

POLITECHNIKA KOSZALIŃSKA Wydział Mechaniczny Katedra Techniki Cieplnej i Chłodnictwa

Wiesław Szada-Borzyszkowski

ANALIZA TRANSPORTU CIEPŁA W TERMOSYFONIE JEDNOFAZOWYM

Rozprawa doktorska

Promotor: dr hab. inż. Tadeusz Bohdal Profesor Politechniki Koszalińskiej

Koszalin 2006

Podziękowania

Wszystko, co zrobiłem było dla mnie przyjemnością. Przyjemnością było poznawanie tajników wymiany ciepła, zagłębianie się w szczegóły coraz bardziej i bardziej. Przyjemnością było spoglądanie jak powstają kolejne strony tej pracy.

Sami jesteśmy autorami swoich sukcesów, ale wszystko to nie byłoby możliwe przy pomocy innych. Chciałbym wyrazić podziękowanie Kolegom z Katedry Techniki Cieplnej i Chłodnictwa oraz tym wszystkim znajomym i przyjaciołom, którzy w jakikolwiek sposób mnie wspierali. Szczególnie dziękuję Promotorowi rozprawy Panu Prof. dr hab. inż. Tadeuszowi Bohdalowi za pomocną dłoń, na którą zawsze mogłem liczyć.

Podziękowania za cenną pomoc, podczas realizacji pracy doktorskiej, składam Panu dr inż. Krzysztofowi Dutkowskiemu. Słowa podziękowania kieruję także do Pana dr inż. Henryką Charuna za cenne uwagi redakcyjne i wskazówki merytoryczne.

Wiesław Szada-Borzyszkowski

Spis treści

1. Wstęp	7
2. Celowość podjęcia pracy	9
3. Aktualny stan wiedzy w zakresie tematu	
4. Cel i zakres pracy	
5. Badania eksperymentalne	
5.1. Cel badań eksperymentalnych	
5.2. Opis stanowiska badawczego	
5.3. Metodyka badań	
5.3.1. Metodyka pomiarów	
5.3.2. Metodyka obliczeń cieplnych	
5.4. Wyniki badań eksperymentalnych	
5.4.1. Wyniki pomiarów eksperymentalnych pól prędkości i t	emperatury
w charakterystycznych przekrojach diody	
5.4.2. Zestawienie wyników obliczeń badań eksperymentalny	rch rozkładu
temperatury i prędkości powietrza w kanałach	
5.5. Analiza wyników badań eksperymentalnych	
5.6. Wnioski z badań eksperymentalnych	
6. Modelowanie wymiany ciepła w obszarze diody termicznej	
6.1. Teoretyczny model wymiany ciepła	
6.2. Modelowanie numeryczne zagadnień konwekcji swobodne	j
w diodzie termicznej	
6.2.1. Układ równań bilansu CFD	
6.2.2. Strumienie pędu i ciepła	74
6.2.3. Standardowe funkcje ścianek	77
6.3. Badania numeryczne	
6.3.1. Model numeryczny diody termicznej	
6.3.2. Wyniki obliczeń numerycznych i ich eksperymentalna	weryfikacja 80
6.3.3. Analiza badań numeryczno-eksperymentalnych	
6.3.4. Wnioski z modelowania numerycznego	

6.4. Praktyczne wykorzystanie diody termicznej do ogrzewani	ia
pomieszczeń	
7. Podsumowanie i wnioski	
8. Wykaz literatury	
9. Załączniki	
9.1. Ocena błędów pomiaru	
9.2. Wyciąg z protokołu badań	
9.3. Własności fizyczne powietrza	
9.4. Określenie strat ciepła "dodatniego" źródła	

Wykaz stosowanych oznaczeń

A	-	pole powierzchni, przekrój, zmienna
а	-	współczynnik wyrównania temperatury
С	-	ciepło właściwe przy stałym ciśnieniu, stała całkowania
D, d	-	średnica
d	-	średnica hydrauliczna kanału
g	-	przyśpieszenie ziemskie
Η	-	wysokość
h	-	entalpia właściwa
l	-	współrzędna osiowa, wymiar charakterystyczny
'n	-	masowe natężenie przepływu
п	-	współrzędna normalna
р	-	ciśnienie
Ò	-	strumień ciepła
\tilde{q}	-	gęstość strumienia ciepła
r	-	promień przekroju poprzecznego, współrzędna
S	-	szerokość, wektor źródeł
S	-	współrzędna wzdłużna obiegająca pętlę obiegu
Т	-	temperatura
t	-	czas
U	-	wektor zmiennych zachowawczych, obwód zwilżony
W	-	prędkość
x	-	współrzędna
у	-	współrzędna
Z	-	współrzędna

Litery greckie

α	-	współczynnik przejmowania (wnikania) ciepła
β	-	współczynnik rozszerzalności objętościowej
γ	-	kąt nachylenia diody
μ	-	dynamiczny współczynnik lepkości
λ	-	współczynnik przewodzenia ciepła
v	-	kinematyczny współczynnik lepkości
θ	-	współrzędna kątowa
ρ	-	gęstość
τ	-	czas

Bezwymiarowe liczby kryterialne

Gr	-	liczba Grashoffa
Nu	-	liczba Nusselta
Pr	-	liczba Prandtla
Ra	-	liczba <i>Rayleigha</i>
Re	-	liczba Reynoldsa

Indeksy dolne dotyczą:

С	_	cieczy kanału ciepłego
0	_	ekwiwalentny
e of		wielkości efektywnej
ej	-	
exp	-	
f	-	płynu
i, j, k	-	kolejnego elementu
k	-	wartości końcowej, krytycznej, kanału
l		współrzędnej osiowej
lok	-	wartości lokalnej
ot	-	otoczenia
р	-	wartości początkowej, przy stałym ciśnieniu
pow	-	powietrza
r	-	współrzędnej promieniowej
śr	-	wartość średnia
Т	-	wielkości turbulentnej
th	-	wielkości teoretycznej
w		ścianki, wewnętrznej, wymiennika
Ζ	-	zewnętrznej ścianki kanału, zimnego
źr	-	źródła
0	-	otoczenia
θ	-	współrzędnej kątowej
x, y, z	-	współrzędnych kartezjańskich
1,2,3,4	-	kolejnej wartości współrzędnej osiowej.

Indeksy górne dotyczą:

turb	-	wielkości turbulentnej
\rightarrow	-	oznaczenia wektora

1. Wstęp

Energia była, jest i będzie potrzebna człowiekowi do jego życia. Coraz szybszy rozwój cywilizacji niesie za sobą wzmożone zapotrzebowanie na energię, gdyż poziom życia jest bardzo ściśle uzależniony od jej wykorzystania. Im wyższy jest poziom życia, tym wyższa konsumpcja energii. Energię przekazywaną w postaci ciepła wykorzystuje się najczęściej do ogrzewania budynków mieszkalnych. Niestety źródła energii pierwotnej potrzebne do jej wytwarzania są na wyczerpaniu i człowiek musi dążyć do znalezienia nowego, zastępczego, alternatywnego źródła, które zastąpią dotychczasowe. Praźródłem energii jest Słońce i Ziemia. Działalność Słońca w przeszłości była powodem powstania paliw konwencjonalnych. Słońce jest, bowiem źródłem energii odnawialnej, między innymi, w postaci ruchu powietrza, wody, promieniowania słonecznego [47]. Zjawisko konwekcji naturalnej od dawna jest znane oraz szeroko stosowane w technice. Podczas konwekcji naturalnej następuje przekazywania ciepła związane z ruchem płynu spowodowane wpływem pola grawitacyjnego [21]. Po podgrzaniu płyn zwiększa objętość, co powoduje zmniejszenie jego gęstości i wypieranie do góry. Chłodzony płyn zwiększa swoją gęstość, co powoduje jego opadanie w dół. Zjawisko to można wykorzystać konstruując, np. termosyfon, wewnątrz którego znajduje się płyn zwany dalej czynnikiem roboczym. Zgodnie z II Zasadą Termodynamiki czynnik roboczy pośredniczy w przekazywaniu energii za pomocą ciepła z układu o wyższej temperaturze do układu o niższej temperaturze krążąc samoczynnie w przestrzeni wewnętrznej termosyfonu.

Oryginalnym rozwiązaniem wykorzystującym energię słoneczną jest dioda "termiczna" zastosowana w energooszczędnym budownictwie, w której wykorzystuje się konwekcyjną wymianę ciepła. Daje ona możliwość zastosowania nowych przegród budowlanych. Dioda taka, analogicznie do diody elektronicznej, pozwala na jednokierunkowe przekazywanie zakumulowanej energii, co jest bardzo istotne z punktu widzenia uporządkowania przepływu energii. Obieg czynnika roboczego, którym może być powietrze, woda, gliceryna lub płynny metal, wywołany jest przez termiczne gradienty gęstości występujące w obiegu. Tym samym dla powstania i ciągłej cyrkulacji naturalnej czynnika w obiegu diody termicznej nie są konieczne żadne dodatkowe zewnętrzne urządzenia wymuszające ruch czynnika takie, jak pompa czy wentylator [28, 56]. Zastosowanie diody termicznej nie wymaga również dodatkowych nakładów energetycznych związanych z ruchem płynu, który transportuje energię.

Dioda termiczna może znaleźć zastosowanie, zarówno do ogrzewania, jak i do chłodzenia np. budynków oraz wszędzie tam, gdzie zależy nam na jednokierunkowym przesyłaniu ciepła, z wykorzystaniem naturalnej cyrkulacji czynnika [7]. Dioda może być z powodzeniem zastosowana szczególnie w systemach kolektorowo-słonecznych wykorzystujących energię promieniowania słonecznego. W celu odprowadzenia ciepła w systemach komputerowych można wykorzystać diodę tego typu do chłodzenia elementów elektronicznych drogą konwekcji naturalnej. Stąd też zagadnienie cyrkulacji termicznej jest zagadnieniem ogólnym o różnorodnym zastosowaniu w technice. Liczni autorzy proponują zastosowanie diody termicznej w wielu dziedzinach techniki [4, 7, 8, 9, 15, 19, 21, 32, 44, 45, 50, 51]. Niektóre z nich zostaną przedstawione poniżej.

W pracy przedstawiono kilka wybranych przykładowych rozwiązań konstrukcyjnych diody oraz analiza wymiany ciepła podczas ruchu konwekcyjnego czynnika cyrkulującego.

2. Celowość podjęcia pracy

Konstrukcja termosyfonu wykonanego w postaci diody termicznej jest dobrym przykładem technicznego wykorzystania konwekcji naturalnej w procesie przenoszenia energii. Występuje tutaj powszechnie znane zjawisko ruchu cząstek płynu w polu grawitacyjnym wywołane różnicą jego gęstości. Zastosowanie diody w praktyce nie jest związane z dużymi kosztami. Poza nakładami inwestycyjnymi, koszty eksploatacji diody są pomijalnie małe. Nie ma też potrzeby doprowadzania z zewnątrz energii mechanicznej, gdyż rozwiązanie techniczne diody termicznej nie wymaga stosowania generatorów ruchu czynnika roboczego. Podczas eksploatacji diody nie występują żadne efekty dźwiekowe. Jest to urządzenie pożądane w technice cieplnej, lecz nie zawsze intensywność transportu ciepła, sprawność procesu i jego wydajność są zadawalające. Pomimo znacznej liczby prac dotyczących konwekcji swobodnej oraz podejmowania przez różnych autorów problematyki transportu ciepła w kanałach diody, problem ten nie jest jeszcze dostatecznie zbadany. Wiele opracowań oparto na jednowymiarowych modelach wymiany ciepła w diodzie. Niestety nie zawsze dają one oczekiwane rezultaty. Przedstawienie problemu w formie dwuwymiarowej znacznie lepiej odzwierciedlałoby mechanizm procesów zachodzacych w diodzie termicnej podczas jej pracy. Istnieje potrzeba prowadzenia dalszych badań eksperymentalnych i teoretycznych pozwalających lepiej poznać zjawiska zachodzące w kanałach diody oraz określić warunki i sposoby intensyfikacji wymiany ciepła. Nowoczesne rozwiązania konstrukcyjne w technice cieplnej muszą cechować się wysoką sprawnością, dobrym wykorzystaniem powierzchni wymiany ciepła i niską energochłonnością. Za podjęciem proponowanego tematu przemawia również potrzeba poszukiwania nowych rozwiązań technicznych dla lepszego pozyskiwania i konwersji energii ze źródeł odnawialnych (m.in. energii Słońca). Przedstawiona praca może być inspiracją dla konstruktorów ekologicznych urządzeń cieplnych wykorzystujących konwekcyjną wymianę ciepła.

3. Aktualny stan wiedzy w zakresie tematu

Jednym z ciekawszych rozwiązań konstrukcyjnych w technice cieplnej jest urządzenie przeznaczone do transportu energii o wewnętrznym, zamkniętym obiegu czynnika roboczego. Spośród licznych zastosowań praktycznych, szczególną rolę odgrywają urządzenia i instalacje termosyfonowe. Klasyczna, najczęściej spotykana, instalacja termosyfonowa zbudowana jest z kolektora słonecznego i zbiornika magazynującego energię, umieszczonego powyżej górnej krawędzi kolektora. Całość połączona jest odpowiednim systemem rurociągów zapewniającym cyrkulację czynnika w pętli kolektor-zbiornik. Czynnik podgrzany w kolektorze zmniejsza swoją gęstość i powstająca w wyniku tego siła wyporu wymusza cyrkulację w pętli. Na rys. 3.1 przedstawiono model takiej instalacji wraz z zaznaczonymi zmianami temperatury w obiegu.

Rys. 3.1. Schemat typowej instalacji termosyfonowej wraz z zaznaczonymi zmianami temperatury w pętli obiegu [54]

Warunkiem efektywnego działania tego urządzenia jest prawidłowa konstrukcja, oparta na teoretycznych podstawach działania instalacji [54]. Instalacje takie działają, bowiem samoczynnie i nie wymagają w zasadzie żadnej dodatkowej ingerencji ze strony obsługi, poza okresową konserwacją. Biorąc pod uwagę polskie warunki klimatyczne, instalacje takie mogłyby być instalacjami pracującymi sezonowo. Przy powyższym założeniu odpada konieczność budowania złożonych układów akumulacji energii i cała instalacja może zostać znacznie uproszczona przez połączenie powierzchni absorbującej energię słoneczną (absorber) bezpośrednio ze zbiornikiem akumulacyjnym. W ten sposób zbiornik, poza funkcją magazynowania energii jest również kolektorem. Takie urządzenie eliminuje z układu system rurociągów łączących kolektor ze zbiornikiem, zaś cała instalacja staje się zwarta i prosta w budowie, nawet w warunkach domowych. Zaproponowane rozwiązanie (rys. 3.1), w porównaniu z tradycyjną instalacją termosyfonową, posiada kilka zalet:

- znacznie niższy koszt budowy,
- wyższą sprawność oraz mniejsze straty ciepła,
- zdecydowanie mniejszą wrażliwość na jakość używanej wody i ewentualne zanieczyszczenia,
- zwartą budowę i niewielką wysokość.

Każda instalacja wykorzystująca energię promieniowania słonecznego pracuje praktycznie w sposób ciągły cały czas w stanie nieustalonym. W okresie operacji słonecznej zmieniają się poza zmianą wartości natężenia promieniowania słonecznego, także parametry, mające wpływ na pracę instalacji (między innymi kąt padania promieni słonecznych, temperatura otoczenia, temperatura absorbera, współczynnik strat ciepła do otoczenia itd.) [52]. Dokładny opis matematyczny pracy instalacji słonecznej wymaga sformułowania i rozwiązania układu równań różniczkowych, odpowiadających liczbie zmiennych niezależnych będących funkcją czasu. Jest to zadanie niezwykle pracochłonne i nie zawsze dające zadawalające wyniki, ze względu na problemy występujące przy próbie sprzęgnięcie ze sobą niezależnie opisywanych elementów instalacji [36, 54].

Z powyższych względów zaproponowano w pracy [37] uproszczony opis matematyczny takiej instalacji słonecznej. Na rysunku 3.2 przedstawiono rozwiązanie słonecznego podgrzewacza typu pojemnościowego.

Rys. 3.2. Słoneczny podgrzewacz typu pojemnościowego [37]

Pewną odmianą termosyfonu jest urządzenia, zwane popularnie "diodą termiczną". Pierwowzorem diody było "płynne żebro", mające na celu intensyfikację przenoszenia ciepła w rekuperatorze. Schemat "płynnego żebra" pokazano na rys. 3.3.

Modele konstrukcyjne diody termicznej przedstawiono w pracach autorów [2, 34, 45, 46, 56]. Zachowanie płynu w warunkach zmieniających się dynamicznie wewnątrz kanałów diody termicznej zostało analizowane przez *Jonesa* [34].

Większość rozwiązań projektowych diody oparto na fakcie, iż ciepło jest bardziej efektywnie przenoszone (transportowane) przez konwekcję, niż przez przewodzenie. Konwekcyjny transport ciepła ma miejsce, kiedy płyn jest ogrzewany w kanale dolnym lub bocznym diody. Proste rozwiązanie takiej diody jest przedstawione przez *Chena* w postaci termosyfonu na rys. 3.4 [14].

Rozwiązanie *Chena* składa się z dwóch pionowych płyt połączonych za pomocą kilku pętli cyrkulacyjnych. Pętle wykonane z rur metalowych i wypełnione cieczą są pochylone (do poziomu) pod pewnym kątem. Ruch czynnika w pętli wywoływany jest przez siłę wyporu powstającą w wyniku różnicy temperatur pomiędzy dolnym ogrzewanym, a górnym chłodzonym odcinkiem pętli. Nowością tego rozwiązania jest możliwość przesuwania ogrzewanej pierwotnie płyty ponad część chłodzoną i tym samym zatrzymanie cyrkulacji.

Rys. 3.4. Schemat ideowy termosyfonu zamkniętego Chena [14]

Zamknięty termosyfon znany jest też, jako tzw. "płynna płetwa". Płynne płetwy różnych konfiguracji zostały szeroko wykorzystywane w wielu dziedzinach przemysłu, a ich zastosowanie nie jest ograniczone do szczególnych przypadków. Schemat płetwy użytej przy pionowym usytuowaniu źródła ciepła pokazano na rys. 3.5 [43].

Rys. 3.5. Schemat płynnej płetwy z pionowym odbiornikiem i źródłem ciepła [43]

Shawn Buckley podał w swojej pracy [4] kilka sposobów wykorzystania diody termicznej. Dioda termiczna stosowana jako panele słoneczne może być nowym rozwiązaniem, aby dogrzewać i ochłodzić budynek, wykorzystując energię słoneczną. Panele słoneczne mogą być traktowane również, jako nowy sposób regulacji strumienia ciepła przekazywanego do pomieszczenia [3, 37]. Rozwiązania takie są bardzo efektywne, gdyż zewnętrzna powierzchnia panelu "zbiera" energię słoneczną, która akumulowana jest następnie wewnątrz każdego panelu oraz transportowana do budynku metodą wymuszoną lub za pomocą konwekcji naturalnej. W ten sposób pojedynczy panel zawiera wszystkie elementy kompletnego słonecznego systemu energii [3].

Rys. 3.6. Schemat diody termicznej z panelami wykorzystywanej w budownictwie [3]

Każdy panel jest złożony z kolektora (zwykle oszklonego), tworząc element zewnętrznej powierzchni budynku. Jest on częścią instalacji do akumulacji energii cieplnej przekazywanej do wnętrza panela oddającego ciepło do otoczenia kanałami łączącymi (jak pokazano na rysunku 3.6), w którym czynnikiem roboczym (cyrkulującym) jest woda. Zawór jednokierunkowy umożliwia działanie układu jako dioda termiczna. Dostarczona energia słoneczna powoduje wzrost temperatury oraz ciśnienia czynnika roboczego. Obniża się gęstość płynu i następuje jego ruch ku górze. Powoduje to otwarcie zaworu i cyrkulacja cieczy do akumulatora (panela oddającego ciepło). W drugiej gałęzi ogrzany płyn oddaje konwekcyjnie ciepło do powietrza w pomieszczeniu. Ochłodzenie czynnika powoduje spadek jego temperatury i tym samym wzrost gęstości. To wywołuje ruch czynnika w dół. W rozwiązaniu przedstawionym na rys.3.6.b, odwrócenie ogrzewania i chłodzenia spowoduje zahamowanie cyrkulacji czynnika w przeciwnym kierunku. Taka sytuacja może zaistnieć np. w nocy, gdy temperatura w pomieszczeniu będzie wyższa niż, temperatura otoczenia. Zawór jednokierunkowy uniemożliwia cyrkulację czynnika w niepożądanym kierunku. Zasadę działania hydraulicznego zaworu jednokierunkowego pokazano na rys. 3.7.

Rys. 3.7. Schemat działania zaworu jednokierunkowego [4]

W górnej części zaworu znajduje się płyn o gęstości mniejszej od gęstości czynnika cyrkulującego (najczęściej olej). Rurka doprowadzająca czynnik z kolektora zanurzona jest częściowo w oleju. Kiedy ciśnienie czynnika $p_1 < p_2$ następuje wypływ oleju z rurki, w skutek działania siły wyporu. W przypadku odwrotnym, gdy $p_1 > p_2$ olej jest wciągnięty do wystającej rurki, do czasu osiągnięcia wyrównania ciśnienia [4].

