

                    end 

                 else begin 

                           a[l,j]:=a[l,j]+StrToInt(war); {war – wartość błędu} 

                        end; 

               end; 

          end; 

       end;   

 

Na wybór metody rozwiązującej równania liniowe pozwala menu „Wykonaj”  oraz 

przyciski znajdujące się w pasku narzędzi, który  umożliwia szybki dostęp do 

najczęściej wykonywanych funkcji. 

Rys.6.3.7. 
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Funkcje poszczególnych elementów menu „Wykonaj” to biblioteki (pliki z 

rozszerzeniem *.dll ze skompilowanymi procedurami wiarygodnych wersji 

algorytmów). Kod programu metod rozwiązujących równania liniowe przedstawiony 

w punkcie 9.  

 

Obsługa programu (z przykładem) 

 

Obsługę i działanie programu przedstawię na przykładzie algorytmu 

Cholesky’ego. 

Procedurę rozkładu macierzy na iloczyn dwóch macierzy trójkątnych metodą 

Cholesky’ego uruchamiamy w środowisku ABFT przy pomocy elementu znajdującego 

się w menu „Wykonaj” (Rys.6.3.7.)  lub za pomocą przycisku będącego elementem paska 

narzędzi. 

Rezultatem naciśnięcia wybranego przycisku będzie okno dialogowe, do którego 

należy wprowadzić nazwę utworzonego wcześniej  pliku z zapisanymi w nim danymi 

wejściowymi:  

Rys.6.4.1. 

 

 

Jeśli plik nie istnieje lub nazwa została niepoprawnie wprowadzona spowoduje to 

błąd zasygnalizowany komunikatem:  

Rys.6.4.2. 
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Nastąpi przerwanie wykonywania procedury Cholesky’ego, aby kontynuować należy 

ją ponownie uruchomić. 

Jeżeli nazwa została podana poprawnie, na ekranie pojawi się następne okno przy 

pomocy którego określamy czy dane wyjściowe mają być zapisane do pliku: 

Rys.6.4.3. 

 

 Jeżeli tak, to podajemy nazwę pliku w taki sam sposób jak na Rys.6.4.1. 

 

Dane początkowe i wprowadzanie błędów realizujemy za pomocą elementów 

znajdujących się w menu „Opcje”  (jak pokazano na rys. od 6.3.2. do 6.3.6.). 

 

Przykład działania programu: 

 

 Mamy daną macierz wejściową (symetryczną) zapisaną w pliku „dane.txt” w 

postaci: 

 

    4  (liczba elementów macierzy) 

    9  3  0  0 

    3  5  4  0 

    0  4  8  4 

    0  0  4  29 

 

 Niech typ danych wejściowych i elementów CS i WCS będzie Real, typ 

wektora kodowania: linear, dokładność:  1E-7, punkty wstrzymania programu: po 

wystąpieniu błędu. 

 Wprowadzone błędy: w kroku nr 1, w kolumnie 1, w wierszu 2; wartość błędu 4. 
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Uruchamiamy program realizujący wiarygodny algorytm Cholesky’ego (opisany w 

punkcie 5.3), podajemy nazwę pliku danych wejściowych („dane.txt”) i wyjściowych 

(„wy.txt”).   

W pierwszym kroku w kolumnie znaleziony zostanie błąd co spowoduje zatrzymanie 

programu i wyświetlenie rezultatów obliczeń: 

 

Rys.6.4.4. 

 

Błędny element został poprawiony. Ponieważ została wybrana opcja wstrzymania 

programu po wystąpieniu błędu, po naciśnięciu klawisza „OK” kolejne kroki 

algorytmu wykonywane są bez wyświetlania informacji o przebiegu obliczeń. 

Wyniki obliczeń możemy  obejrzeć w pliku „wy.txt”: 
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 Rys.6.4.5. 

 

 


