Object

Title: Flow structures during refrigerants condensation

Description:

For several years, in the world are carried out studies on the refrigerants condensation in minichannels. These studies are aimed at understanding the condensation process and facilitate the design of mini heat exchangers. It is very important to optimize heat transfer and drive power consumption of the is the knowledge of the processes occurring during refrigerants condensation in pipe minichannels. It is important in this case to make a individual flow structures maps for the refrigerants, due to the significant effect of flow structured formed in the minichannel on the heat transfer and flow resistance. Unfortunately, in relation to the number of publications about condensation in minichannels, the number of published flow maps is relatively small. Due to the fact that the condensation process takes place differently in the minichannels and conventional channels, there is no possibility of using the flow maps for conventional channels to identification flow patterns in minichannels. One of the most popular flow maps for the condensation in minichannels is the map created by Colleman and Garimella, which was made for the R134a refrigerant. The authors conducted their own experimental studies of refrigerants R134a, R404A and R407C condensation in pipe minichannels with an internal diameter d = 3.3 - 0.31 mm. These studies results were subjected to calculation identification of flow structures using the map of Colleman and Garimella. These results are compared with the criteria published on Thome and Cavallini flow maps.

Place of publishing:

Koszalin

Publisher:

Publishing House of the Koszalin University of Technology

Format:

application/pdf

Identifier:

oai:dlibra.tu.koszalin.pl:1612

Language:

eng

Is part of:

Journal of Mechanical and Energy Engineering. Vol.1 (41), nr 1, s. 101-106

Rights:

Biblioteka Politechniki Koszalińskiej

Access rights:

internet

License:

Creative Commons BY 4.0

×

Citation

Citation style:

This page uses 'cookies'. More information