W pracy Jones' a [34] zastosowano diode termiczna typu konwekcyjnego w postaci urządzenia słonecznego, służącego do ogrzewania pomieszczeń. Diodę stanowi podłużny zbiornik, którego dolna część jest kolektorem słonecznym, natomiast górna jest akumulatorem ciepła. Kolektor i akumulator są połączone kanałem. Kolejne diody ustawiono jedna na drugiej w ten sposób, że zachodzą na siebie podobnie, jak dachówki. Między kolektorem jednej diody, a akumulatorem drugiej umieszczona jest izolacja ograniczająca straty ciepła. Całość wypełniona jest wodą (z ewentualnym dodatkiem niezamarzającej cieczy), ustawiona przy nasłonecznionej ścianie budynku i oszklona od zewnątrz dla uzyskania efektu szklarniowego. Taka dioda jest bardzo efektywna, ponieważ ciepło zgromadzone podczas dnia nie może cyrkulować wzdłuż tej samej ścieżki w nocy. Podczas radiacji słonecznej (faza grzania) ogrzana w kolektorze ciecz przepływa w górę - do akumulatora ogrzewającego wnętrze budynku. Nocą lub w pochmurny dzień (faza stygnięcia) ciepła ciecz zbiera się w akumulatorze, a zimna - w kolektorze. Konwekcja zostaje w znacznym stopniu wytłumiona, a straty ciepła ograniczone warstwą izolacji. Przepływ ciepła jest, zatem w pewnym uproszczeniu jednokierunkowy: od kolektora do akumulatora i wnętrza ogrzewa-

nego budynku. Na rys. 3.8. przestawiono schemat diody termicznej z propozycją wykorzystania w budownictwie do transportu ciepła [33, 34].

Rys. 3.8. Schemat diody termicznej wykorzystywanej w budownictwie [34]

W pracy *Mikielewicza* i *Bielińskiego* [43] zaprezentowano wariant diody termicznej z niesymetrycznym ogrzewaniem bocznym, którego schemat przedstawiono na rys. 3.9.

Rys. 3.9. Schemat wariantu diody termicznej z niesymetrycznym ogrzewaniem bocznym [43]

Prezentowana konstrukcja diody termicznej ma kształt prostokątnej ramy, tworzącej kanał, wewnątrz którego przepływa czynnik obiegowy. Gałąź pionową umieszczono na zewnętrznej powierzchni ściany, natomiast drugą, po stronie wewnętrznej pomieszczenia. Oba odcinki pionowe połączone są kanałami izolowanymi, dla zabezpieczenia przed stratą ciepła. Czynnik znajdujący się wewnątrz kanału na zewnętrznej stronie ściany ogrzewany jest w dolnej części gałęzi pionowej (np. za pomocą energii słonecznej). Dostarczone do czynnika ciepło powoduje wzrost jego temperatury; tym samym obniża się gęstość płynu i następuje ruch ogrzanego płynu ku górze. W drugiej gałęzi, w górnym odcinku, ogrzany płyn oddaje konwekcyjnie ciepło do powietrza w pomieszczeniu. Ochłodzenie czynnika powoduje spadek jego temperatury i tym samym wzrost gęstości, a to wywołuje ruch czynnika w dół. Odwrócenia cyklu ogrzewania i chłodzenia w rozwiązaniu pokazanym na rys. 3.9 nie spowoduje cyrkulacji czynnika w przeciwnym kierunku, dlatego nie ma konieczności stosowania w tym przypadku zaworu jednokierunkowego [8].

Do opisu wymiany ciepła i ruchu płynu cyrkulującego w pętli diody termicznej z niesymetrycznym ogrzewaniem dolnego odcinka gałęzi pionowej i chłodzeniem górnego odcinka drugiej – przeciwległej, pionowej gałęzi autorzy zaproponowali model jednowymiarowy. W modelu przyjęto współrzędną wzdłużną "s", która obiega dookoła pętlę obiegu. Czynnik w diodzie termicznej płynie w kanale o przekroju poprzecznym A i obwodzie zwilżonym U_{2W} . Całkowity obwód pętli obiegu wynosi L [44].

W celu wywołania naturalnej cyrkulacji czynnika dookoła pętli w diodzie termicznej czynnik jest ogrzewany w dolnym odcinku gałęzi bocznej, a chłodzony w przeciwległym, górnym odcinku gałęzi pionowej - rys. 3.10.

Rys. 3.10. Schemat modelu diody termicznej ogrzewanej w dolnym odcinku gałęzi pionowej [44]

W kolejnej pracy *Bielińskiego* i *Mikielewicza* [7] pokazano inny typ diody termicznej. Jest to ideowy model diody termicznej z symetrycznym ogrzewaniem dolnych i bocznych gałęzi obiegu.

Rys. 3.11. Schemat ideowy diody termicznej z symetrycznym ogrzewaniem dolnych i bocznych gałęzi obiegu [7]

W prezentowanym na rys. 3.11 modelu diody termicznej ciepło dostarczane jest do płynu przy stałej gęstości strumienia ciepła \dot{q}_H rozmieszczoną na obwodzie U_H na odcinkach (s₀<s<s₃). Zakłada się również, że chłodzenie rozłożone jest na obwodzie U_c na odcinkach (s₄<s<s₇) i realizowane przy stałej temperaturze T_{0} , z ekwiwalentnym współczynnikiem przejmowania ciepła α_c , który obejmuje łącznie przewodzenie ciepła przez ściankę kanału oraz przejmowanie ciepła od ścianki kanału do otoczenia. W swej pracy [7] rozpatrywano jednowymiarowy model wymiany ciepła w diodzie termicznej.

Inne spojrzenie prezentują w swej pracy *Ramos, Gordon i Castrejon* [25], którzy zajmowali się badaniem naturalnej konwekcji wewnątrz dwuwymiarowej kwadratowej pętli przedstawionej na rys. 3.12. Przeciwne odcinki pętli są utrzymane w stałych, ale różnych temperaturach i dlatego, z powodu obecności siły ciężkości wywołany jest ruch czynnika cyrkulującego. Prezentowany model został przeanalizowany również w zależności od kąta nachylenia pętli diody [25].

Rys. 3.12. Schemat modelu dwu-wymiarowej kwadratowej pętli termosyfonu [25]

Również dwuwymiarową analizę transportu ciepła przedstawili *Mertol, Greif* i *Zvirin* [41]. Wykonano ją w celu określenia profilów prędkości i temperatury czynnika w termosyfonie toroidalnym przedstawionym na rys. 3.13. Pętla termosyfonu jest ogrzewana stałym strumieniem cielnym w dolnej części i chłodzona podczas przewodzenie ciepła do powierzchni o stałej, niższej temperaturze.

Rys. 3.13. Toroidalna pętla naturalnej cyrkulacji w termosyfonie [41]

Wiele prac poświęcono zagadnieniu określenia stanu początkowego ruchu płynu i stabilności termicznej. *Creveling* [17] przedstawił w swojej pracy próbę teoretycznego wyjaśnienia niestabilności obserwowanych w doświadczeniu *Holman'a* [30]. Wprowadził on jednowymiarowy model teoretyczny, opisujący wymianę ciepła i cyrkulację czynnika w obiegu. Analiza przeprowadzona została dla układu termosyfonowego o kształcie toroidalnym. Rozwinięcie modelu jednowymiarowego przedstawił również w swojej pracy *Zvirin* [64]. Przedstawił on krytyczną analizę dotychczasowych prób rozwiązania zagadnienia początku ruchu cyrkulacyjnego oraz wskazał błędy w poprzednich analizach.

Oryginalną konstrukcją wykorzystującą energię słoneczną w zastosowaniu do warunków krajowych jest rozwiązanie diody "termicznej" dla energooszczędnego budownictwa. Rozwiązanie to daje możliwość zastosowania nowej konstrukcji przegród budowlanych [49]. Potencjalne możliwości wykorzystania energii słonecznej w budownictwie można szacować według danych skandynawskich. Wynika z nich, że na dogrzewanie mieszkań można wykorzystać z tego źródła około 25% całkowitej energii potrzebnej do ogrzewania. Głównym przedmiotem badań było opracowanie technologii budowy tzw. domów słonecznych z pasywnym wykorzystaniem energii słonecznej. Zasadnicze elementy tej technologii to tzw. ściany słoneczne, a także stosowanie właściwej izolacji budynków. Ściany słoneczne mają za zadanie umożliwić absorpcję promieniowania słonecznego, magazynowanie i transport ciepła. Stosuje się w nich ruchome izolacje lub materiały posiadające własności akumulatorów cieplno-chemicznych. Przykładem takiej nowoczesnej przegrody budowlanej jest "ściana Tromba", w której wykorzystuje się naturalną cyrkulację powietrza do ogrzewania pomieszczeń i do magazynowania energii termicznej. Schemat "ściany Tromba" pokazano na rys. 3.14 [45].

Rys. 3.14. Schemat systemu ogrzewania słonecznego wykorzystujący "ścianę Tromba" [45]

Wśród różnorodnych konstrukcji wymienników, wykorzystywanych do odzysku ciepła odpadowego, a w szczególności do odzysku ciepła ze źródeł niskotemperaturowych, szczególne miejsce zajmują wymienniki z pośrednimi nośnikami ciepła. Do tej grupy należy zaliczyć również termosyfonowe wymienniki ciepła, w których integralnym elementem powierzchni aktywnej, ze względu na wymianę ciepła są, termosyfony dwufazowe.

Termosyfon dwufazowy – "rura cieplna" zasadniczy element termosyfonowego wymiennika ciepła stanowi najczęściej zamknięty hermetycznie na dwóch końcach odcinek rury (rys. 3.15).

Rys. 3.15. Modelowa konstrukcja termosyfonu dwufazowego ("rura cieplna"): 1 – pośredni nośnik ciepła, 2 – płaszcz termosyfonu [6]

We wnętrzu rury termosyfonu wytwarza się wstępnie próżnie, a następnie wypełnia częściowo pewną ilością nośnika ciepła. Usunięcie w etapie wstępnym z wewnętrznej przestrzeni zamkniętego termosyfonu gazów inertnych (niekondensujacych) pozwala na ciągłe utrzymywanie nośnika ciepła w stanie dwufazowym i w warunkach odpowiadających warunkom nasycenia. Dzięki temu również obecność lokalnych stref wymiany ciepła - doprowadzania ciepła "od dołu" oraz odprowadzania ciepła "od góry" - powoduje, że pośredni nośnik ciepła zmienia swój stan skupienia przenosząc efekt cieplny przemian fazowych para - ciecz od parownika do kondensatora. Funkcjonowanie zamknietego termosyfonu dwufazowego sprowadza się, zatem do transportu ciepła w obszarze ograniczonym w warunkach oddziaływania pola grawitacyjnego. Prostota urządzenia, jak również, inne związane z tym zalety termosyfonów dwufazowych, a mianowicie: autonomiczność, wysoka intensywność procesów wymiany ciepła na odcinkach parowania i kondensacji, możliwość transformacji gęstości przekazywanego strumienia ciepła, elastyczność doboru różnych pośrednich nośników ciepła, stworzyły potencjalne możliwości szerokiego zastosowania termosyfonów dwufazowych w technice i przemyśle [6].

Podobne spojrzenie na zagadnienie termosyfonów prezentuje w swej pracy *J Dobriański* [21]. Autor przedstawił rozwiązanie z obwodem hydraulicznym z konwekcją wymuszoną przez pompę cyrkulacyjną, co jest efektywniejsze i znajduje praktyczne wykorzystanie. Ważną zaletą takiego obiegu jest możliwość przekazywania ciepła na znaczną wysokość, a wadą – konieczność stałego zasilania pompy energią wysokiej jakości, tj. entalpią elektryczną [21].

Możliwość przekazywania strumieni cieplnych o dużej gęstości spowodowała wzrost zainteresowania wymiennikami z elementem pośredniczącym. Takim elementem pośredniczącym w przekazywaniu ciepła od czynnika grzejnego do ogrzewanego może być ciepłowód ("rura cieplna"). Ciepłowód jest to rura zamknięta z dwóch końców, wewnątrz której znajduje się niewielka ilość cieczy, zwanej nośnikiem ciepła [39]. Po raz pierwszy ideę ciepłowodu przedstawił i zasugerował jego zastosowanie w systemie chłodniczym *R. S. Gaugler* [23] w 1942 roku w General Motors Corporation, (Ohio, ZSA). Dalsze prace nad ciepłowodami były prowadzone pod nadzorem *G. M. Grover'a* [27, 28] w Los Alamos Labaratory, New Mexico i opublikowane w 1963 roku. Od tego czasu datowane są prace takich uczonych jak: *K. F. Baton* [5] (Anglia), *G. A. Busse* [12] (Włochy), *J. E. Deverall, J. E. Kemme* [19], *T. P. Cotter* [16] (USA) i wielu innych współczesnych. Ciepłowodny, jako urządzenia transportujące ciepło posiadają od kilku do kilkuset (a nawet i więcej) razy większą przewodność cieplną, niż miedź i srebro. Ich budowa i wykorzystanie na świecie są dzisiaj liczne i różnorodne. Należy przy tym podkreślić, iż w wielu jeszcze dziedzinach techniki mogą one zdecydowanie wyprzeć klasyczne przewodniki ciepła, dając nowe, efektywniejsze rozwiązania do transportu energii za pomocą ciepła. Ciepłowody mogą być wykorzystane wszędzie tam, gdzie spotykamy się z problemem intensyfikacji procesów przenoszenia energii. Ich działanie jest możliwe bez udziału siły grawitacji, a więc mogą one pracować nawet w kosmosie. Wiele rozwiązań w technice kosmicznej bazuje już na adaptacji ciepłowodów.

Elementarny ciepłowód to przewodnik ciepła z wewnętrznym, zamkniętym obiegiem kapilarnym cieczy pośredniczącej (rys. 3.16), wykonany w postaci rury gładkiej lub ożebrowanej obustronnie, szczelnie zamkniętej denkami. Jej wewnętrzna powierzchnia wyłożona jest materiałem kapilarno-porowatym, zwanym "knotem".

Rys. 3.16. Elementarny ciepłowód z wewnętrznym, zamkniętym obiegiem kapilarnym cieczy pośredniczącej ("rura cieplna"): 1 — rura; 2 — knot; 3 — denko; 4 — przegroda (lub izolacja cieplna); l_p — długość strefy parownika; l_a — długość strefy transportu (lub adiabatycznej); l_s — długość strefy skraplacza [24]

Objętość por i kapilar knota wypełnia ciecz pośrednicząca. Przed napełnieniem wnętrze rury jest opróżniane z wszelkiej zawartości gazów. Całkowita długość ciepłowodu podzielona jest przegrodą o grubości l_a na strefy: parownika — l_p , skraplacza — l_o , transportu — l_a . Stosunek długości tych stref zależy od warun-ków zewnętrznych działania ciepłowodu.

Zasada działania ciepłowodu jest następująca: strumień ciepła z zewnętrznego źródła w strefie parowacza przez ściankę obudowy przekazywany jest do cieczy (także fazie stałej — materiałowi knota) wypełniającej pory i kapilary knota. Ciecz paruje na powierzchni rozdziału faz ciecz-para. W miarę wzrostu obciążenia cieplnego na powierzchni wewnętrznej rury oraz niejednokrotnie w samej strukturze knota zaczynają się tworzyć pęcherzyki pary. Jest to początek wrzenia pęcherzykowego w knocie, którego przebieg jest nieco odmienny niż w przypadku wrzenia w dużej objętości oraz wrzenia powierzchniowego. Para gromadzona w wolnej przestrzeni knota tzw. parowej, na skutek różnicy ciśnień wywołanej gradientem temperatury przepływa z końca gorącego do zimnego, a więc do strefy skraplacza. Tu ochłodzona za pomocą odbiornika ciepła, a następnie skroplona i wchłonięta przez warstwę knotową transportowana jest już jako ciecz do strefy parownika wskutek występowania zjawiska pompowania kapilarnego w knocie. Zmniejszając średni przekrój poprzeczny kapilar (por) uzyskujemy większe ciśnienie kapilarne [24].

Ciepłowodny znalazły szerokie zastosowanie w technice. Amerykańska firma wymrażająca grunt w rejonie Arktyki wykorzystała taki ciepłowód w swym rozwiązaniu. Podobny przykład wykorzystania ciepła głębszych warstw gruntu do celów odladzania nawierzchni dróg przedstawia rys. 3.17.

Rys. 3.17. Ciepłowód w zastosowaniu do odladzania dróg z wykorzystaniem energii cieplnej ziemi. 1 – płyta betonowa; 2 – ciepłowód; 3 – ziemia [24]

W odmiennym nieco kształcie ciepłowód, będący zarazem dziobową częścią statku kosmicznego, służy do cieplnego zabezpieczenia tzw. kopułki urządzenia radarowego. Na skutek tarcia aerodynamicznego wydzielające się znaczne ilości ciepła przejmowane są przez ciecz pośredniczącą, która w strefie parowacza odparowuje i przepływa do strefy skraplacza. Ciepłowód taki bardzo dobrze osłania termicznie całą obudowę statku kosmicznego [19, 24].

Podsumowanie

Przeprowadzony syntetyczny przegląd obecnego stanu wiedzy w zakresie konwekcyjnej wymiany ciepła w termosyfonowych wymiennikach ciepła, pozwala na sformułowanie następujących wniosków:

- Wzrost zapotrzebowania na energię niesie ze sobą wzrost zainteresowania nowymi alternatywnymi źródłami pozyskiwania energii cieplnej. Wykorzystanie termosyfonowych wymienników ciepła może w dużym stopniu zapewnić łatwy transport energii.
- Dioda termiczna wykorzystana do obierania ciepła z elementów grzejnych lub wykorzystująca energię promieniowania słonecznego, może stać się powszechnym rozwiązaniem ułatwiającym wykorzystanie energii cieplnej.
- 3. Rozwiązania diody termicznej różnych autorów, wykorzystywane są w wielu dziedzinach techniki (budownictwo, komputeryzacja).
- Zwraca się uwagę na brak pełnej analizy transportu energii w tego typu układach w modelach jednowymiarowych oraz brak szczegółowego opisu intensywności wymiany ciepła podczas pracy urządzenia.
- Istniejąca luka informacyjna dotyczy w znacznej części uogólnionej analizy mechanizmu transportu energii i przejmowania ciepła.

Na bazie powyższych wniosków przedstawiono w niniejszej pracy wyniki analizy eksperymentalnej i teoretycznej transportu ciepła w termosyfonie jednofazowym. Przedstawiono także wpływ parametrów geometrycznych oraz fizycznych procesu na intensyfikację wymiany ciepła podczas pracy tego urządzenia.

4. Cel i zakres pracy

Celem pracy jest analiza procesu wymiany ciepła, masy, pędu i energii w obszarze termosyfonu diody termicznej. Problem dotyczy również określenia wpływu warunków fizycznych i geometrycznych doprowadzania i odprowadzania ciepła na intensywność pracy tego urządzenia. Autor podjął problem wykazania możliwości praktycznego zastosowania rozwiązania diody termicznej w praktyce inżynierskiej.

Cel pracy zrealizowano prowadząc badania eksperymentalne na własnym stanowisku pomiarowym oraz w oparciu o modelowanie matematyczne, z wykorzystaniem modelu numerycznego zjawiska. Podczas badań eksperymentalnych modelowej diody termicznej wyznaczono pola prędkości i temperatury czynnika roboczego wewnątrz kanałów diody oraz wartości współczynników, charakteryzujących intensywność wymiany ciepła. Badania zrealizowano w szerokim zakresie zmian parametrów geometrycznych diody oraz parametrów cieplnoprzepływowych czynnika roboczego.

Analizę teoretyczną problemu transportu ciepła w diodzie termicznej wykonano wykorzystując opracowany własny model matematyczny. W budowiemodelu matematycznego wykorzystano równania zachowania energii, pędu i masy oraz warunki brzegowe dla przyjętego rozwiązania fizycznego analizowanego obiektu. Model zawiera własne i oryginalne elementy opisujące parametry wewnętrzne procesu. Uzyskano rozwiązanie numeryczne przyjętego modelu. Wyniki obliczeń modelowych zweryfikowano badaniami eksperymentalnymi. Wskazano charakter aplikacyjny pracy, szczególnie w zakresie transportu ciepła w budownictwie.

TEZA PRACY

Na podstawie analizy źródeł literaturowych i wstępnych badań eksperymentalnych można by w tezie pracy założyć, że:

Intensywność transportu masy i energii w termosyfonie jednofazowym zależy od warunków fizycznych i geometrycznych doprowadzania i odprowadzania ciepła.

Uzupełnienie tezy:

Intensywność transportu masy i energii w termosyfonie jednofazowym zależy również od:

- geometrii samego obiegu (głównie wysokości diody i średnicy rury oraz kąta pochylenia pętli),
- rodzaju czynnika cyrkulującego,
- ilości dostarczanej energii,
- oporów tarcia i rodzaju przepływu,
- umiejscowienia ogrzewania i chłodzenia na pętli obiegu.

W pracy skupiono się na wpływie wysokości diody, ilości dostarczanej energii oraz kąta pochylenia diody na intensywność transportu masy i energii w pętli diody termicznej.

5. Badania eksperymentalne

W rozdziale podano wyniki badań eksperymentalnych, dotyczące konwekcji naturalnej w kanałach modelowej diody termicznej. Przedstawiono wyniki badań w zakresie oceny pól prędkości i temperatury w charakterystycznych węzłach diody, w szerokim zakresie parametrów termicznych.

5.1. Cel badań eksperymentalnych

- Głównym celem badań eksperymentalnych było wykonanie pomiarów umożliwiających poznanie mechanizmu wymiany ciepła w kanałach diody termicznej w warunkach konwekcji swobodnej. Czynnikiem roboczym było powietrze.
- Kolejnym etapem badań było uzyskanie informacji dotyczących pól prędkości i temperatury wewnątrz diody termicznej, pozwalających na wyznaczenie podstawowych współczynników charakteryzujących intensywność transportu masy i energii.
- Otrzymane wyniki badań eksperymentalnych posłużyły również do weryfikacji modelu teoretycznego, opisującego transport energii wewnątrz diody termicznej.

5.2. Opis stanowiska badawczego

Badania eksperymentalne przeprowadzono na specjalnie zaprojektowanym i wykonanym stanowisku laboratoryjnym usytuowanym w Laboratorium Katedry Techniki Cieplnej i Chłodnictwa Politechniki Koszalińskiej. Na rys. 5.1 przedstawiono schemat stanowiska badawczego [58].

Rys. 5.1. Schemat ideowy badanej diody: 1-kanał diody, 2-grzałka ("dodatnie" źródło ciepła), 3-wymiennik ciepła ("ujemne" źródło ciepła), 4-uszczelka gumowa, 5-izolacja polipropylenowa, 6-czujnik termoanemometru HPTT96, 7-rotametr, 8-komputer, 9-miernik czujnika termoanemometrycznego, 10-karta pomiarowa. I, II, III, IV, V, VI-oznaczenie przekrojów pomiarowych [58, 59, 60]

Stanowisko pomiarowe składało się z następujących podstawowych układów: badawczego, kontrolno-pomiarowego oraz układu zasilania.

Diodę termiczną dokładnie zaizolowano i umieszczono w stalowej konstrukcji. Stanowisko zostało dokładnie wypoziomowane. Kanał "ciepły", tzn. (kanał, w którym powietrze cyrkulowało po jego ogrzaniu) i kanał "zimny" (kanał, w którym powietrze przepływało po opuszczeniu wymiennika) ustawiono równoległe względem siebie, zaś prostopadłe względem "dodatniego" i "ujemnego" źródła ciepła. Wymiary gabarytowe stanowiska badawczego wynosiły: szerokość - 1,5 m / wysokość - 1,75 m. Widok stanowiska badawczego przedstawiono na rys. 5.2.

Rys. 5.2. Widok stanowiska badawczego [58]

W dolnym poziomym kanale diody zainstalowano "dodatnie" źródło ciepła o regulowanej mocy cieplnej \dot{Q} wykorzystując grzałkę elektryczną z płaską powierzchnią grzejną. W górnym poziomym kanale diody znajdował się odbiornik ciepła (wymiennik typu "rura w rurze"), zwany "ujemnym" źródłem ciepła rys. 5.1. Na skutek występowania dwóch różnych źródeł ciepła (źródło "dodatnie"- dolne i "ujemne"- górne) następował, w obrębie modelowej diody termicznej, konwekcyjny ruch powietrza.

W skład układu kontrolno-pomiarowego wchodziły następujące elementy:

- do pomiaru temperatury czynnika przepływającego przez kanały diody zastosowano czujniki termometru termoelektrycznego typu J (Fe-CuNi) o średnicy termoelektrod φ = 0,35 mm oraz czujniki termoanemometryczne współpracujące z układem pomiaru prędkości [10],
- do pomiaru prędkości powietrza w kanałach diody termicznej wykorzystano czujniki termoanemometryczne wraz z miernikiem (termoanemometr stałotemperaturowy typu HPTT 96),
- do ustawiania czujnika pomiarowego w odpowiednim punkcie pola przekroju wykorzystano specjalny układ zbudowany na bazie śruby mikrometrycznej,

który pozwalał na umieszczanie czujnika w dowolnej odległości od krawędzi kanału *x* (rys. 5.3) z dokładnością do 0,01 mm.

W skład układu zasilania "dodatniego" źródła ciepła wchodziły: grzałka elektryczna (o regulowanej mocy) oraz autotransformator laboratoryjny typu AL – 2500, przy czym do pomiaru:

- mocy wykorzystano watomierz laboratoryjny (typ LW-1), o zakresie 0÷500 W, klasy 0,5,
- natężenia przepływu wody zastosowano urządzenie elektroniczne firmy Danfoss typu Massflo-Flowmeter MASS 6000 (przepływomierze elektroniczne).
 Dodatkowo zainstalowano rotametr typu VA30R, jako wskaźnik stabilności przepływu wody, służący do bieżącej kontroli stałego poziomu natężenia [18].

5.3. Metodyka badań

5.3.1. Metodyka pomiarów

Badania eksperymentalne przeprowadzono w dwóch etapach, przy czym:

- pierwszy etap dotyczył sprawdzenia zachowania się diody podczas konwekcyjnej wymiany ciepła w kanałach diody termicznej. Badania przeprowadzono przy różnych gęstościach strumienia ciepła oraz intensywności ciepła odbieranego;
- w drugim etapie badań wykonano pomiary pól temperatury i prędkości powietrza w kanałach diody oraz podstawowych parametrów charakteryzujących konwekcyjną wymianę ciepła.

W etapie pierwszym wykonano badania wstępne, sprawdzające stabilność parametrów termicznych układu w czasie. Na stanowisku badawczym istniała możliwość zmiany gęstości strumienia źródła ciepła w granicach $\dot{q}_{zr} = 2000 \div 25000$ W/m², natomiast masowego natężenia przepływu czynnika chłodzącego (wody) "ujemnego" źródła ciepła w zakresie $\dot{m}_c = 0 \div 500$ kg/h. Zmieniając gęstość strumienia ciepła źródła wpływano na zmiany rozkładu temperatury i prędkości w kanałach diody termicznej. W celu potwierdzenia uzyskanych wyników powtarzano pomiary kilkukrotnie dla różnych gęstości strumienia ciepła. W każdym pomiarze stabilizowano wielkość gęstości strumienia ciepła oraz natężenia przepływu wody. W celu określenia rzeczywistego strumienia ciepła przekazywanego od "dodatniego" źródła ciepła do powietrza, cyrkulującego wewnątrz diody termicznej, oszacowano straty ciepła do otoczenia. Wyniki badania strat ciepła "dodatniego" źródła ciepła do otoczenia, przedstawiono w Załączniku 9.4. Symbolem \dot{Q}_{ef} [W/m²] oznaczono wielkości rzeczywistego strumienia ciepła przekazywanego do cyrkulującego powietrza wewnątrz diody, pomniejszonego o straty ciepła na rzecz otoczenia.

W drugim etapie badań eksperymentalnych wykonano pomiary następujących parametrów:

- temperatury powietrza w kanałach diody $-T[^{0}C]$,
- prędkości powietrza w kanałach diody w [m/s],
- strumienia ciepła doprowadzanego do "dodatniego" źródła ciepła $-\dot{Q}_{zr}$ [W],
- temperatury "dodatniego" źródła ciepła T_{zr} [⁰C],
- natężenia przepływu wody chłodącej wymiennik ciepła (źródło "ujemne") *m*_c [kg/h],
- temperatury początkowej i końcowej czynnika chłodzącego (wody) wymienniku ciepła ("ujemne" źródło ciepła)– T_p , T_k [⁰C].

Na rys. 5.3 przedstawiono przekroje pomiarowe układu badawczego, w których mierzono temperaturę i prędkość powietrza.

Na stanowisku badawczym istniała możliwość zmiany mocy "dodatniego" źródła ciepła w zakresie $\dot{Q}_{zr} = 25 \div 250$ W. Dla stałego poziomu natężenia przepływu wody przez wymiennik wynoszącego 250 kg/h wykonano pomiary rozkładu temperatury oraz prędkości powietrza w charakterystycznych przekrojach (rys. 5.3) diody termicznej.

Rys. 5.3. Schemat rozmieszczenia przekrojów pomiarowych modelowej diody

Czujniki pomiaru temperatury i prędkości powietrza w danym przekroju pomiarowym ustawiano w jednakowych odległościach co x = 0,005 m z dokładnością $\pm 0,0001$ m. Pomiary wykonano w sześciu przekrojach diody, po trzy w każdym z pionowych kanałów. Na podstawie otrzymanych wyników pomiarów wykonano wykresy przedstawiające rozkłady temperatury i prędkości powietrza. Badania przeprowadzono dla dwóch położeń diody. Położenie pierwsze - I (pionowe) - źródło ciepła znajdowało się w dolnej, a odbiornik ciepła w górnej części diody. W położeniu II (poziomym) - dioda została obrócona, w stosunku do położenie pierwszego, o kąt 90⁰. Temperatura otoczenia w czasie pomiarów wynosiła 25 ± 3 ⁰C. Temperatura cieczy chłodzącej (wody), zmierzona na dopływie do "ujemnego" źródła nie przekraczała wartości $8\pm 0,5$ ⁰C.

Wszystkie czujniki termoelektryczne, przed ich zamontowaniem w układzie przecechowano w ultratermostacie typu UTU-4 względem termometru szklanego o działce elementarnej 0,1 0 C (dokładność odczytu ± 0,05 0 C). Siłę termoelektryczną mierzono za pomocą woltomierza cyfrowego typu V534 produkcji Mera-Tronik o dokładności ± 0,001 mV.

Średnią temperaturę \overline{T} powietrza w przekroju przepływowym wyznaczono z zależności [46].

$$\overline{T} = \frac{\int_{A} wTdA}{\int_{A} wdA},$$
(5.1)

gdzie: w – prędkość powietrza,

T – temperatura powietrza,

A – pole powierzchni przekroju kanału.

Sprawdzono również poprawność wskazań czujnika termoanemometrycznego. Dla każdego czujnika pomiarowego wykonano indywidualną charakterystykę cechowania. Czujnik z przetwornikiem połączono z komputerową kartą pomiarową. Czujnik termoanemometryczny posiadał dwa włókna, z których jedno przeznaczone było do pomiaru prędkości, a drugie do pomiaru temperatury.

Dane techniczne włókna czujnika wykorzystywanego do pomiaru prędkości (czujnik pomiarowy wraz z obsadką):

- średnica włókna pomiarowego wolfram 5 µm,
- średnica czujnika 8 mm,
- długość 250 mm,
- długość przewodu 2,5 m,
- zakres pomiarowy $0 \div 1$ m/s.

Przetwornik spełniał funkcję elementu zamieniającego sygnał z czujnika termoanemometru na sygnał napięciowy, proporcjonalny do prędkości lub temperatury badanego czynnika. Producentem czujników wraz z przetwornikiem był Instytut Mechaniki Górotworu PAN w Krakowie. Czujniki posiadały indywidualne charakterystyki i zostały przecechowane indywidualnie na potrzeby niniejszej pracy. Uzyskiwany sygnał napięć w zakresie 5+7 V odpowiadał zakresowi prędkości 0+1 m/s. Czujnik wraz z przetwornikiem współpracował z komputerową kartą pomiarową typu PCL-8118HG firmy ADVANTECH o rozdzielczości 12 bitów, z możliwością jednoczesnego podłączenia 16 kanałów odbierających sygnał w zakresie 0+10 V [35]. Rozdzielczość 12 bitów odpowiada zdolności rozróżnienia napięć rzędu 2,5 mV, co pozwala mierzyć prędkość z dokładnością ± 12,5 mm/s [38]. Wszystkie dane przetwarzano za pomocą profesjonalnego oprogramowania do akwizycji danych Genie Adwantech.
W celu wyznaczenia prędkości przepływu czynnika (powietrza) odczytywano napięcie U(V) z anemometru, a następnie obliczano prędkość przepływu medium zgodnie z zależnością [38]:

$$V = F \left\{ U(V) \sqrt{\frac{T_s - T_0}{T_s - T}} + p(T) \right\},$$
(5.2)

gdzie:

- *F* funkcja określająca prędkość przepływu od napięcia wyjściowego toru anemometru w temperaturze wzorcowania *T*₀,
- T_s temperatura nagrzanego włókna anemometru,
- *T* wyznaczona temperatura medium,
- p(T) poprawka zależna od temperatury medium.

Wyznaczając średnią prędkość powietrza wzdłuż każdego z przekrojów pomiarowych w kanałach wykorzystano metodą średniej ważonej. W tym celu podzielono przekrój poprzeczny kanału na dziesięć cząstkowych przekrojów pierścieniowych (rys. 5.4).

W każdym pierścieniu mierzono prędkość lokalną powietrza a następnie obliczono jej wartość średnią \overline{w} .

$$\overline{w} = \frac{1}{A_i} \int_0^R A_i w_i dr \cong \frac{\sum_{i=1}^n w_i \cdot A_i}{\sum_{i=1}^n A_i},$$
(5.3)

gdzie: w_i – prędkość lakolna powietrza

A – pole powierzchni

R – promień kanału

Na rys. 5.4 przedstawiono podział kanału diody na przekroje pierścieniowe.

Rys. 5.4. Schemat podziału przekroju pomiarowego kanału na pierścienie (do wyznaczania średniej prędkości powietrza)

Pomiary parametrów powietrza w kanale diody termicznej wykonano w różnych przekrojach pomiarowych oznaczonych na rys. 5.3.

5.3.2. Metodyka obliczeń cieplnych

Na podstawie zmierzonych na stanowisku wielkości eksperymentalnych wykonano obliczenia charakterystycznych wielkości, a w tym:

- współczynnika przejmowania (wnikania) ciepła α od powierzchni "dodatniego" źródła ciepła do powietrza cyrkulującego wewnątrz diody,
- współczynnika przenikania ciepła k dla "ujemnego" źródła ciepła,
- bezwymiarowych liczb kryterialnych opisujących warunki konwekcyjnej wymiany ciepła.

Współczynnik przejmowania ciepła α , będący współczynnikiem proporcjonalności w równaniu Newtona, jest miarą intensywności wymiany ciepła w tym konwekcyjnym procesie. Ogólnie zależy on od takich parametrów jak:

- własności fizycznych płynu,
- parametrów fizycznych: temperatura, ciśnienie,
- prędkość i charakter przepływu płynu,
- kształtu rozpatrywanej powierzchni wymiany ciepła,
- zjawisk zachodzących na powierzchni wymiany ciepła.

Wartość współczynnika α jest z reguły zmienna na rozpatrywanej powierzchni. Wyróżnia się lokalną (miejscową) wielkość współczynnika przejmowania ciepła α_{lok} oraz średnią α . Wartość współczynnika przejmowania ciepła α można eksperymentalnie wyznaczyć dwoma metodami: bezpośrednią i pośrednią [11, 13, 55]. Metoda bezpośrednia polega na wykorzystaniu równania Newtona, o postaci:

$$\alpha = \frac{q}{T_w - T_f}.$$
(5.4)

Metodą tą wyznacza się najczęściej średnią wartość współczynnika przejmowania ciepła α , gdyż ze względów praktycznych mierzy się zwykle całkowity strumień ciepła doprowadzony (lub odprowadzany) do powierzchni wymiany ciepła.

Metoda pośrednia wyznaczenia współczynnika przejmowania ciepła

W metodzie tej wykorzystuje się znajomość pola temperatury płynu w obszarze kilku milimetrów do ścianki. Z prawa Fouriera wynika zależność:

$$q = -\lambda \left(\frac{\partial T}{\partial n}\right),\tag{5.5}$$

a z porównania równań (5.4) oraz (5.5) otrzymuje się wzór pozwalający wyznaczyć lokalną wartość współczynnika przejmowania ciepła dla źródła w postaci:

$$\alpha_{lok} = \frac{-\lambda \left(\frac{\partial T}{\partial n}\right)_{W}}{T_{W} - T_{F}}.$$
(5.6)

Na podstawie wyników pomiaru parametrów powietrza na powierzchni grzejnej sporządzono wykresy rozkładów temperatury w pobliżu powierzchni grzejnej źródła ciepła (na kierunku normalnym do powierzchni grzejnej, dla różnych wartości mocy źródła ciepła). Do sporządzenia wykresów wykorzystano eksperymentalne wartości pola temperatury uzyskane w płaszczyźnie znajdującej się w odległości 6 mm od powierzchni czołowej źródła ciepła. Aproksymując wyniki pomiaru temperatury wielomianem oraz wyznaczając pochodną (na ogrzewanej ściance) określono lokalną wartość współczynnika przejmowania ciepła α_{lok} .

Współczynnik przenikania ciepła k dla "ujemnego" źródła ciepła

Wartość współczynnika przenikania ciepła k wyznaczono korzystając ze zmierzonej wartości mocy cieplnej "ujemnego" źródła ciepła \dot{Q}_w . Moc cieplną wymiennika wyznaczono na podstawie zależności:

$$Q_w = \overline{w} \cdot \rho \cdot A \cdot \Delta h , \qquad (5.7)$$

a następnie:

$$k = \frac{\dot{Q}_w}{A \cdot \Delta t_{\log}}, \qquad (5.8)$$

gdzie: A - pole powierzchni wymiany ciepła,

 Δt_{\log} - średnia logarytmiczna różnica temperatur.

Opis matematyczny zjawiska konwekcji swobodnej obejmuje równania: ciągłości, ruchu i energii płynu. Z analizy tych równań, po uwzględnieniu teorii podobieństwa fizycznego zjawisk wynika, że uogólniona zależność, opisująca wymianę ciepła podczas konwekcji swobodnej w układach geometrycznie podobnych ma postać:

$$Nu = f(Gr, Pr), (5.9)$$

gdzie bezwymiarowe liczby kryterialne oznaczają:

$$Nu = \frac{a \cdot l}{\lambda}$$
 - liczbę Nusselta, (5.10)

$$Gr = \frac{g \cdot \beta \cdot l^3 \cdot \Delta t}{V_2}$$
 - liczbę Grasshofa, (5.11)

$$\Pr = \frac{v}{a} = \frac{v \cdot \rho \cdot c_p}{\lambda} - \text{liczbę Prandla,}$$
(5.12)

$$Ra = \frac{g \cdot l^3 \cdot \beta \cdot \Delta T}{v \cdot a} = Gr \cdot \Pr - \text{liczbę Rayleigha.}$$
(5.13)

gdzie:

- *l* wymiar charakterystyczny średnica powierzchni grzejnej [m],
- λ współczynnik przewodzenia ciepła powietrza [W/m²K],
- g przyspieszenie ziemskie [m/s²],
- β współczynnik rozszerzalności objętościowej powietrza [1/K],

- T temperatura [K],
- v kinematyczny wsółczynnik lepkości [m²/s],
- *a* współczynnik wyrównania temperatury [m²/s],
- ρ gęstość powietrza [kg/m³],
- c_p ciepło właściwe przy stałym ciśnieniu [J/kgK], [58]

5.4. Wyniki badań eksperymentalnych

5.4.1. Wyniki pomiarów eksperymentalnych pól prędkości i temperatury w charakterystycznych przekrojach diody

Pomiary eksperymentalne w zakresie pól prędkości i temperatury powietrza wykonano w charakterystycznych przekrojach modelowej diody. Rozmieszczenie tych przekrojów przedstawiono na rys. 5.3.

Pomiary wykonano dla dwóch położeń diody, to znaczy poziomego i pionowego. Umowne oznaczenia położenia diody dotyczą:

- I. położenie pionowe "dodatnie" źródło ciepła umiejscowione w dolnej części konstrukcji diody, a "ujemne" źródło w górnej jej części;
- II. położenie poziome diodę obrócono w stosunku do położenia I o kąt 90⁰ tak, że źródła znajdowały się z lewej oraz prawej części jej konstrukcji.

Na rysunku 5.5 pokazano widok modelowej diody w położeniu pionowym i poziomym.

Rys.5.5. Widok położenia modelowej diody; a) położenie I (pionowe), b) położenie II (poziome)

Prezentacja wyników pomiarów eksperymentalnych lokalnych wartości temperatury i prędkości powietrza w przekrojach diody modelowej

Położenie I (pionowe) diody

W tablicy 5.1 przedstawiono przykładowe wyniki pomiarów pól prędkości i temperatury powietrza dla położenia I (pionowego) diody. Pomiary wykonano w sześciu przekrojach diody (po trzy w każdym równoległym kanale diody), (rys 5.3). Podane w tablicy 5.1 przykładowe wyniki badań zostały wykonane przy efektywnym strumieniu źródła ciepła $\dot{Q}_{ef} = 78$ W (wyciąg z protokołu badań).

Tablica 5.1.

	Odległość	Prę	Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C] w przekroju diody*										
Lp.	czujnika od ścianki		Kanał "ciep				y"]			Kanał "zimny"			
	<i>x</i> [m]**	Ι	I [*] II				Π	IV		V		VI	
		w	T	w	T	w	T	w	T	w	T	w	T
1	0.000	[m/s]		[m/s]		[m/s]		[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]
1	0,000	0,000	33,1	0,000	32,6	0,000	31,7	0,000	26,3	0,000	26,9	0,000	25,2
2	0,005	0,333	36,1	0,240	35,0	0,245	33,5	0,101	26,9	0,177	26,8	0,231	25,9
3	0,010	0,418	38,3	0,319	35,6	0,255	34,6	0,154	26,9	0,188	27,2	0,284	26,0
4	0,015	0,458	37,8	0,339	36,4	0,323	34,9	0,153	27,0	0,199	27,3	0,285	26,2
5	0,020	0,442	37,8	0,338	36,4	0,326	34,9	0,163	26,8	0,205	27,6	0,286	26,3
6	0,025	0,405	37,0	0,323	36,0	0,321	34,9	0,154	26,8	0,209	27,5	0,310	26,6
7	0,030	0,339	36,6	0,325	36,0	0,319	35,2	0,162	27,0	0,214	27,5	0,331	27,3
8	0,035	0,315	36,2	0,321	36,0	0,336	35,4	0,169	27,2	0,219	27,5	0,334	26,9
9	0,040	0,292	36,0	0,318	36,1	0,352	35,7	0,193	27,3	0,214	27,5	0,334	26,7
10	0,045	0,261	36,0	0,303	35,6	0,353	35,4	0,206	27,5	0,239	27,5	0,333	27,2
11	0,050	0,230	36,0	0,292	35,6	0,355	35,2	0,240	27,7	0,240	27,7	0,330	27,3
12	0,055	0,212	36,3	0,290	35,6	0,351	35,6	0,267	27,8	0,262	27,9	0,324	27,3
13	0,060	0,192	36,2	0,291	35,6	0,345	35,7	0,325	28,0	0,283	27,9	0,321	27,2
14	0,065	0,187	36,2	0,289	35,6	0,343	35,7	0,341	28,2	0,351	27,8	0,341	27,3
15	0,070	0,182	36,1	0,286	35,6	0,337	35,3	0,354	28,3	0,343	27,9	0,333	27,3
16	0,075	0,187	36,0	0,278	35,4	0,295	35,0	0,354	28,4	0,334	28,0	0,291	27,4
17	0,080	0,192	36,0	0,271	35,2	0,291	34,9	0,364	28,8	0,332	27,9	0,289	28,3
18	0,085	0,168	35,4	0,266	35,9	0,288	34,7	0,359	29,2	0,316	27,8	0,303	29,0
19	0,090	0,125	34,8	0,219	35,6	0,265	34,7	0,357	29,7	0,316	28,2	0,268	26,2
20	0,095	0,115	34,2	0,165	34,7	0,230	34,0	0,303	29,7	0,262	27,4	0,256	25,7
21	0,100	0,000	33,1	0,000	32,6	0,000	31,7	0,000	28,9	0,000	26,9	0,000	25,2
w _{śr} [m/	$[s] \begin{bmatrix} T_{\acute{s}r} \\ [^0C] \end{bmatrix}$	0,267	36,0	0,266	35,4	0,288	34,7	0,284	26,8	0,250	27,5	0,235	27,8

Wyniki pomiaru prędkości i temperatury powietrza w przekrojach kanałów diody uzyskane przy efektywnym strumieniu ciepła \dot{Q}_{ef} = 78 W dla położenia I diody (wyciąg z protokołu badań)

*) I ÷ VI – przekroje pomiarowe diody (rys. 5.3)

**) opis sposobu ustawienia czujnika w odległości *x* od ścianki kanału przedstawiono w rozdziale 5.3.1 (rys. 5.3) Na rysunkach 5.6 i 5.7 przedstawiono rozkłady temperatury powietrza, uzyskane w przekrojach pomiarowych I÷VI diody [54].

Rys. 5.6. Rozkład temperatury powietrza w charakterystycznych przekrojach pomiarowych (I÷III) w kanale "ciepłym" diody termicznej dla mocy źródła ciepła \dot{Q}_{ef} = 78 W. Położenie diody I (pionowe); wyniki pomiarów eksperymentalnych

Rys. 5.7. Rozkład temperatury powietrza w charakterystycznych przekrojach pomiarowych (IV \div VI) w kanale "zimnym" diody termicznej dla mocy źródła ciepła \dot{Q}_{ef} = 78 W. Położenie diody I (pionowe); wyniki pomiarów eksperymentalnych

Na rys. 5.8 i 5.9 przedstawiono rozkłady prędkości powietrza, które uzyskano w przekrojach pomiarowych I÷VI diody.

Rys. 5.8. Rozkład prędkości powietrza w charakterystycznych przekrojach pomiarowych (I÷III) w kanale "ciepłym" diody termicznej dla mocy źródła ciepła \dot{Q}_{ef} = 78 W. Położenie diody I (pionowe); wyniki pomiarów eksperymentalnych

Rys. 5.9. Rozkład prędkości powietrza w charakterystycznych przekrojach pomiarowych (IV \div VI) w kanale "zimnym" diody termicznej dla mocy źródła ciepła \dot{Q}_{ef} = 78 W. Położenie diody I (pionowe); wyniki pomiarów eksperymentalnych

W tablicy 5.2 zaprezentowano wyniki pomiaru prędkości powietrza w [m/s] i temperatury powietrza T [⁰C] w przekrojach pomiarowych diody przy efektywnym strumieniu mocy "dodatniego" źródła ciepła \dot{Q}_{ef} = 161 W.

Tablica 5.2.

	Odległość	Prę	Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C] w określonym przekroju*								⁰ C]		
Lp.	czujnika od ścianki		Kanał "ciepły"						K	anał "	zimny	y"	
	λ [III]	Ι	I [*] II III			Г	V	V	7	V	Τ		
		w	Т	w	Т	w	Т	w	Т	w	Т	w	Т
		[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]
1	0,000	0,000	46,0	0,000	46,8	0,000	43,8	0,000	35,8	0,000	32,5	0,000	30,0
2	0,005	0,396	50,8	0,282	50,3	0,293	48,2	0,157	35,5	0,233	35,5	0,330	34,8
3	0,010	0,432	53,7	0,368	52,1	0,363	52,0	0,229	35,8	0,242	35,8	0,351	35,0
4	0,015	0,468	54,1	0,400	53,0	0,400	52,7	0,227	35,7	0,254	36,0	0,366	35,9
5	0,020	0,463	54,0	0,399	52,8	0,404	52,0	0,229	35,4	0,269	36,1	0,362	35,9
6	0,025	0,416	53,9	0,354	53,0	0,401	51,4	0,230	35,8	0,292	36,2	0,374	36,0
7	0,030	0,405	53,6	0,344	52,7	0,402	51,4	0,236	35,8	0,310	36,2	0,372	36,1
8	0,035	0,397	53,3	0,338	52,2	0,404	51,4	0,250	35,9	0,304	36,3	0,368	36,2
9	0,040	0,304	52,7	0,336	52,3	0,405	51,5	0,267	36,1	0,299	36,3	0,363	36,2
10	0,045	0,274	52,5	0,334	52,4	0,406	51,6	0,270	36,3	0,303	36,3	0,366	36,2
11	0,050	0,282	52,7	0,332	52,5	0,361	51,4	0,274	36,6	0,307	36,4	0,369	36,2
12	0,055	0,243	52,8	0,334	52,4	0,357	51,4	0,332	36,9	0,323	36,5	0,364	36,2
13	0,060	0,237	52,6	0,333	52,0	0,353	51,4	0,338	37,0	0,335	36,5	0,358	36,2
14	0,065	0,230	52,6	0,320	52,0	0,355	51,1	0,362	37,1	0,358	36,4	0,357	36,2
15	0,070	0,225	52,6	0,303	51,4	0,358	50,9	0,380	38,1	0,361	36,6	0,356	36,1
16	0,075	0,232	52,6	0,304	50,7	0,348	50,8	0,402	39,1	0,355	36,8	0,346	36,1
17	0,080	0,231	52,4	0,308	50,7	0,333	50,1	0,400	39,2	0,347	36,8	0,335	35,8
18	0,085	0,235	52,1	0,291	50,5	0,320	49,5	0,400	39,2	0,343	36,8	0,334	35,6
19	0,090	0,197	49,8	0,279	50,3	0,287	49,1	0,358	39,9	0,315	36,5	0,302	34,3
20	0,095	0,138	48,2	0,204	50,2	0,251	48,8	0,333	38,5	0,301	35,2	0,247	32,4
21	0,100	0,000	46,0	0,000	46,8	0,000	43,8	0,000	37,3	0,000	32,5	0,000	30,0
w _{śr} [m/	/s] $T_{\dot{s}r}$ $[^{0}C]$	0,276	51,9	0,294	51,3	0,324	50,2	0,270	37,0	0,279	35,9	0,315	35,1

Wyniki pomiaru prędkości i temperatury powietrza w przekrojach kanałów diody uzyskane przy efektywnym strumieniu ciepła \dot{Q}_{ef} = 161 W dla położenia I diody (wyciąg z protokołu badań)

*) I ÷ VI – przekroje pomiarowe diody (rys. 5.3)

**) opis sposobu ustawienia czujnika w odległości *x* od ścianki kanału przedstawiono w rozdziale 5.3.1 (rys. 5.3)

Na rys. 5.10 i 5.11 przedstawiono rozkłady temperatury powietrza, zaś na rys. 5.12 i 5.13 rozkłady prędkości, uzyskane dla przekrojów pomiarowych I÷VI diody. Wykresy sporządzono na podstawie badań eksperymentalnych, zamiesz-czonych w tablicy 5.2.

Rys. 5.10. Rozkład temperatury powietrza w charakterystycznych przekrojach pomiarowych (I÷III) w kanale "ciepłym" diody termicznej dla mocy źródła ciepła \dot{Q}_{ef} = 161 W. Położenie diody I (pionowe); wyniki pomiarów eksperymentalnych

Rys. 5.11. Rozkład temperatury powietrza w charakterystycznych przekrojach pomiarowych (IV \div VI) w kanale "zimnym" diody termicznej dla mocy źródła ciepła $\dot{Q}_{ef} = 161$ W. Położenie diody I (pionowe); wyniki pomiarów eksperymentalnych

Rys. 5.12. Rozkład prędkości powietrza w charakterystycznych przekrojach pomiarowych (I÷III) w kanale "ciepłym" diody termicznej dla mocy źródła ciepła \dot{Q}_{ef} = 161 W. Położenie diody I (pionowe); wyniki pomiarów eksperymentalnych

Rys. 5.13. Rozkład prędkości powietrza w charakterystycznych przekrojach pomiarowych (IV \div VI) w kanale "zimnym" diody termicznej dla mocy źródła ciepła $\dot{Q}_{ef} = 161$ W. Położenie diody I (pionowe); wyniki pomiarów eksperymentalnych

Pozostałe wyniki badań eksperymentalnych zamieszczono w Załącznikach (rozdział 9.2).

Badania eksperymentalne dotyczące pól prędkości i temperatury powietrza w charakterystycznych przekrojach diody w I położeniu (pionowym) wskazują na istnienie niesymetryczności tych rozkładów. Można to tłumaczyć między innymi, oddziaływaniem siły odśrodkowej pojawiającym się w układzie zamkniętym diody. Przy dostatecznie dużej odległości przekroju od kolana rurowego diody, co może być równoznaczne z zachowaniem odpowiednich warunków rozbiegu termicznego zauważa się, że rozkłady pól prędkości i temperatury wykazują zbliżenie do rozkładu symetrycznego.

Prezentacja wyników pomiarów eksperymentalnych lokalnych wartości temperatury i prędkości powietrza w przekrojach modelowej diody

Położenie II (poziome) diody

Tablica 5.3 prezentuje przykładowe wyniki pomiarów pól prędkości i temperatury powietrza dla położenia II (poziomego) diody. Podane w tablicy 5.3 przykładowe wyniki badań zostały wykonane przy efektywnym strumieniu "dodatniego" źródła ciepła $\dot{Q}_{ef} = 78$ W (przy tej samej wartości mocy wykonano pomiary porównawcze zawarte w tablicy 5.1).

Rys. 5.14. Rozkład temperatury powietrza w charakterystycznych przekrojach pomiarowych (I÷III) w kanale "ciepłym" diody termicznej dla mocy źródła ciepła \dot{Q}_{ef} = 78 W; wyniki pomiarów eksperymentalnych

Rysunki 5.14 i 5.15 przedstawiają rozkłady temperatury powietrza w przekrojach I÷VI dla położenia II diody przy efektywnym strumieniu ciepła \dot{Q}_{ef} = 78 W.

Tablica 5.3.

Wyniki pomiaru prędkości i temperatury powietrza	w przekrojach kanałów diody uzyskane przy
efektywnym strumieniu "dodatniego" źródła ciepła	\dot{Q}_{ef} = 77,9 W dla położenia II diody

	Odległość	Prę	Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C] w określonym przekroju*										
Lp.	czujnika od ścianki		Kanał "ciepły"						K	lanał "	zimn	y"	
	x [m] · ·	Ι	*	Ι	Ι	Ι	Π	IV V		V	VI		
		w	Т	w	Т	w	Т	w	Т	w	Т	w	Т
		[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]
1	0,000	0,000	43,3	0,000	42,6	0,000	42,1	0,000	15,8	0,000	16,0	0,000	16,3
2	0,005	0,048	43,6	0,041	42,9	0,038	42,4	0,026	15,8	0,029	16,0	0,029	16,3
3	0,010	0,069	43,7	0,051	43,0	0,047	42,5	0,032	15,8	0,036	16,0	0,036	16,3
4	0,015	0,083	43,8	0,055	43,1	0,050	42,5	0,036	15,7	0,040	16,0	0,040	16,2
5	0,020	0,090	43,8	0,056	43,1	0,052	42,5	0,039	15,7	0,042	15,9	0,042	16,2
6	0,025	0,091	43,8	0,059	43,1	0,053	42,6	0,041	15,7	0,044	15,9	0,044	16,2
7	0,030	0,090	43,7	0,058	43,1	0,054	42,6	0,043	15,7	0,045	15,9	0,045	16,2
8	0,035	0,086	43,7	0,058	43,1	0,054	42,6	0,045	15,7	0,046	15,9	0,047	16,2
9	0,040	0,080	43,6	0,056	43,1	0,054	42,6	0,046	15,7	0,047	15,9	0,047	16,2
10	0,045	0,072	43,5	0,055	43,0	0,054	42,6	0,047	15,7	0,048	15,9	0,048	16,2
11	0,050	0,059	43,5	0,054	43,0	0,053	42,6	0,048	15,7	0,048	15,9	0,048	16,2
12	0,055	0,055	43,3	0,053	43,0	0,053	42,6	0,049	15,7	0,049	15,9	0,049	16,2
13	0,060	0,045	43,3	0,051	43,0	0,052	42,5	0,050	15,7	0,049	15,9	0,049	16,2
14	0,065	0,041	43,2	0,050	42,9	0,051	42,5	0,050	15,7	0,049	15,9	0,049	16,2
15	0,070	0,035	43,2	0,048	42,9	0,050	42,5	0,050	15,7	0,049	15,9	0,049	16,2
16	0,075	0,031	43,1	0,046	42,8	0,048	42,5	0,050	15,7	0,048	15,9	0,048	16,2
17	0,080	0,027	43,0	0,044	42,7	0,046	42,5	0,049	15,7	0,047	15,9	0,047	16,2
18	0,085	0,024	43,0	0,040	42,7	0,043	42,4	0,048	15,7	0,045	15,9	0,045	16,2
19	0,090	0,020	42,9	0,036	42,6	0,038	42,4	0,045	15,8	0,042	16,0	0,042	16,2
20	0,095	0,015	42,8	0,029	42,6	0,030	42,3	0,037	15,8	0,034	16,0	0,034	16,2
21	0,100	0,000	42,5	0,000	42,3	0,000	42,0	0,000	15,8	0,000	16,0	0,000	16,3

*) I ÷ VI – przekroje pomiarowe diody (rys. 5.3)

**) opis sposobu ustawienia czujnika w odległości *x* od ścianki kanału przedstawiono w rozdziale 5.3.1 (rys. 5.3)

Rys. 5.15. Rozkład temperatury powietrza w charakterystycznych przekrojach pomiarowych (IV ÷ VI) w kanale "zimnym" diody termicznej dla mocy źródła ciepła \dot{Q}_{ef} = 78 W; wyniki pomiarów eksperymentalnych

Na rysunkach 5.16 i 5.17 przedstawiono rozkłady prędkości powietrza w przekrojach I÷VI dla położenia II diody przy efektywnym strumieniu "dodatniego" źródła ciepła $\dot{Q}_{ef} = 78$ W.

Rys. 5.16. Rozkład prędkości powietrza w charakterystycznych przekrojach pomiarowych (I÷III) w kanale "ciepłym" diody termicznej dla mocy źródła ciepła \dot{Q}_{ef} = 78 W; wyniki pomiarów eksperymentalnych

Rys. 5.17. Rozkład prędkości powietrza w charakterystycznych przekrojach pomiarowych (IV ÷ VI) w kanale "zimnym" diody termicznej dla mocy źródła ciepła \dot{Q}_{ef} = 78 W; wyniki pomiarów eksperymentalnych

5.4.2. Zestawienie wyników obliczeń badań eksperymentalnych rozkładu temperatury i prędkości powietrza w kanałach

W tablicy 5.4 przedstawiono zbiorcze zestawienie wyników obliczeń średnich prędkości i temperatur powietrza w poszczególnych przekrojach pomiarowych diody dla położenia I. Metodykę obliczania średnich wartości temperatury oraz prędkości w poszczególnym kanale diody przedstawiono w rozdziale 5.3.1. Wyznaczone w ten sposób wartości to temperatura jak i prędkość, jaką miałby płyn idealnie wymieszany w danym przekroju kanału.

Tablica 5.4.

Temperatura	Мос			Kanał,	.ciepły"		
"dodatniego" źródła ciepła	efektywna "dodatniego" źródła ciepła	Prze	krój l	Przel	krój II	Przek	krój III
Tźr	$\dot{Q}_{e\!f}$	\overline{T}	\overline{w}	\overline{T}	\overline{w}	\overline{T}	\overline{w}
[⁰C]	[W]	[⁰C]	[m/s]	[⁰C]	[m/s]	[⁰C]	[m/s]
82	18	24,6	0,208	24,3	0,208	23,9	0,214
110	28	26,4	0,215	26,3	0,213	25,9	0,218
143	38	28,4	0,219	28,6	0,218	27,8	0,219
166	48	30,2	0,237	29,9	0,235	29,5	0,251
186	58	32,1	0,241	31,9	0,245	31,3	0,251
210	68	34,0	0,254	33,8	0,259	32,8	0,272
230	78	36,0	0,267	35,4	0,266	34,7	0,288
254	88	37,9	0,263	37,6	0,277	36,9	0,285
274	99	40,4	0,270	39,5	0,271	38,9	0,284
294	109	41,7	0,283	41,0	0,286	40,1	0,304
318	120	43,8	0,284	43,4	0,299	42,6	0,318
341	130	45,9	0,289	45,4	0,287	44,5	0,311
361	140	47,1	0,290	46,0	0,301	45,0	0,320
382	151	48,8	0,293	48,3	0,311	47,6	0,328
402	161	51,8	0,307	51,3	0,303	50,2	0,334
424	172	52,8	0,305	52,2	0,314	51,5	0,334
440	183	53,7	0,302	53,1	0,323	52,7	0,335
Temperatura	Мос			Kanał,	,zimny"		
Temperatura "dodatniego" źródła ciepła	Moc efektywna "dodatniego" źródła ciepła	Przek	krój IV	Kanał , Przel	,zimny" krój V	Przek	krój VI
Temperatura "dodatniego" źródła ciepła <i>T_{źr}</i>	Moc efektywna "dodatniego" źródła ciepła $\dot{Q}_{e\!f}$	Przek \overline{T}	arój IV	Kanał , Przel T	,zimny" <rój v<br="">w</rój>	Przek \overline{T}	trój VI w
Temperatura "dodatniego" źródła ciepła <i>T_{źr}</i> [⁶ C]	Moc efektywna "dodatniego" źródła ciepła $\dot{Q}_{e\!f}$ [W]	Przek	crój IV ₩ [m/s]	Kanał , Przel <u> </u> [⁰ C]	,zimny" <rój v<br="">w [m/s]</rój>	Przek T	crój VI ₩ [m/s]
Temperatura "dodatniego" źródła ciepła <i>T_{źr}</i> [⁰ C] 82	Moc efektywna "dodatniego" źródła ciepła <u>Ż</u> _{ef} [W] 18	Przek <u> </u> <u> </u>	crój IV <u> </u> <u> [m/s]</u> 0,207	Kanał , Przel <u>T</u> [⁰C] 21,6	,zimny" <rój v<br=""><u>w</u> [m/s] 0,197</rój>	Przek <u> </u> <u> </u>	crój VI ₩ [m/s] 0,200
Temperatura "dodatniego" źródła ciepła <i>T_{źr}</i> [⁰ C] 82 110	Moc efektywna "dodatniego" źródła ciepła $\dot{Q}_{e\!f}$ [W] 18 28	Przek <u> </u> <u> </u>	(rój IV ₩ [m/s] 0,207 0,215	Kanał, Przel <u>T</u> [⁰ C] 21,6 22,3	zimny" <rój v<br="">w [m/s] 0,197 0,207</rój>	Przek <u> </u> <u> </u> 21,5 22,5	(rój VI ₩ [m/s] 0,200 0,211
Temperatura "dodatniego" źródła ciepła Tźr [⁰ C] 82 110 143	Moc efektywna "dodatniego" źródła ciepła \dot{Q}_{ef} [W] 18 28 38	Przek <u> </u> <u> </u>	(rój IV	Kanał , Przel <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> 	zimny" (rój V \overline{w} [m/s] 0,197 0,207 0,218	Przek <u> </u> <u> </u> 21,5 22,5 23,3 <u> </u>	(rój VI ₩ [m/s] 0,200 0,211 0,221
Temperatura "dodatniego" źródła ciepła <i>T_{źr}</i> [⁰ C] 82 110 143 166	Moc efektywna "dodatniego" źródła ciepła \dot{Q}_{ef} [W] 18 28 38 38 48	Przek <i>T</i> [⁰C] 21,6 22,1 22,6 24,1	(rój IV [m/s] 0,207 0,215 0,223 0,245	Kanał, Przel <u>T</u> 21,6 22,3 23,1 24,6	zimny" <rój v<br="">w [m/s] 0,197 0,207 0,218 0,227</rój>	Przek <i>T</i> [⁰C] 21,5 22,5 23,3 24,7	(rój VI [m/s] 0,200 0,211 0,221 0,219
Temperatura "dodatniego" źródła ciepła <i>T_{źr}</i> [⁰ C] 82 110 143 166 186	Moc efektywna "dodatniego" źródła ciepła $\dot{Q}_{e\!f}$ 18 18 28 38 48 58	Przek <u>T</u> 21,6 22,1 22,6 24,1 25,0	(rój IV (m/s) 0,207 0,215 0,223 0,245 0,253	Kanał, Przel <u>T</u> 21,6 22,3 23,1 24,6 25,4	,zimny" <rój v<br="">[m/s] 0,197 0,207 0,218 0,227 0,233</rój>	Przek <u>T</u> 21,5 22,5 23,3 24,7 26,7	(rój VI [m/s] 0,200 0,211 0,221 0,219 0,228
Temperatura "dodatniego" źródła ciepła <i>T_{źr}</i> [⁰ C] 82 110 143 166 186 210	$\begin{array}{c} \text{Moc} \\ \text{efektywna} \\ \text{"dodatniego"} \\ \text{źródła ciepła} \\ \hline \dot{\mathcal{Q}}_{ef} \\ \hline \textbf{[W]} \\ \hline \textbf{18} \\ \hline \textbf{28} \\ \hline \textbf{38} \\ \hline \textbf{38} \\ \hline \textbf{48} \\ \hline \textbf{58} \\ \hline \textbf{68} \\ \end{array}$	Przek <u>T</u> 21,6 22,1 22,6 24,1 25,0 26,0	(rój IV (m/s) 0,207 0,215 0,223 0,245 0,253 0,266	Kanał , Przel <u>T</u> [⁰ C] 21,6 22,3 23,1 24,6 25,4 26,5	zimny" (rój V (m/s) 0,197 0,207 0,218 0,227 0,233 0,235	Przek <u>T</u> [⁰ C] 21,5 22,5 23,3 24,7 26,7 27,0	(rój VI [m/s] 0,200 0,211 0,221 0,219 0,228 0,236
Temperatura "dodatniego" źródła ciepła <i>T_{źr}</i> [⁰ C] 82 110 143 166 186 210 230	$\begin{array}{c} \text{Moc} \\ \text{efektywna} \\ \text{``dodatniego''} \\ \underline{\acute{V}}_{ef} \\ \hline $	Przek <i>T</i> 21,6 22,1 22,6 24,1 25,0 26,0 26,8	(rój IV [m/s] 0,207 0,215 0,223 0,245 0,253 0,266 0,284	Kanał, Przel <u>T</u> 21,6 22,3 23,1 24,6 25,4 26,5 27,5	,zimny" ⟨rój V [m/s] 0,197 0,207 0,218 0,227 0,233 0,235 0,250	Przek <i>T</i> 21,5 22,5 23,3 24,7 26,7 27,0 27,8	(rój VI [m/s] 0,200 0,211 0,221 0,219 0,228 0,236 0,235
Temperatura "dodatniego" źródła ciepła <i>T_{źr}</i> [⁰ C] 82 110 143 166 186 210 230 254	Moc efektywna "dodatniego" źródła ciepła $\dot{Q}_{e\!f}$ 18 18 28 38 48 38 48 58 68 78 88	Przek <u>T</u> 21,6 22,1 22,6 24,1 25,0 26,0 26,8 27,8	(rój IV [m/s] 0,207 0,215 0,223 0,245 0,253 0,266 0,284 0,289	Kanał, Przel <u>T</u> 21,6 22,3 23,1 24,6 25,4 26,5 27,5 28,4	,zimny" <rój v<br="">[m/s] 0,197 0,207 0,218 0,227 0,233 0,235 0,250 0,250</rój>	Przek <i>T</i> 21,5 22,5 23,3 24,7 26,7 27,0 27,8 28,9	(rój VI [m/s] 0,200 0,211 0,221 0,219 0,228 0,236 0,235 0,249
Temperatura "dodatniego" źródła ciepła <i>T_{źr}</i> [°C] 82 110 143 166 186 210 230 254 274	$\begin{array}{r} \text{Moc} \\ \text{efektywna} \\ \text{``dodatniego''} \\ \underline{\dot{z}ródła \ ciepła} \\ \hline \underline{\dot{Q}}_{e\!f} \\ \hline \textbf{[W]} \\ \hline \textbf{18} \\ 28 \\ 38 \\ 48 \\ 58 \\ 68 \\ 58 \\ 68 \\ 78 \\ 88 \\ 99 \\ \end{array}$	Przek <i>T</i> 21,6 22,1 22,6 24,1 25,0 26,0 26,8 27,8 28,9	rrój IV [m/s] 0,207 0,215 0,223 0,245 0,253 0,266 0,284 0,289 0,287	Kanał, Przel <u>T</u> 21,6 22,3 23,1 24,6 25,4 26,5 27,5 28,4 29,5	zimny" (rój V [m/s] 0,197 0,207 0,218 0,227 0,233 0,235 0,250 0,250 0,255	Przek <u>T</u> 21,5 22,5 23,3 24,7 26,7 27,0 27,8 28,9 30,4	(rój VI [m/s] 0,200 0,211 0,221 0,219 0,228 0,236 0,235 0,249 0,253
Temperatura "dodatniego" źródła ciepła <i>T_{źr}</i> [⁰ C] 82 110 143 166 186 210 230 254 274 294	$\begin{array}{c} Moc\\ efektywna\\ ``dodatniego''\\ \acute{zródła ciepła}\\ \dot{\dot{\mathcal{Q}}}_{ef}\\ \hline \mathbf{[W]}\\ 18\\ 28\\ 38\\ 48\\ 58\\ 68\\ 58\\ 68\\ 78\\ 88\\ 99\\ 99\\ 109\\ \hline \end{array}$	Przek <i>T</i> 21,6 22,1 22,6 24,1 25,0 26,0 26,8 27,8 28,9 29,8	IV Im/s] 0,207 0,215 0,223 0,245 0,253 0,266 0,284 0,289 0,287 0,299	Kanał, Przel <u>T</u> 21,6 22,3 23,1 24,6 25,4 26,5 27,5 28,4 29,5 30,5	zimny" (rój V [m/s] 0,197 0,207 0,218 0,227 0,233 0,235 0,250 0,250 0,255 0,261	Przek <i>T</i> 21,5 22,5 23,3 24,7 26,7 27,0 27,8 28,9 30,4 31,4	rrój VI [m/s] 0,200 0,211 0,221 0,219 0,228 0,235 0,249 0,253 0,253
Temperatura "dodatniego" źródła ciepła <i>T_{źr}</i> [⁰ C] 82 110 143 166 186 210 230 254 274 294 318	Moc efektywna "dodatniego" źródła ciepła \dot{Q}_{ef} IW 18 28 38 48 58 68 78 88 99 109 120	Przek <i>T</i> 21,6 22,1 22,6 24,1 25,0 26,0 26,8 27,8 28,9 29,8 30,4	IV w [m/s] 0,207 0,215 0,223 0,245 0,253 0,266 0,284 0,289 0,287 0,321	Kanał, Przel <u>T</u> 21,6 22,3 23,1 24,6 25,4 26,5 27,5 28,4 29,5 30,5 31,4	zimny" (rój V [m/s] 0,197 0,207 0,218 0,227 0,233 0,235 0,250 0,250 0,255 0,261 0,268	Przek <i>T</i> 21,5 22,5 23,3 24,7 26,7 27,0 27,8 28,9 30,4 31,4 32,2	xrój VI w [m/s] 0,200 0,211 0,221 0,219 0,236 0,235 0,249 0,253 0,253 0,270
Temperatura "dodatniego" źródła ciepła <i>T_{źr}</i> [⁰ C] 82 110 143 166 186 210 230 254 274 294 318 341	Moc efektywna "dodatniego" źródła ciepła Qef IW] 18 28 38 48 58 68 78 88 99 109 120 130	Przek <i>T</i> 21,6 22,1 22,6 24,1 25,0 26,0 26,8 27,8 28,9 29,8 30,4 31,8	IV Im/s] 0,207 0,215 0,223 0,245 0,253 0,266 0,284 0,289 0,287 0,299 0,321 0,312	Kanał, Przel <u>T</u> 21,6 22,3 23,1 24,6 25,4 26,5 27,5 28,4 29,5 30,5 31,4 32,7	zimny" (rój V (m/s) 0,197 0,207 0,218 0,227 0,233 0,235 0,250 0,250 0,255 0,261 0,268 0,270	Przek <i>T</i> 21,5 22,5 23,3 24,7 26,7 27,0 27,8 28,9 30,4 31,4 32,2 33,7	Im/s] 0,200 0,211 0,221 0,219 0,228 0,236 0,235 0,249 0,253 0,253 0,270 0,272
Temperatura "dodatniego" źródła ciepła <i>T_{źr}</i> [⁰ C] 82 110 143 166 186 210 230 254 274 294 318 341 361	Moc efektywna "dodatniego" źródła ciepła \dot{Q}_{ef} 18 28 38 48 58 68 78 88 99 109 120 130 140	Przek T [⁰ C] 21,6 22,1 22,6 24,1 25,0 26,0 26,8 27,8 28,9 29,8 30,4 31,8 32,9	IV W [m/s] 0,207 0,215 0,223 0,245 0,253 0,266 0,284 0,289 0,287 0,299 0,321 0,312 0,307	Kanał, Przel <u>T</u> 21,6 22,3 23,1 24,6 25,4 26,5 27,5 28,4 29,5 30,5 31,4 32,7 33,5	zimny" (rój V [m/s] 0,197 0,207 0,218 0,227 0,233 0,235 0,250 0,250 0,250 0,255 0,261 0,268 0,270 0,279	Przek <i>T</i> 21,5 22,5 23,3 24,7 26,7 27,0 27,8 28,9 30,4 31,4 32,2 33,7 34,3	Im/s] Im/s] 0,200 0,211 0,221 0,219 0,228 0,235 0,249 0,253 0,253 0,270 0,272 0,277
Temperatura "dodatniego" źródła ciepła <i>T_{źr}</i> [°C] 82 110 143 166 186 210 230 254 274 294 318 341 361 382	Moc efektywna "dodatniego" źródła ciepła \dot{Q}_{ef} [W] 18 28 38 48 58 68 78 88 99 109 120 130 140 151	Przek <i>T</i> 21,6 22,1 22,6 24,1 25,0 26,0 26,8 27,8 28,9 29,8 30,4 31,8 32,9 33,5	w w [m/s] 0,207 0,215 0,223 0,245 0,253 0,266 0,284 0,289 0,287 0,321 0,312 0,307 0,322	Kanał, Przel <u>T</u> 21,6 22,3 23,1 24,6 25,4 26,5 27,5 28,4 29,5 30,5 31,4 32,7 33,5 34,4	zimny" (rój V [m/s] 0,197 0,207 0,218 0,227 0,233 0,235 0,250 0,250 0,250 0,255 0,261 0,268 0,270 0,279 0,288	Przek <i>T</i> 21,5 22,5 23,3 24,7 26,7 27,0 27,8 28,9 30,4 31,4 32,2 33,7 34,3 35,2	Im/s] Im/s] 0,200 0,211 0,221 0,219 0,228 0,236 0,235 0,249 0,253 0,270 0,272 0,277 0,284
Temperatura "dodatniego" źródła ciepła <i>T_{źr}</i> [⁰ C] 82 110 143 166 186 210 230 254 274 294 318 341 361 382 402	Moc efektywna "dodatniego" źródła ciepła \dot{Q}_{ef} IW] 18 28 38 48 58 68 78 88 99 109 120 130 140 151 161	Przek <i>T</i> 21,6 22,1 22,6 24,1 25,0 26,0 26,0 26,8 27,8 29,8 30,4 31,8 32,9 33,5 35,1	IV Im/s] 0,207 0,215 0,223 0,245 0,253 0,266 0,284 0,289 0,223 0,321 0,321 0,307 0,302 0,332	Kanał, Przel <u>T</u> 21,6 22,3 23,1 24,6 25,4 26,5 27,5 28,4 29,5 30,5 31,4 32,7 33,5 34,4 35,9	zimny" (rój V [m/s] 0,197 0,207 0,218 0,227 0,233 0,235 0,250 0,250 0,255 0,261 0,268 0,270 0,279 0,288 0,297	Przek <i>T</i> 21,5 22,5 23,3 24,7 26,7 27,0 27,8 28,9 30,4 31,4 32,2 33,7 34,3 35,2 37,0	Im/s] 0,200 0,211 0,221 0,219 0,228 0,236 0,235 0,249 0,253 0,270 0,272 0,277 0,284 0,288
Temperatura "dodatniego" źródła ciepła <i>T_{źr}</i> [⁰ C] 82 110 143 166 186 210 230 254 274 294 318 341 361 382 402 424	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Przek <i>T</i> 21,6 22,1 22,6 24,1 25,0 26,0 26,8 27,8 28,9 29,8 30,4 31,8 32,9 33,5 35,1 35,9	Im/s] 0,207 0,215 0,223 0,245 0,253 0,266 0,284 0,289 0,287 0,321 0,312 0,307 0,322 0,328	Kanał, Przel <u>T</u> 21,6 22,3 23,1 24,6 25,4 26,5 27,5 28,4 29,5 30,5 31,4 32,7 33,5 34,4 35,9 36,7	zimny" (rój V [m/s] 0,197 0,207 0,218 0,227 0,233 0,235 0,250 0,250 0,250 0,255 0,261 0,268 0,270 0,279 0,288 0,297 0,299	Przek <i>T</i> 21,5 22,5 23,3 24,7 26,7 27,0 27,8 28,9 30,4 31,4 32,2 33,7 34,3 35,2 37,0 37,6	Im/s] 0,200 0,211 0,221 0,219 0,228 0,235 0,235 0,249 0,253 0,270 0,272 0,277 0,284 0,284 0,294

Wartości średnie temperatury i prędkości powietrza w przekrojach kanałów diody termicznej dla różnych wartościach temperatury "dodatniego" źródła ciepła

Tablica 5.5 podaje zestawienie średnich wartości temperatury i prędkości w kanale "ciepłym" oraz w kanale "zimnym" diody uzyskane podczas badań eksperymentalnych.

Wartości średnie uzyskano na podstawie pomiarów parametrów lokalnych w przekrojach I÷III kanału "ciepłego" i w przekrojach IV÷V kanału "zimnego" oraz wykonując obliczenia według wzoru (5.3).

Tablica 5.5.

Średnie wartości temperatury i prędkości powietrza w kanałach diody termicznej uzyskane podczas badań eksperymentalnych. Zestawienie wyników obliczeń

Temp. "dodatniego" źródła ciepła	Moc efektywna "dodatniego" źródła ciepła	Kanał "ciepły"		Kanał "zimny"		
$T_{\acute{z}r}$	$\dot{Q}_{e\!f}$	\overline{W}_c	$\overline{T_c}$	$\overline{\mathcal{W}}_z$	\overline{T}_z	
[⁰ C]	[W]	[m/s]	[⁰C]	[m/s]	[⁰ C]	
82	18	0,210	24,3	0,202	21,6	
110	28	0,215	26,2	0,211	22,3	
143	38	0,219	28,3	0,221	23,0	
166	48	0,241	29,9	0,231	24,5	
186	58	0,246	31,8	0,238	25,7	
210	68	0,262	33,5	0,245	26,5	
230	78	0,273	35,4	0,256	27,4	
254	88	0,275	37,5	0,263	28,4	
274	99	0,275	39,6	0,265	29,6	
294	109	0,291	40,9	0,271	30,6	
318	120	0,300	43,3	0,286	31,3	
341	130	0,296	45,3	0,285	32,7	
361	140	0,304	46,0	0,288	33,6	
382	151	0,311	48,3	0,298	34,4	
402	161	0,315	51,1	0,306	35,9	
424	172	0,318	52,2	0,307	36,7	
440	183	0,320	53,1	0,307	37,4	

Na rys. 5.18 i 5.19 zamieszczono rozkłady średniej prędkości oraz temperatury powietrza w obu kanałach diody termicznej w funkcji temperatury źródła ciepła dla położenia I (położenie pionowe). Wyniki obliczeń wykonanych na podstawie pomiarów eksperymentalnych podano w tablicy 5.5.

Rys. 5.18. Zależność średniej prędkości powietrza \overline{w} w kanałach diody od temperatury "dodatniego" źródła T_{zr} [60]

Rys. 5.19. Zależność średniej temperatury powietrza \bar{t} w kanale diody od temperatury "dodatniego" źródła T_{zr} [60]

W tablicy 5.6 przedstawiono przykładowe wyniki średnich wartości temperatury, zaś w tablicy 5.7 prędkości powietrza dla położenia II (poziomego) diody. Pomiary wykonano w sześciu przekrojach diody (po trzy w każdym równoległym kanale diody – rys. 5.3). Podane w tablicach przykładowe wyniki badań zostały wykonane przy efektywnym strumieniu źródła ciepła \dot{Q}_{ef} = 18 W; 78

W i 161 W.

Tablica 5.6.

	Temperatura	Moc	• •	Przekrój	
Lp	"dodatniego" źródła ciepła	efektywna "dodatniego" źródła ciepła	Ι	ΙΙ	III
	T _{źr}	$\dot{Q}_{e\!f}$	\overline{T}	\overline{T}	\overline{T}
	[⁰ C]	[W]	[⁰C]	[⁰ C]	[⁰ C]
1	82	18	22,8	21,5	21,6
2	230	78	43,4	42,9	42,8
3	402	161	67	65,5	65,7
			IV	V	VI
1	82	18	12,7	13,6	13,2
2	230	78	15,7	16	16,2
3	402	161	19,7	20	19,7

Wartości średniej temperatury powietrza w przekrojach kanałów diody termicznej w zależności od zadanego strumienia "dodatniego" źródła ciepła (położenie II diody)

Tablica 5.7.

Wartości średnie prędkości powietrza w przekrojach kanałów diody termicznej w zależności od zadanego strumienia "dodatniego" źródła ciepła (położenie II diody)

	Temperatura	Moc		Przekrój	
Lp	"dodatniego" źródła ciepła	efektywna "dodatniego" źródła ciepła	Ι	II	III
	$T_{\acute{z}r}$	$\dot{Q}_{e\!f}$	\overline{W}	\overline{W}	\overline{W}
	[⁰ C]	[W]	[m/s]	[m/s]	[m/s]
1	82	18	0,042	0,039	0,039
2	230	78	0,049	0,046	0,045
3	402	161	0,054	0,052	0,053
			IV	V	VI
1	82	18	0,038	0,036	0,036
2	230	78	0,040	0,040	0,040
3	402	161	0,042	0,042	0,042

Na rysunkach 5.20 i 5.21 zamieszczono rozkłady średniej prędkości oraz temperatury powietrza w obu kanałach diody termicznej w funkcji temperatury "dodatniego" źródła ciepła dla położenia II (położenie poziome). Wyniki pomiarów podano w tablicach 5.6 i 5.7.

Rys. 5.20. Zależność średniej prędkości powietrza \overline{w} w kanałach diody od temperatury "dodatniego" źródła ciepła $T_{\pm r}$. Położenie II (poziome diody)

Rys. 5.21. Zależność średniej temperatury powietrza \overline{T} w kanałach diody od temperatury "dodatniego" źródła ciepła $T_{źr}$. Położenie II (poziome diody)

5.5. Analiza wyników badań eksperymentalnych

Na podstawie analizy uzyskanych wyników badań eksperymentalnych opracowano wnioski dotyczące sposobu i intensywności konwekcyjnej wymiany ciepła w kanałach diody termicznej. Z badań eksperymentalnych wyznaczono wpływ podstawowych parametrów charakteryzujących wymianę ciepła w diodzie termicznej.

Wyznaczenie współczynnika przejmowania ciepła α - metoda pośrednia

Podczas badań eksperymentalnych mierzono rozkład temperatury powietrza w pobliżu (w odległości kilku milimetrów) powierzchni "dodatniego" źródła ciepła. Przykładowe rozkłady temperatury powietrza pokazano na rys. 5.22 i 5.23. Wyznaczono równanie opisujące profil temperatury powietrza w warstwie przyściennej a następnie wyznaczając pochodną obliczono wartość miejscową a następnie średnią α wykorzystując zależność 5.4. Zestawienie uzyskanych wartości współczynnika przejmowania ciepła α_{exp} podano w tablicy 5.8.

Rys. 5.22. Eksperymentalny profil temperatury powietrza w pobliżu (5mm) powierzchni "dodatniego" źródła ciepła dla T_w = 143 °C, T_f = 19 °C, \dot{Q}_{zr} = 50 W

Rys. 5.23. Eksperymentalny profil temperatury powietrza w pobliżu (5mm) powierzchni "dodatniego" źródła ciepła dla T_w = 341 °C, T_f = 55 °C, \dot{Q}_{zr} = 162,5W

Największy spadek temperatury powietrza nad powierzchnią grzejną występuje w odległości do 5 mm od jej powierzchni. W odległości powyżej 5 mm od powierzchni spadek temperatury powietrza jest już niewielki.

Tablica 5.8 przedstawia zestawienie obliczeń wielkości eksperymentalnej α_{exp} i teoretycznej α_{th} średniego współczynnika przejmowania ciepła na powierzchni "dodatniego" źródła ciepła do powietrza cyrkulującego wewnątrz diody. W tablicy 5.8 podano również wartości współczynnika przejmowania ciepła α obliczone z korelacji eksperymentalnych innych autorów α_{th} [53], z wykorzystaniem wzoru:

$$\alpha = 1.07 \left(\frac{T_w - T_f}{d}\right)^{0.25}$$
(5.14)

Tablica 5.8.

Ln	Tźr	ġ	$\dot{Q}_{e\!f}$	$lpha_{th}$	$\alpha_{exp.}$
∟р.	[⁰ C]	[W/m ²]	[W]	$[W/m^2K]$	$[W/m^2K]$
1	82	2340	18,4	5,346	5,820
2	110	3580	28,1	5,776	6,139
3	143	4800	37,8	6,187	6,424
4	166	6090	47,8	6,451	6,585
5	186	7370	57,9	6,659	6,697
6	210	8640	67,9	6,886	6,831
7	230	9920	77,9	7,059	6,921
8	254	11250	88,4	7,251	7,018
9	274	12590	98,9	7,391	7,071
10	294	13920	109,3	7,532	7,155
11	318	15250	119,8	7,692	7,216
12	341	16570	130,1	7,830	7,275
13	361	17880	140,4	7,946	7,355
14	382	19190	150,7	8,058	7,378
15	402	20500	161,0	8,165	7,376
16	424	21920	172,1	8,274	7,432
17	440	23330	183,3	8,359	7,466

Zestawienie obliczeń wielkości eksperymentalnej α_{exp} i teoretycznej α_{th} średniego współczynnika przejmowania ciepła na powierzchni "dodatniego" źródła ciepła do powietrza przepływającego wewnątrz diody

Na rys. 5.24 przedstawiono zależność średniego współczynnika przejmowania α w funkcji różnicy temperatury źródła ciepła T_w i przepływającego powietrza T_f . Porównanie wyników eksperymentalnych i obliczeń z zależności teoretycznych współczynnika przejmowania ciepła α pokazano na rysunku 5.25 [60].

Rys. 5.24. Wykres zależności średniego współczynnika przejmowania ciepła α na powierzchni "dodatniego" źródła ciepła od różnicy temperatury źródła i powietrza

Rys. 5.25. Porównanie wyników eksperymentalnych i obliczeń teoretycznych według wzoru (5.14) $\alpha_{th} = f(\alpha_{exp})$

Zauważa się, że wartości średniego współczynnika przejmowania ciepła α wyznaczone eksperymentalnie i teoretycznie rosną ze wzrostem strumienia ciepła źródła (proporcjonalnie do wzrostu temperatury "dodatniego" źródła ciepła). W zakresie badań eksperymentalnych uzyskano zadawalającą zgodność eksperymentu i obliczeń współczynnika α_{th} oraz α_{exp} w paśmie ± 30%.

Wyznaczanie współczynnika przenikania ciepła k

Na podstawie wyników badań eksperymentalnych wyznaczono współczynnik przenikania ciepła k dla "ujemnego" źródła ciepła w położeniu poziomym i pionowym diody (położenie I oraz II diody).

Wyznaczono również moc cieplną "ujemnego źródła" ciepła \dot{Q}_w . Wcześniej sprawdzono również moc "ujemnego" źródła ciepła od strony powietrza. Moc cieplną od strony powietrza \dot{Q}_{pow} wyznaczono korzystając z zależności:

$$\dot{Q}_{pow.} = \overline{w} \cdot \rho \cdot A \cdot \Delta h \tag{5.15}$$

Uzyskane wyniki obliczeń współczynnika przenikania ciepła *k* zamieszczono w tablicy 5.9.

T	ò	k	k
1 źr	\mathcal{Q}_w	(położenie I)	(położenie II)
[⁰ C]	[W]	$[W/m^2K]$	$[W/m^2K]$
82	17	12,22	10,37
110	26	13,66	12,94
143	35	15,86	15,78
166	44	17,28	17,25
186	54	17,26	17,72
210	64	18,67	18,00
230	73	19,63	18,57
254	83	20,66	20,02
274	91	21,10	20,40
294	100	20,63	20,05
318	110	22,14	21,54
341	120	22,07	21,60
361	127	22,01	21,90
382	142	22,05	22,02
402	156	23,02	22,40
424	158	23,50	22,63
440	161	23,70	22,86

Wyniki obliczeń współczynnika przenikania ciepła k w zależności od mocy cieplnej "ujemnego" źródła ciepła

Zmiana temperatury "dodatniego" źródła ciepła wpływała na zmianę mocy cieplnej "ujemnego" źródła ciepła. Na rys. 5.26 przedstawiono zależność mocy cieplnej "ujemnego" źródła ciepła \dot{Q}_w od temperatury "dodatniego" źródła ciepła $T_{źr}$. Wykres sporządzono na podstawie danych zawartych w tablicy 5.9.

Rys. 5.26. Zależność mocy cieplnej "ujemnego" źródła ciepła \dot{Q}_w od temperatury "dodatniego" źródła ciepła

Tablica 5.9.

Na rysunku 5.27 przedstawiono zależność współczynnika przenikania ciepła k od mocy cieplnej \dot{Q}_w "ujemnego" źródła ciepła.

Rys. 5.27. Zależność współczynnika przejmowania ciepła k od mocy cieplnej "ujemnego" źródła ciepła (wymiennika) \dot{Q}_w

Wartość współczynnika przenikania ciepła "ujemnego" źródła ciepła rośnie nieliniowo wraz ze wzrostem mocy cieplnej \dot{Q}_w , zarówno dla położenia pionowego, jak i poziomego diody (położenie I oraz II, rys. 5.27). Wartość współczynnika przenikania ciepła *k* jest nieco niższa dla położenia poziomego diody, co potwierdza fakt, że lepszym położeniem pod względem intensywności wymiany ciepła jest położenie I diody (położenie pionowe).

Wykorzystanie bezwymiarowych liczb kryterialnych do opisu wymiany ciepła w diodzie termicznej

W celu określenia rodzaju ruchu powietrza w diodzie termicznej obliczono liczbę *Reynoldsa* (tablica 5.10). Przepływ płynu rzeczywistego w kanałach diody termicznej może być uwarstwiony (laminarny) lub burzliwy (turbulentny). Prędkość, przy której przepływ uwarstwiony przechodzi w burzliwy nazywa się prędkością krytyczną. Krytyczna prędkość, w_k dla omawianego przypadku wynosi: dla temperatury 0 °C: $w_k = 0,307$ m/s; dla temperatury 100 °C: $w_k = 0,503$ m/s [31]. Obliczona na podstawie badań eksperymentalnych średnia prędkość powietrza w kanałach diody nie przekracza wartości krytycznej. Tylko lokalnie prędkość przekraczała wartości krytyczne prędkości dla ruchu laminarnego. Szczególnie w przekrojach kolana rurowego modelowej diody, gdzie występują zawirowania (w tych miejscach lokalnie występuje ruch turbulentny). Na wypływie powietrza z kanałów prostych diody, gdy rozbieg hydrauliczny jest wystarczająco duży, średnia prędkość nie przekracza tu wartości krytycznej, co jest podstawą, aby wnioskować, że w kanałach modelowej diody termicznej występował laminarny ruch powietrza.

Temperatura i gęstość płynu, dla stanu ustalonego w danym punkcie przekroju przewodu są niezmienne, a z równania ciągłości wynika, że suma nadwyżek ilości masy opuszczającej dany element $dx \cdot dy \cdot dz$ jest równa zeru. Zakładając, że w modelowanej diodzie powietrze przepływa w jednym kierunku (pionowym kierunku y) można założyć również, że: $w_z = w_x = 0$, więc:

$$\frac{\partial w_y}{\partial y} = 0. (5.16)$$

Po wykonaniu całkowania równania (5.16) otrzymano: $w_y = c$, a więc $w_y \rho = c \cdot \rho = const$.

Badania eksperymentalne wykazały, że iloczyn ($w\rho$), czyli gęstość strumienia masy jest stała w całej pętli diody.

Do opisu konwekcyjnej wymiany ciepła wykorzystano liczby kryterialne, które charakteryzują jej intensywność. W celu porównania wielkości średnie liczby *Nusselta* wyznaczonej eksperymentalnie wykorzystano zależność *Michiejewa* [55] o postaci:

$$Nu = C \cdot (Gr \cdot \Pr)^n, \qquad (5.17)$$

a także równanie Dittusa-Boeltera [55]:

$$Nu = C \cdot (\operatorname{Re})^{m} \cdot (\operatorname{Pr})^{0,43}.$$
(5.18)

W tablicy 5.10 przedstawiono zestawienie obliczonych liczb kryterialnych na podstawie badań eksperymentalnych.

1 a 0 m c a 0.10.	Tab	lica	5.	10.	
-------------------	-----	------	----	-----	--

	ġ	Nu _{exp}	Nu _{Michiejew}	Nu _{D-B}	Re	Gr	Ra
цр.	[W/m ²]	"źródła" *	"źródła"	"źródła"	"źródła"	"źródła"	"źródła"
1	2340	20,30	23,76	27,86	1298,8	93468734	67137031
2	3580	22,17	24,04	28,20	1330,5	122831695	88200283
3	4800	23,81	24,26	28,45	1355,4	151056407	108423276
4	6090	24,74	25,01	29,33	1440,8	166167140	119226159
5	7370	25,43	25,20	29,56	1463,5	174093490	124855638
6	8640	26,18	25,65	30,09	1517,2	184954440	132580424
7	9920	26,72	26,08	30,59	1568,7	189895312	136047446
8	11250	27,30	26,12	30,64	1574,0	194631267	139344010
9	12590	27,67	26,01	30,52	1562,5	194122585	138875378
10	13920	28,13	26,43	31,01	1614,0	200150643	143115917
11	15250	28,55	26,83	31,48	1664,6	200545853	143265931
12	16570	28,94	26,53	31,14	1629,0	201964839	144158415
13	17880	29,35	26,73	31,37	1653,8	210047358	149876755
14	19190	29,61	26,96	31,64	1683,3	207068942	147602165
15	20500	29,79	26,99	31,68	1689,7	199883724	142285007
16	21920	30,14	27,00	31,69	1691,2	205004576	145851973
17	23330	30,39	26,99	31,68	1690,8	207734046	147719814

Zestawienie wyników obliczeń liczb kryterialnych modelowej diody termicznej

*) - "dodatniego" źródła ciepła

Zależność pomiędzy eksperymentalną liczbą *Nusselta* a liczbą *Reynoldsa* pokazano na rys. 5.28, zaś zależność pomiędzy eksperymentalną liczbą *Nusselta* a liczbą *Grashofa* (5.11) na rys 5.29.

Rys. 5.28. Zależność wartości liczby *Nusslelta* od liczby *Reynoldsa* dla całego przebadanego zakresu pracy diody (położenie pionowe diody)

Rys. 5.29. Zależność wartości liczby *Nusselta* od liczby *Grashofa* dla całego przebadanego zakresu pracy diody (położenie pionowe diody)

Wartość liczby *Nusselta* rośnie ze wzrostem liczby *Reynoldsa*, natomiast wartość liczby *Grasshofa*, zależna od wznoszenia się strug powietrza wskutek podgrzania tego powietrza przez "dodatnie" źródło ciepła, rośnie ze wzrostem liczby *Nusselta*. Rys 5.30 przedstawia zależność liczby *Nusselta* w funkcji iloczynu liczby *Prandtla i Grashofa*, czyli liczby *Rayleigha* ($Ra = Pr \cdot Gr$).

Rys. 5.30. Zależność wartości liczby *Nusslelta* od liczby *Rayleigha* dla przebadanego zakresu pracy diody (położenie pionowe diody)

Liczba *Nu* rośnie również ze wzrostem liczby *Ra*, (iloczynem liczby *Grashofa* i liczby *Prandtla*), warunkującej podobieństwo konwekcji swobodnej. Zależność ta została przedstawiona na rys. 5.30.

Z analizy wymiarowej wynika, że wartość liczby *Nu* silnie zależy od liczby *Re*, *Gr* oraz *Ra*. Liczba *Nu* dla analizowanego przypadku konstrukcji diody nie przekracza wartości *Nu* = 32 dla zakresu temperatury źródła ciepła, przeprowadzonego podczas badań eksperymentalnych w zakresie temperatury "dodatniego" źródła ciepła $82 \div 440$ ⁰C.

Na rys. 5.31 przedstawiono porównanie liczby *Nusselta* obliczonej na podstawie wzorów teoretycznych z wynikami badań eksperymentalnych dla zmiany różnicy temperatury $(T_w - T_f) = 60 \div 370$ °C.

Rys. 5.31. Zależność liczby Nu od różnicy temperatur T_w - T_f dla całego przebadanego zakresu pracy diody (położenie pionowe diody) (wyniki badań eksperymentalnych oraz zależności podawane przez innych autorów)

Wartości liczby *Nu* wyznaczone eksperymentalnie nie odbiegają znacznie od wartości wyznaczonych na podstawie zależności podawanych przez innych autorów, w tym (*Michajewa, Dittusa-Boeltera*).

5.6. Wnioski z badań eksperymentalnych

- 1. Przeprowadzone badania eksperymentalne umożliwyły poznanie procesu wymiany ciepła w diodzie termicznej. Otrzymane wyniki pomiarów pól prędkości i temperatury w charakterystycnych przekrojach pomiarowych odzwierciedlają rzeczywistą symetrie w kanałach rurowych. W przekrojach znajdujących się za kolankami diody, w przekrojach pomiarowych I oraz IV, w/w rozkłady nie są symetryczne gdyż są silnie zniekształcone przez oddziaływanie między innymi siły odśrodkowej oraz powstawanie zawirowań w przekrojach kolana rurowego diody. Przy dostatecznie dużej długości rozbiegu hydraulicznym rozkłady te stają się zbieżne do symetrycznych. Można to zauważyć szczególnie w przekroju III oraz VI.
- 2. W miarę zwiększania temperatury źródła (tj. zwiększania strumienia ciepła przekazywanego do powietrza przez grzałkę) wzrasta temperatura cyrkulującego powietrza (dla połozenia I diody). W miarę wzrostu temperatury "dodatniego" źródła ciepła, wzrasta również prędkość cyrkulujacego powietrza. Przy temperaturze "dodatniego" źródła ciepła 82 °C średnia temperatura powietrza w kanale "ciepłym", (tj. w przekrojach I÷III) wynosi 24,3 °C i wzrasta do 53,1 °C przy wzroście temperatury "dodatniego" źródła ciepła do 440 °C. Podobnie jest w kanale "zimnym" (tj. w przekrojach IV÷VI), z tym że temperatura cyrkulujacego powietrza pomniejszona jest o wartość temperatury oddanej do wody podczas przenikania ciepła w wymienniku i wynosi odpowiednio 21,6 i 31,3 °C rys. 5.19. Podobnie jest w położeniu II (poziomym), rys. 5.21.
- 3. Prędkość powietrza krążącego wewnątrz kanałów diody zmienia się w przedziale 0,210÷0,320 m/s dla kanału "ciepłego" w zakresie temperatury "dodatniego" źródła ciepła odpowiednio 82÷440 °C oraz dla "zimnego" kanału 0,202÷0,307 m/s rys. 5.18 (dla położenia I diody) oraz rys. 5.20 (dla położenia II diody). Różnice prędkości powietrza cyrkulującego w kanale "ciepłym" oraz "zimnym" należy tłumaczyć różną gęstością powietrza przy

zmiennej temperaturze. Wykres zmiany gęstości powietrza od temperatury powietrza załączono w załącznikach do niniejszej pracy (rozdział 9.3).

- 4. Uzyskane rozkłady pól prędkości oraz temparatury dają możliwość pełnego poznania tego, co dzieje się kanałach diody podczas jej pracy. Otrzymane wyniki badań eksperymentalnych mogą posłużyć do zmian konstrukcji diody w kierunku lepszego i efektywniejszego jej wykorzystania, między innymi w budownictwie. Możliwość poznania wymiany ciepła wewnątrz pracującej diody otworzyła nowe okno w dziedzinie wykorzystania energii słonecznej, bez potrzeby zwiększania nakładów inwestycyjnych na pobór energii potrzebnej do jej pracy.
- 5. Współczynnik przejmowania ciepła α mierzony od powierzchni "dodatniego" źródła ciepła do cyrkulującego powietrza wynosił w badanym obszarze pomierów eksperymentalnych, $\alpha = 5,8 \div 7,4$ [W/m²K]. Można zauważyć, że jego wartość rośnie wraz z temperaturą co przedstawia rys. 5.24.
- 6. Średnia liczba *Nu*, wyznaczona na bazie eksperymentu wynosiła *Nu* = 20÷30. Liczba *Re*, (która mówi nam o rodzaju ruchu płynu wewnatrz kanału) nie przekracza w całym badanym zakresie pracy diody wartości 2300, tj. wartości krytycznej dla ruchu laminarnego (w kanale o przekroju kołowym).
- 7. Uyskane wyniki badań eksperymentalnych potwierdzają założenia autora o wpływie parametrów geometrycznych diody na intensyfikację wymiany ciepła podczas jej pracy. Zarówno temperatura (rys. 5.19 i 5.21) i prędkość (rys. 5.18 i 5.20) cyrkulującego powietrza wewnątrz pracującej diody termicznej, zależą od kąta pochylenia diody oraz mocy "dodatniego" źródła ciepła. Bardziej szczegółowo wpływ geometrii diody na jej efektywność oraz wyniki jakie uzyskano podczas badań numerycznych przedstawiono w rozdziale 6 pracy.

6. Modelowanie wymiany ciepła w obszarze diody termicznej

6.1. Teoretyczny model wymiany ciepła

W celu opisania zjawisk zachodzących w diodzie termicznej opracowano model teoretyczny wymiany ciepła. Przy opisie teoretycznym wymiany ciepła i ruchu płynu w diodzie termicznej wykorzystuje się równania zachowania energii, pędu i masy. Na rys. 6.1. przedstawiono schemat ideowy modelowej diody termicznej z ogrzewaniem dolnym.

Rys. 6.1. Schemat ideowy diody termicznej z ogrzewaniem dolnym

W opisie matematycznym zagadnienia przyjęto, że:

 na powierzchni "dodatniego" źródła ciepła stały jest strumień ciepła o gęstości *q*,

- temperatura powierzchni "ujemnego" źródła ciepła jest stała i wynosi T_C, (w eksperymencie ruch czynnika chłodzącego był intensywny i temperatura wody była w przybliżeniu równa temperaturze ścianki)
- odcinki ogrzewany i chłodzony połączone są izolowanym cieplnie kanałem,
- współrzędna przestrzenna l obiega dookoła pętlę termosyfonu,
- własności cieplne czynnika są stałe z wyjątkiem zmian gęstości w równaniu ruchu zgodnie z hipotezą Boussinesqu'a: $\rho = \rho_{\infty} [1 - \beta \cdot \Delta T]$.; gdzie, $\Delta T = T - T_{\infty}$, T_{∞} - jest temperaturą odniesienia ($T_{\infty} = 293K$); ρ_{∞} - jest gęstością czynnika w temperaturze odniesienia,
- czynnik roboczy jest czynnikiem ściśliwym,
- pomija się zjawisko dyssypacji energii.

Pozostałe oznaczenia podano na rys. 6.1.

Model transportu ciepła i masy w diodzie termicznej

Ogólne równania opisujące wymianę ciepła w diodzie termicznej w stanie ustalonym są następujące:

$$\vec{w}\nabla\vec{w} - \vec{g}\beta\Delta T + \nu\nabla^{2}\vec{w} = 0$$

$$\nabla(\rho \cdot \vec{w}) = 0$$

$$(\vec{w}\nabla)T = a\nabla^{2}T$$

$$(6.1)$$

We współrzędnych cylindrycznych (r, θ, l) , przyjmują one następującą postać:

- równanie energii:

$$\rho \cdot c_p \left(w_r \frac{\partial T}{\partial r} + w_\theta \frac{\partial T}{\partial \theta} + w_l \frac{\partial T}{\partial l} \right) = \lambda \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2} + \frac{\partial^2 T}{\partial l^2} \right]$$
(6.2)

- równanie ciągłości:

$$\frac{\partial rw_r}{\partial r} + \frac{\partial rw_{\theta}}{\partial \theta} + \frac{\partial rw_l}{\partial l} = 0 \quad , \tag{6.3}$$

- równanie ruchu:

$$w_{r}\frac{\partial w_{r}}{\partial r} + \frac{w_{\theta}}{r}\frac{\partial w_{r}}{\partial \theta} - \frac{w_{\theta}^{2}}{r} + w_{l}\frac{\partial w_{r}}{\partial l} = v\left[\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial(rw_{r})}{\partial r}\right) + \frac{1}{r^{2}}\frac{\partial^{2}w_{r}}{\partial \theta^{2}} - \frac{2}{r^{2}}\frac{\partial w_{\theta}}{\partial \theta} + \frac{\partial^{2}w_{r}}{\partial l^{2}}\right] + g_{r}\beta\Delta T , \quad (6.4)$$

kierunek składowej θ

$$w_{r}\frac{\partial w_{\theta}}{\partial r} + \frac{w_{\theta}}{r}\frac{\partial w_{\theta}}{\partial \theta} - \frac{w_{r}w_{\theta}}{r} + w_{l}\frac{\partial w_{\theta}}{\partial l} = \\ = v \left[\frac{\partial}{\partial r}\left(\frac{1}{r}\frac{\partial(rw_{\theta})}{\partial r}\right) + \frac{1}{r^{2}}\frac{\partial^{2}w_{\theta}}{\partial \theta^{2}} - \frac{2}{r^{2}}\frac{\partial w_{r}}{\partial \theta} + \frac{\partial^{2}w_{\theta}}{\partial l^{2}}\right] + g_{\theta}\beta\Delta T, \quad (6.5)$$

kierunek składowej l

$$w_{r} \frac{\partial w_{l}}{\partial r} + \frac{w_{\theta}}{r} \frac{\partial w_{l}}{\partial \theta} - \frac{w_{r} w_{\theta}}{r} + w_{l} \frac{\partial w_{l}}{\partial l} = v \left[\frac{1}{r} \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial w_{l}}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial^{2} w_{l}}{\partial \theta^{2}} + \frac{\partial^{2} w_{l}}{\partial l^{2}} \right] + g_{l} \beta \Delta T , \qquad (6.6)$$

gdzie: $\vec{g}[g_r, g_\theta, g_l]$.

Warunki brzegowe:

 $w_r = w_{\theta} = w_l = 0$ - prędkość na ściankach diody,

$$\frac{\partial T}{\partial r} = 0 \qquad \text{dla:} \quad \frac{l_1 \le l \le l_2}{l_3 \le l \le l_4}, \qquad r = R , \qquad 0^0 \le \theta \le 360^0 , \qquad (6.7)$$

$$T = T_w$$
 dla: $l_2 \prec l \prec l_3$, $r = R$, $0^0 \le \theta \le 360^0$, (6.8)

$$-\lambda \frac{\partial T}{\partial r} = \dot{q} \qquad \text{dla:} \qquad l_0 \prec l \prec l_1 \\ l_0 \prec l \prec l_1, \qquad r = R, \qquad -45^\circ \le \theta \le 45^\circ \\ 45^\circ \le \theta \le 315^\circ \end{cases}, \tag{6.9}$$

Zaproponowany model matematyczny diody termicznej rozwiązano metodą modelowania numerycznego w programie *Ansys*, dającą wyniki dostatecznie dokładne dla celów projektowych. W wyniku rozwiązania uzyskano rozkład temperatury i prędkości podczas cyrkulacji czynnika w diodzie termicznej.

6.2. Modelowanie numeryczne zagadnień konwekcji swobodnej w diodzie termicznej

Modele matematyczne muszą mieć sensowne przeniesienie na modele numeryczne, łatwe do implementacji i wykalibrowania stałych. Numeryczna Termodynamika Płynów (ang. *CFD - Computational Fluid Dynamics*) oparta jest na tradycyjnych fenomenologicznych bilansach: masy, pędu i energii. W przypadku przepływów turbulentnych pojawiają się w tych bilansach, oprócz molekularnych strumieni pędu i energii, również strumienie turbulentne pędu i energii, które muszą być modelowane dodatkowo poprzez tzw. równania domknięcia. Najlepiej przetestowanym w urządzeniach technicznych modelem domknięcia turbulentnych strumieni pędu i energii jest model dwurównaniowy $k - \varepsilon$ opracowany pierwotnie przez *Laudnera* [37]. Korzystając z doświadczeń szeregu autorów zajmujących się numerycznym modelowaniem wymiany ciepła oraz z uwagi na niewielkie prędkości przepływu płynu (powietrza) przyjęto do dalszych rozważań model turbulencji dla niskich wartości liczby *Reynoldsa*. Jest to dwurównaniowy model $k - \varepsilon$ z odpowiednimi funkcjami ścianek [1].

6.2.1. Układ równań bilansu CFD

Ogólne równania bilansów i ewolucji zapisane we współrzędnych kartezjańskich mają wystarczającą postać do ich dyskretyzacji przy użyciu niestrukturalnych siatek dyskretyzacyjnych. W przypadku geometrii regularnych posługiwać się należy siatkami strukturalnymi, które wymagają opisu we współrzędnych krzywoliniowych.

W obliczeniach numerycznych wykorzystano rachunek macierzowy (łatwy do implementacji), zaś punktem wyjściowym do obliczeń CFD było sformułowanie uniwersalnego układu równań bilansu masy, pędu i energii dla płynu, uzupełnionego równaniami ewolucji turbulencji $k - \varepsilon$ (dla płynu) w postaci:
$$\frac{\partial}{\partial \tau} \begin{cases} \rho \\ \rho \cdot \vec{w} \\ \rho \cdot e \\ \rho \cdot k \\ \rho \cdot \varepsilon \end{cases} + \nabla \begin{cases} \rho \cdot \vec{w} \\ (\rho \cdot \vec{w} \otimes \vec{w}) + p\vec{I} \\ (\rho \cdot e + p)\vec{w} \\ \rho \cdot \vec{w} \cdot k \\ \rho \cdot \vec{w} \cdot \varepsilon \end{cases} = \nabla \begin{cases} 0 \\ \vec{\tau}^{c} \\ \vec{\tau}^{c} \\ \vec{J}_{k} \\ \vec{J}_{\varepsilon} \end{cases} + \begin{cases} 0 \\ \rho \cdot \vec{F} \\ \rho \cdot S_{e} \\ \rho \cdot S_{k} \\ \rho \cdot S_{\varepsilon} \end{cases}.$$
(6.10)

Układ równań (6.10) zapisywany bywa często w skróconej, podstawowej formie:

$$\frac{\partial}{\partial \tau} U + divF^{C} = divF^{v} + S \tag{6.11}$$

Forma ta jest nazywana zachowawczą postacią równań opisujących.

W powyższych równaniach oznaczono:

$$U- \text{ wektor zmiennych zachowawczych, } U = \begin{cases} \rho\\ \rho \cdot \vec{w}\\ \rho \cdot e\\ \rho \cdot k\\ \rho \cdot \varepsilon \end{cases}, \qquad (6.12)$$

$$F^{C} - \text{ strumień konwekcyjny, } F^{C} = \begin{cases} \rho \cdot \vec{w}\\ (\rho \cdot \vec{w} \otimes \vec{w}) + p\vec{I}\\ (\rho \cdot e + p)\vec{w}\\ \rho \cdot \vec{w} \cdot k\\ \rho \cdot \vec{w} \cdot \varepsilon \end{cases}, \qquad (6.13)$$

$$F^{v} - \text{ strumień dyfuzyjny, } F^{v} = \begin{cases} 0\\ \vec{\tau}^{c}\\ \vec{\tau}^{c}\\ \vec{\sigma}^{c}\\ \vec{\sigma}^$$

W każdej komórce (objętości skończonej) siatki obliczeniowej dla płynu rozwiązuje się łącznie 7 równań (po jednym z równań bilansu masy, energii, transportu k i ε oraz trzy równania bilansu pędu).

W powyższym układzie równań (6.12) \div (6.15) bilansu oznaczono:

ρ	-	gęstość płynu,
$\vec{w} = w_x \cdot \vec{e}_x + w_y \cdot \vec{e}_y + w_z \cdot \vec{e}_z$	_	prędkość płynu,
p	_	ciśnienie całkowite,
$ ho\cdot ec w\otimes ec w$	_	konwekcyjny strumień pędu,
$\vec{I} = \delta_{ij} \vec{e}_i \otimes \vec{e}_j = \vec{e}_x \otimes \vec{e}_z + \vec{e}_y \otimes \vec{e}_z + \vec{e}_x \otimes \vec{e}_y$	_	tensor jednostkowy tzw. idemfaktor Gibbsa $\{i \ i = x, y, z\}$
$e = c_p \cdot T_i + \frac{\vec{w}^2}{2}$	_	energia całkowita składająca się z ener- gii wewnętrznej, kinetycznej,
$\vec{\tau}^{c} = \vec{\tau} + \vec{R}$	_	całkowity, nieodwracalny strumień pę- du,
$\vec{q}^{c} = \vec{q} + \vec{q}^{t}$	_	całkowity strumień cieplny,
$ec{F}$	_	siła masowa,
k	_	turbulentna energia kinetyczna,
ε	_	prędkość dyssypacji energii turbulencji,
\vec{J}_k	_	strumień dyfuzyjny k,
\vec{J}_{ε}	_	strumień dyfuzyjny <i>ɛ</i> ,
$\rho S_k, \rho S_\varepsilon, \rho S_e$	_	źródła k, ɛ, oraz energii,
$\nabla = \vec{e}_x \frac{\partial}{\partial x} + \vec{e}_y \frac{\partial}{\partial y} + \vec{e}_z \frac{\partial}{\partial z}$	_	operator Hamiltona.

6.2.2. Strumienie pędu i ciepła

Całkowity, nieodwracalny strumień pędu oraz całkowity strumień ciepła składają się one z molekularnych oraz turbulentnych strumieni, odpowiednio ciepła i pędu.

Molekularny strumień ciepła

Określany jest klasycznym równaniem konstytutywnym Fouriera-Kirchhoffa:

$$q_i = \lambda \frac{\partial}{\partial x_i} T, \qquad (6.16)$$

gdzie: λ jest molekularnym współczynnikiem przewodzenia ciepła, definiowanym jako:

$$\lambda = \frac{c_p \cdot \mu}{\Pr}, \qquad (6.17)$$

przy czym c_p jest to ciepło właściwe przy stałym ciśnieniu, zaś Pr - bezwymiarowa liczba *Prandtla*.

Turbulentny strumień ciepła

Analogicznie, jak dla turbulentnego strumienia pędu, można opisać turbulentny transport ciepła, a bazując na prawie *Fouriera* można tę zależność ująć w wyrażeniu:

$$\vec{q}^{turb} = \lambda_T \nabla T , \qquad (6.18)$$

gdzie λ_T jest turbulentnym współczynnikiem przewodzenia ciepła, definiowanym w analogii do molekularnego współczynnika przewodzenia ciepła, jako:

$$\lambda_T = \frac{c_p \cdot \mu_T}{\Pr_T} \,. \tag{6.19}$$

Turbulentna liczba *Prandtla* nie jest, na ogół, wielkością stałą. We wzorze tym, wystepuje także współczynnik lepkości turbulentnej μ_T , który wyrażany jest w funkcji dwóch parametrów *k* oraz ε (odpowiedzialnych za turbulentny transport pędu).

Molekularny strumień pędu

Podstawowy strumień pędu związany z lepkością molekularną, występujący w równaniu (6.12), nazywany jest tensorem naprężeń lepkich i definiuje się za pomocą równania konstytutywnego *Naviera-Stokesa*:

$$\tau_{ij} = \mu \left(\frac{\partial w_i}{\partial x_j} + \frac{\partial w_j}{\partial x_i} \right) - \frac{2}{3} \mu \frac{\partial w_k}{\partial x_k} \delta_{ij}$$
(6.20)

w którym występuje tylko jedna właściwość płynu - lepkość μ .

Turbulentny strumień pędu

Turbulentny strumień pędu, zwany tensorem naprężeń *Reynoldsa* opisany jest zależnością:

$$R_{ij} = \mu_T \left(\frac{\partial w_i}{\partial x_j} + \frac{\partial w_j}{\partial x_i} \right) - \frac{2}{3} \left(\rho \cdot k + \mu_T \frac{\partial w_k}{\partial x_k} \right) \delta_{ij}.$$
(6.21)

Wyrażenia μ_T i *k* występujące we wzorze 6.26 pełnią rolę lepkości turbulentnej (odpowiednio ścinania i objętościowej). Turbulentny współczynnik lepkości μ_T związany jest z podstawowymi parametrami turbulencji *k* - ε zależnością:

$$\mu_T = C_{\mu} \cdot \rho \cdot \frac{k^2}{\varepsilon}, \qquad (6.22)$$

gdzie C_{μ} jest stałą modelu, kalibrowaną dla danego typu geometrii, niezależną od rodzaju płynu (powietrze).

Strumienie dyfuzyjne J_i^k i J_i^{ε} wynoszą:

$$J_i^k = \left(\mu + \frac{\mu_T}{\sigma_K}\right) \frac{\partial}{\partial x_i} k , \qquad (6.23)$$

$$J_i^{\varepsilon} = \left(\mu + \frac{\mu_T}{\sigma_{\varepsilon}}\right) \frac{\partial}{\partial x_i} \varepsilon.$$
(6.24)

Wielkości σ_k i σ_{ε} występujące we worach (6.23) i (6.24), są stałymi wymagającymi kalibracji. Ważnym zagadnieniem jest też zdefiniowanie składowych wektora źródeł *S* dla równań ewolucji *k* oraz ε oznaczonych odpowiednio S_k i S_{ε} .

$$\rho \cdot S_k = G_k + G_b - \rho \cdot \varepsilon, \qquad (6.25)$$

$$\rho \cdot S_{\varepsilon} = C_{1\varepsilon} \frac{\varepsilon}{k} \{ G_k + G_b \cdot (1 - C_{3\varepsilon}) \} - C_{2\varepsilon} \rho \frac{\varepsilon^2}{k}, \qquad (6.26)$$

gdzie G_k jest k-tym źródłem związanym z naprężeniami turbulentnymi:

$$G_k = R_{ij} \frac{\partial w_j}{\partial x_i}, \qquad (6.27)$$

zaś G_b jest k-tym źródłem związanym z unoszeniem wypornościowym:

$$G_b = \beta \cdot F_i \cdot \frac{\mu_T}{\Pr_T} \cdot \frac{\partial T}{\partial x_i}, \qquad (6.28)$$

gdzie F_i siła masowa, zaś współczynnik rozszerzalności termicznej β wynika z zależności:

$$\beta = -\frac{1}{\rho} \left(\frac{\partial p}{\partial T} \right)_p. \tag{6.29}$$

We wzorach (6.25) \div (6.29) występuje duża liczba stałych wyznaczonych eksperymentalnie, które stanowią domknięcie dla równań ewolucji *k* oraz ε . Do obliczeń numerycznych przyjęto niżej podane wartości współczynników.

 $C_{1\varepsilon} = 1.65$ $C_{2\varepsilon} = 1.92$ $C_{3\varepsilon} = 0.2$ $C_{\mu} = 0.5$ $\sigma_k = 0.01$ $\sigma_{\varepsilon} = 1.3$ $Pr_T = 0.85$

Opisany wyżej model dość dobrze symuluje zjawisko turbulencji objętościowej, jednakże w pobliżu ścianek wymaga dodatkowych korekcji w postaci tzw. funkcji ścianek.

6.2.3. Standardowe funkcje ścianek

Obecność ścianek wywiera bezpośredni wpływ na przepływ powietrza w kanale. W warstwie płynu, w bezpośrednim sąsiedztwie ścianki (zwanej warstwą przyścienną) występują duże gradienty prędkości i temperatury. Podczas wzrostu turbulentnej energii kinetycznej, związanej z występowaniem naprężeń *Reynoldsa* i dużych gradientów prędkości średniej, przepływ staje się bardziej burzliwy.

W warstwie przyściennej można wyróżnić trzy podwarstwy:

- wewnętrzną podwarstwę laminarną, w której największy wpływ ma lepkość molekularna,
- środkową podwarstwę przejściową laminarno turbulentną, w której lepkość molekularna i turbulencja mają jednakowy wpływ,
- zewnętrzną podwarstwę w pełni turbulentną, w której dominującą rolę odgrywają naprężenia turbulentne.

Jednym ze sposobów modelowania obszarów przyściennych jest stosowanie tzw. *funkcji ścianek*, które pomijają obliczanie podwarstwy laminarnej, gdzie wpływ lepkości jest największy, a jedynie w półempiryczny sposób przybliża zjawiska wystepujące pomiędzy ścianką i warstwą w pełni turbulentną. Standardowe funkcje ścianek wykorzystywane w niniejszej pracy bazują na równaniach podanych przez *Laundera* i *Spaldinga* [37].

6.3. Badania numeryczne

6.3.1. Model numeryczny diody termicznej

W rozwiązaniu postawionego zadania numerycznego użyto dyskretyzacji z wykorzystaniem Metody Objętości Skończonych. W danych wejściowych modelu numerycznego wprowadzono następujące założenia upraszczające:

- przestrzenny układ kanałów diody termicznej sprowadzono do płaskiego modelu,
- przyjęto idealną izolację cieplną odcinków diody termicznej,
- przyjęto izotermiczną powierzchnię strefy grzania

Na rysunku 6.2 przedstawiono schemat diody cieplnej przyjętej do modelowania numerycznego

Rys. 6.2. Schemat diody cieplnej - model przyjęty do symulacji numerycznej [60]

Wygenerowano siatkę objętości skończonych będącą, podstawą numerycznego rozwiązania uniwersalnego układu równań, rozwiązywanych równocześnie, to znaczy: bilansu masy, pędu i energii, uzupełnionego równaniami ewolucji turbulencji k- ϵ . Siatkę wygenerowano dla wariantu geometrii, zgodnego z rzeczywistymi wymiarami diody skonstruowanej do badań eksperymentalnych. W istot-

nych obszarach, na przykład w narożnikach, w strefie grzania oraz w strefie wymiany ciepła między powietrzem, a zimną wodą siatkę zagęszczono. Wybrane fragmenty siatki przedstawiono na rysunku 6.3.

Rys. 6.3. Fragmenty siatki objętości skończonych

W rozwiązywaniu zagadnień wymiany ciepła, podczas konwekcji swobodnej nie posługiwano się bezpośrednio współczynnikiem przejmowania ciepła, a określono go dopiero po rozwiązaniu zadania w oparciu o warstwę termiczną. Solwer programu, *Ansys*, który posłużył do obliczeń numerycznych używał, jako standardowych funkcji ścianek równania podane przez *Laundera* i *Spaldinga* [1, 37].

Do obliczeń numerycznych przyjęto następujące dane wyjściowe:

- stały strumień ciepła na powierzchni grzejnej "dodatniego" źródła ciepła $\dot{Q}_{ef} = 0 \div 200 \text{ W},$
- temperaturę czynnika odbierającego ciepło (woda) $T_f = 10$ °C,
- masowe natężenie czynnika odbierającego ciepło (woda) $\dot{m}_c = 250 \text{ kg/h}$
- temperaturę otoczenia $T_{ot} = 25$ ⁰C = const.

Obliczenia przeprowadzono dla powietrza przy założeniu, że jego właściwości (ciepło właściwe, współczynnik przewodzenia ciepła, gęstość, dynamiczny współczynnik lepkości) zależą od temperatury. Proces jest realizowany w warunkach konwekcji swobodnej w polu grawitacyjnym.

6.3.2. Wyniki obliczeń numerycznych i ich eksperymentalna weryfikacja

Rysunek 6.4 przedstawia pole temperatury powietrza nad powierzchnią grzejną wewnątrz diody termicznej. Wybrany fragment obejmuje obszar nad powierzchnią grzejną. Wyniki uzyskano na podstawie obliczeń numerycznych, przy założeniu temperatury powierzchni grzejnej równej T_w = 320 K.

Rys. 6.4. Pole temperatury wewnątrz diody nad powierzchnią grzejną

Na rysunku 6.5 przedstawiono przykładowe wyniki rozkładu pola prędkości powietrza wewnątrz diody (w postaci pola wektorowego). Wyniki symulacji komputerowej uzyskano dla obliczeń wykonanych przy strumieniu ciepła doprowadzonego do powierzchni grzejnej \dot{Q}_{ef} =135 W, temperaturze cieczy (wody) odbierającej ciepło $T_f = 8$ ⁰C. Ruch został zainicjowany różnicą gęstości powietrza wewnątrz kanału wynikającą z gradientu temperatury. Zaobserwowano wyraźny brak symetrii rozkładu prędkości powietrza w płaszczyźnie kanału. Wynika to z powstawania zawirowań na kolankach i zbyt krótkich prostoliniowych odcinków rurociągu. Ich długość jest zbyt mała, aby przekroczyć strefę rozbiegu hydraulicznego i uzyskać symetryczny profil prędkości.

Tablice 6.1 i 6.2 przedstawiają przykładowe wyniki obliczeń temperatury i prędkości powietrza uzyskane z badań numerycznych przy położeniach diody I i II (pionowe i poziome). Obliczenia zostały wykonane w sześciu przekrojach, po trzy w każdym kanale diody. Przedstawiono rozkłady pól prędkości i temperatury powietrza w każdym przebadanym przekroju (I÷VI).

W tablicy 6.1 zaprezentowano wyniki obliczeń lokalnych prędkości powietrza w [m/s] i temperatury powietrza T [⁰C] w przekrojach pomiarowych przy, efektywnym strumieniu "dodatniego" źródła ciepła $\dot{Q}_{ef} = 78$ W – wyniki obliczeń numerycznych.

Tablica 6.1.

Wyniki obliczeń numerycznych prędkości i temperatury powietrza w poszczególnych przekrojach kanałów diody uzyskane przy efektywnym strumieniu "dodatniego" źródła ciepła \dot{Q}_{ef} = 78 W. Położenie I diody

	Odle-	Prę	Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C]											
	głość		w określonym przekroju											
Lp.	od		K	Lanał "	,ciepły	y"		Kanał "zimny"						
	ścianki	Ι	*	I	I	Ι	III		IV		V	V	Ί	
	<i>x</i> [m]	w	Т	w	T	w	Т	w	Т	w	Т	w	Т	
		[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]	
1	0,000	0,000	33,7	0,000	34,6	0,000	34,8	0,000	24,6	0,000	25,4	0,000	25,7	
2	0,005	0,208	34,0	0,232	34,8	0,227	34,9	0,124	24,6	0,186	25,4	0,207	25,7	
3	0,010	0,271	34,2	0,276	34,9	0,270	35,0	0,148	24,7	0,222	25,5	0,242	25,7	
4	0,015	0,309	34,7	0,304	35,0	0,294	35,0	0,169	24,7	0,245	25,5	0,263	25,8	
5	0,020	0,329	35,1	0,319	35,2	0,307	35,1	0,190	24,8	0,260	25,6	0,276	25,8	
6	0,025	0,339	35,5	0,327	35,3	0,314	35,1	0,211	24,8	0,270	25,6	0,285	25,9	
7	0,030	0,344	35,8	0,330	35,3	0,318	35,1	0,230	24,9	0,279	25,7	0,291	25,9	
8	0,035	0,345	36,1	0,331	35,4	0,319	35,1	0,248	25,0	0,285	25,7	0,295	25,9	
9	0,040	0,342	36,3	0,329	35,4	0,319	35,1	0,263	25,2	0,290	25,8	0,297	26,0	
10	0,045	0,335	36,5	0,325	35,4	0,317	35,1	0,277	25,3	0,294	25,8	0,299	26,0	
11	0,050	0,324	36,7	0,318	35,4	0,313	35,1	0,287	25,5	0,297	25,9	0,299	26,0	
12	0,055	0,308	36,7	0,309	35,3	0,308	35,1	0,294	25,7	0,298	26,0	0,299	26,0	
13	0,060	0,287	36,6	0,295	35,3	0,300	35,0	0,300	25,9	0,298	26,0	0,298	26,1	
14	0,065	0,266	36,3	0,280	35,2	0,291	35,0	0,304	26,1	0,297	26,1	0,295	26,1	
15	0,070	0,245	36,1	0,264	35,1	0,279	35,0	0,306	26,3	0,295	26,2	0,292	26,1	
16	0,075	0,225	35,8	0,247	35,0	0,265	34,9	0,305	26,4	0,290	26,2	0,286	26,2	
17	0,080	0,206	35,6	0,229	34,9	0,249	34,9	0,303	26,6	0,282	26,3	0,277	26,2	
18	0,085	0,187	35,5	0,209	34,8	0,230	34,8	0,296	26,7	0,268	26,4	0,262	26,3	
19	0,090	0,164	35,4	0,186	34,8	0,205	34,8	0,279	26,8	0,242	26,5	0,238	26,3	
20	0,095	0,132	35,3	0,155	34,7	0,164	34,8	0,235	26,9	0,202	26,5	0,199	26,3	
21	0,100	0,000	35,1	0,000	34,6	0,000	34,6	0,000	26,9	0,000	26,5	0,000	26,3	
W _{śr} [m/s	$\begin{bmatrix} T_{\acute{s}r} \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0,246	35,6	0,251	35,0	0,252	35,0	0,227	25,6	0,243	25,9	0,248	26,0	

*) $I \div VI - przekroje pomiarowe diody (rys. 5.3)$

Na podstawie uzyskanych wyników obliczeń prędkości i temperatury powietrza w kanałach diody sporządzono wykresy rozkładu prędkości i temperatury powietrza w przekrojach kanału pomiarowego, które przedstawiono na rysunkach 6.6÷6.9. W celu porównania wyników obliczeń numerycznych z wynikami badań eksperymentalnych na wykresach dodatkowo zamieszczono punkty pomiarowe uzyskane podczas badań eksperymentalnych.

Rys. 6.6. Rozkłady temperatury powietrza w przekrojach kanału "ciepłego" diody dla efektywnego strumienia źródła ciepła \dot{Q}_{ef} = 78 W (wyniki obliczeń numerycznych i ich weryfikacja eksperymentalna)

Rys. 6.7. Rozkłady temperatury powietrza w przekrojach kanału "zimnego" diody dla efektywnego strumienia źródła ciepła \dot{Q}_{ef} = 78 W (wyniki obliczeń numerycznych i ich weryfikacja eksperymentalna)

Rys. 6.8. Rozkłady prędkości powietrza w przekrojach kanału "ciepłego" diody dla efektywnego strumienia źródła ciepła \dot{Q}_{ef} = 78 W (wyniki obliczeń numerycznych i ich weryfikacja eksperymentalna)

Rys. 6.9. Rozkłady prędkości powietrza w przekrojach kanału "zimnego" diody dla efektywnego strumienia źródła ciepła \dot{Q}_{ef} = 78 W (wyniki obliczeń numerycznych i ich weryfikacja eksperymentalna)

Modelowanie numeryczne prowadzono dla różnych proponowanych przez autora rozwiązań konstrukcyjnych diody. Model numeryczny umożliwiał zamodelowanie dowolnego położenia diody, które można uzyskać obracając ją o dowolnie zadany kąt. Poniżej przedstawiono wyniki modelowania dla diody pochylonej o kąt 90⁰ tj. dla II położenia diody. Siatka objętości skończonych została podzielona podobnie jak przy położeniu I diody (rys. 6.10), zaś na rysunku 6.11 przedstawiono przykładowy rozkład prędkości powietrza cyrkulującego w diodzie termicznej dla położenia II.

Rys. 6.10. Fragment siatki objętości skończonych z widocznymi zagęszczeniami siatki w charakterystycznych punktach [55]

Rys. 6.11. Przykładowy wektorowy rozkład prędkości powietrza w kanałach diody termicznej przy zadanych parametrach \dot{Q}_{ef} =120 W oraz kącie pochylenia diody 90⁰ (położenie II diody)

Na rys. 6.11 przedstawiającym wektorowy rozkład prędkości powietrza można zaobserwować jego niesymetryczność, czego przyczyną jest, między innymi od-

działywanie siły odśrodkowej a tym samym powstanie zawirowań w kolanach diody i zbyt krótkich odcinków stabilizacji, aby przekroczyć strefę rozbiegu hydraulicznego i uzyskać symetryczne profile.

W tablicy 6.2 zaprezentowano wyniki modelowania numerycznego, przy efektywnym strumieniu "dodatniego" źródła ciepła $\dot{Q}_{ef} = 120$ W oraz kącie pochylenia diody 90⁰ (II położenie diody).

Tablica 6.2.

Wyniki obliczeń numerycznych prędkości i temperatury powietrza w poszczególnych przekrojach kanałów diody przy efektywnym strumieniu ciepła $\dot{Q}_{ef} = 120$ W oraz pochyleniu diody o kat 90°

	Odle- głość	Prę	Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C] w określonym przekroju										
Lp.	od		K	Lanał "	,ciepły	y"		Kanał "zimny"					
	ścianki	Ι	*	Ι	I	I	Ι	Г	V	V	V	V	Ί
	<i>x</i> [m]	w	Т	w	Т	w	Т	w	Т	w	Т	w	Т
1	0.00	[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]
1	0,00	0,000	38,0	0,000	39,2	0,000	39,5	0,000	30,1	0,000	31,2	0,000	31,5
2	0,005	0,239	38,4	0,274	39,6	0,271	39,8	0,140	30,3	0,214	31,3	0,241	31,7
3	0,010	0,312	38,8	0,324	39,8	0,320	39,9	0,167	30,4	0,255	31,4	0,278	31,8
4	0,015	0,357	39,5	0,357	40,0	0,347	40,0	0,191	30,4	0,280	31,5	0,301	31,8
5	0,020	0,382	40,1	0,374	40,2	0,361	40,0	0,214	30,5	0,296	31,6	0,315	31,9
6	0,025	0,394	40,7	0,383	40,4	0,368	40,0	0,237	30,6	0,308	31,6	0,324	32,0
7	0,030	0,400	41,2	0,386	40,4	0,371	40,1	0,259	30,7	0,316	31,7	0,330	32,0
8	0,035	0,402	41,6	0,386	40,5	0,371	40,0	0,279	30,8	0,323	31,8	0,334	32,1
9	0,040	0,398	42,0	0,383	40,5	0,370	40,0	0,297	31,0	0,329	31,9	0,337	32,1
10	0,045	0,388	42,3	0,375	40,5	0,366	40,0	0,313	31,2	0,333	32,0	0,338	32,2
11	0,050	0,372	42,4	0,365	40,4	0,360	40,0	0,324	31,5	0,336	32,0	0,339	32,2
12	0,055	0,349	42,4	0,350	40,3	0,352	39,9	0,333	31,7	0,338	32,1	0,338	32,2
13	0,060	0,321	42,1	0,329	40,1	0,339	39,9	0,340	32,0	0,338	32,2	0,337	32,3
14	0,065	0,295	41,6	0,309	40,0	0,325	39,8	0,344	32,3	0,336	32,3	0,334	32,3
15	0,070	0,270	41,2	0,288	39,8	0,308	39,7	0,346	32,6	0,334	32,4	0,330	32,4
16	0,075	0,246	40,8	0,267	39,6	0,289	39,6	0,346	32,8	0,329	32,5	0,323	32,4
17	0,080	0,224	40,5	0,245	39,5	0,268	39,5	0,343	33,0	0,320	32,6	0,313	32,5
18	0,085	0,201	40,2	0,222	39,4	0,245	39,5	0,335	33,2	0,304	32,7	0,297	32,5
19	0,090	0,175	40,0	0,196	39,3	0,217	39,4	0,316	33,3	0,275	32,8	0,271	32,6
20	0,095	0,139	39,9	0,161	39,2	0,173	39,3	0,267	33,4	0,232	32,9	0,229	32,6
21	0,100	0,000	39,5	0,000	38,9	0,000	39,0	0,000	33,3	0,000	32,8	0,000	32,5
w_{sr} [m/s	$\begin{bmatrix} T_{\acute{s}r} \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0,279	40,6	0,285	39,9	0,287	39,8	0,257	31,7	0,276	32,1	0,281	32,2

*) $I \div VI - przekroje pomiarowe diody (rys. 5.3)$

Na rysunkach 6.12÷6.15 zostały przedstawione rozkłady pól temperatury oraz pól prędkości powietrza sporządzone na podstawie wyników przedstawionych w tablicy 6.2.

Rys. 6.12. Rozkład temperatury powietrza w przekrojach kanału diody przy efektywnym strumienia źródła ciepła $\dot{Q}_{ef} = 120$ W i kącie pochylenia diody 90⁰ (położenie II- wyniki obliczeń numerycznych i ich weryfikacja eksperymentalna)

Rys. 6.13. Rozkład temperatury powietrza w przekrojach kanału diody przy efektywnym strumienia źródła ciepła $\dot{Q}_{ef} = 120$ W i kącie pochylenia diody 90⁰ (położenie II- wyniki obliczeń numerycznych i ich weryfikacja eksperymentalna)

Rys. 6.14. Rozkład prędkości powietrza w przekrojach kanału diody przy efektywnym strumienia źródła ciepła \dot{Q}_{ef} = 120 W i kącie pochylenia diody 90[°] (położenie II- wyniki obliczeń numerycznych i ich weryfikacja eksperymentalna)

Rys. 7.15. Rozkład prędkości w przekrojach kanału diody przy efektywnym strumienia źródła ciepła $\dot{Q}_{ef} = 120$ W i kącie pochylenia diody 90⁰ (położenie II- wyniki obliczeń numerycznych i ich weryfikacja eksperymentalna)

Sprawdzono również wpływ kąta pochylenia diody na intensywność wymiany ciepła podczas naturalnej cyrkulacji powietrza. Obliczenia numeryczne przeprowadzono dla wartości kąta pochylenia diody w granicach $0 \div 90^{0}$. W tablicy 6.3 zamieszczono przykładowe wyniki lokalnych wartości temperatury i prędkości powietrza, jakie uzyskano przy kącie pochylenia diody 45° i efektywnym strumieniu "dodatniego" źródła ciepła $\dot{Q}_{ef} = 120$ W. Diodę pochylano w taki sposób, aby przekroje I-III znajdowały się w kanale "ciepłym" diody a przekroje IV-VI w kanale "zimnym" diody.

Tablica 6.3.

Wyniki obliczeń numerycznych prędkości i temperatury powietrza w przekrojach kanałów diody uzyskane przy strumieniu "dodatniego" źródła ciepła $\dot{Q}_{ef} = 120$ W oraz pochyleniu diody o kat 45⁰

	Odle- głość	Prę	Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C] w określonym przekroju										
Lp.	od		K	lanał "	,ciepły	"		Kanał "zimny"					
	ścianki	Ι	*	Ι	Ι	I	Ι	Г	V	V	V	V	Ί
	x [m]	w	T	w	T	w	T	w	T	w	T	w	T
1	0.000	[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]
1	0,000	0,000	47,4	0,000	45,9	0,000	44,8	0,000	32,1	0,000	33,0	0,000	33,3
2	0,005	0,269	47,7	0,302	46,1	0,273	45,1	0,109	32,2	0,166	33,2	0,186	33,5
3	0,010	0,365	47,7	0,332	45,8	0,314	45,0	0,135	32,3	0,202	33,3	0,220	33,5
4	0,015	0,380	47,2	0,338	45,5	0,329	44,9	0,155	32,4	0,226	33,3	0,241	33,6
5	0,020	0,351	46,2	0,334	45,1	0,333	44,7	0,175	32,4	0,241	33,4	0,255	33,6
6	0,025	0,303	45,0	0,323	44,7	0,333	44,6	0,196	32,4	0,252	33,5	0,264	33,7
7	0,030	0,253	43,7	0,307	44,2	0,330	44,4	0,216	32,5	0,261	33,5	0,270	33,7
8	0,035	0,216	42,6	0,289	43,7	0,324	44,2	0,235	32,6	0,267	33,5	0,274	33,7
9	0,040	0,190	41,9	0,273	43,3	0,317	44,1	0,253	32,7	0,273	33,6	0,278	33,8
10	0,045	0,173	41,3	0,258	43,0	0,306	43,8	0,269	32,9	0,277	33,7	0,280	33,8
11	0,050	0,163	40,9	0,246	42,8	0,295	43,6	0,281	33,1	0,280	33,7	0,281	33,8
12	0,055	0,157	40,6	0,235	42,6	0,282	43,4	0,289	33,3	0,282	33,8	0,282	33,9
13	0,060	0,152	40,5	0,222	42,4	0,265	43,2	0,295	33,6	0,283	33,8	0,281	33,9
14	0,065	0,148	40,3	0,209	42,2	0,248	43,0	0,297	33,9	0,283	33,9	0,280	33,9
15	0,070	0,142	40,2	0,194	42,0	0,230	42,8	0,295	34,2	0,281	34,0	0,278	33,9
16	0,075	0,133	40,1	0,179	41,9	0,211	42,6	0,291	34,4	0,278	34,0	0,274	34,0
17	0,080	0,122	40,0	0,162	41,7	0,192	42,5	0,284	34,6	0,271	34,1	0,268	34,0
18	0,085	0,108	39,9	0,145	41,6	0,172	42,3	0,274	34,7	0,260	34,2	0,257	34,0
19	0,090	0,091	39,8	0,126	41,5	0,149	42,2	0,257	34,8	0,239	34,3	0,237	34,0
20	0,095	0,069	39,7	0,102	41,4	0,117	42,1	0,220	34,8	0,202	34,3	0,201	34,0
21	0,100	0,000	39,4	0,000	41,0	0,000	41,7	0,000	34,6	0,000	34,2	0,000	33,9
Wśr [m/s	$\begin{bmatrix} T_{\acute{s}r} \\ [^0C] \end{bmatrix}$	0,18	42,5	0,218	43,3	0,239	43,6	0,215	33,3	0,23	33,7	0,234	33,8

*) $I \div VI - przekroje pomiarowe diody (rys. 5.3)$

Na rys 6.16 przedstawiono rozkład prędkości powietrza dookoła pętli diody uzyskany z modelowania numerycznego przy parametrach jak w tablicy 6.3

Rys. 6.16. Wektorowy rozkład prędkości powietrza dookoła pętli diody uzyskany z modelowania numerycznego przy parametrach jak w tablicy 6.3

Rys. 6.17. Rozkłady temperatury powietrza w przekrojach kanału "ciepłego" diody dla strumienia "dodatniego" źródła ciepła $\dot{Q}_{ef} = 120$ W i kąta pochylenia 45⁰ (obliczenia numeryczne)

Na rys. 6.17 i 6.18 przedstawiono rozkłady temperatury powietrza w określonych przekrojach pomiarowych diody.

Rys. 6.18. Rozkłady temperatury powietrza w przekrojach kanału "zimnego" diody dla strumienia źródła ciepła $\dot{Q}_{ef} = 120$ W i kąta pochylenia 45⁰ (obliczenia numeryczne)

Rys. 6.19. Rozkłady prędkości powietrza w przekrojach kanału "ciepłego" diody dla strumienia źródła ciepła $\dot{Q}_{ef} = 120$ W oraz kąta pochylenia 45⁰ (obliczenia numeryczne)

Na rys. 6.19 i 6.20 przedstawiono rozkłady prędkości powietrza w kanałach pomiarowych diody .

Rys. 6.20. Rozkłady prędkości powietrza w przekrojach kanału "zimnego" diody dla strumienia źródła ciepła $\dot{Q}_{ef} = 120$ W oraz kąta pochylenia 45[°] (obliczenia numeryczne)

Na rysunkach 6.17 i 6.20 obserwuje się niesymetryczne rozkłady temperatury oraz prędkości powietrza w przekrojach I oraz IV. Lokalne prędkości są znacznie większe od prędkości średnich w kanale diody. W tych miejscach, gdzie prędkość przekracza krytyczną wartość dla ruchu laminarnego występuje lokalnie ruch turbulentny powietrza.

Wyniki obliczeń numerycznych w zakresie wpływu zmian wysokości diody na intensywność wymiany ciepła podczas jej pracy

Badania numeryczne umożliwiają zmianę wymiarów modelowanej diody tak, aby możliwa była do przebadania praktycznie każda konstrukcja diody. Poniżej przedstawiono wyniki modelowania numerycznego dla kilku konstrukcji diody. Przeprowadzono obliczenia numeryczne zmieniając wysokość diody w granicach $H = 0,3 \div 1,8$ m (badania eksperymentalne realizowano przy wysokości diody H = 1,2 m). W tablicy 6.4 zaprezentowano przykładowo wyniki, jakie uzyskano dla wysokość diody H = 1,8 m.

Tablica 6.4.

Wyniki	obliczeń i	numery	cznych loł	calnyc	h wartości pro	ędkości i ter	nperatury pow	vietrza w	v prze-
krojach	kanałów	diody	uzyskane	przy	efektywnym	strumieniu	"dodatniego"	źródła	ciepła
$\dot{Q}_{ef} = 7$	8 W oraz	dla wys	okości dio	dy róv	wnej <i>H</i> = 1,8 r	n (położenie	e diody I)		

	Odle- głość	Prę	Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C] w określonym przekroju											
.	czuinika		w okresionym przekłoju											
Lp.	od		K	anał ,	,ciepły	?"		Kanał "zimny"						
	ścianki	Ι	*	II		III		IV		V		VI		
	<i>x</i> [m]	w	Т	w	Т	w	Т	w	T	w	T	w	T	
		[m/s]	[ºC]	[m/s]	[°C]	[m/s]	[°C]	[m/s]	[°C]	[m/s]	[⁰C]	[m/s]	[⁰C]	
1	0,000	0,00	38,2	0,00	38,9	0,00	39,0	0,00	30,9	0,00	31,7	0,00	32,0	
2	0,005	0,23	38,5	0,28	39,2	0,28	39,3	0,21	31,0	0,27	31,9	0,28	32,1	
3	0,010	0,30	38,8	0,33	39,3	0,33	39,3	0,25	31,1	0,31	31,9	0,32	32,2	
4	0,015	0,36	39,2	0,36	39,4	0,36	39,4	0,27	31,2	0,34	32,0	0,35	32,3	
5	0,020	0,39	39,5	0,38	39,5	0,37	39,4	0,29	31,3	0,35	32,1	0,36	32,3	
6	0,025	0,41	39,9	0,39	39,6	0,38	39,4	0,31	31,4	0,36	32,2	0,37	32,3	
7	0,030	0,42	40,1	0,40	39,6	0,39	39,5	0,32	31,5	0,37	32,2	0,37	32,4	
8	0,035	0,42	40,3	0,40	39,7	0,39	39,5	0,34	31,7	0,38	32,3	0,38	32,4	
9	0,040	0,42	40,4	0,40	39,7	0,39	39,5	0,35	31,8	0,38	32,4	0,38	32,4	
10	0,045	0,42	40,6	0,40	39,7	0,40	39,5	0,36	32,0	0,38	32,4	0,38	32,5	
11	0,050	0,41	40,6	0,40	39,7	0,39	39,5	0,37	32,1	0,38	32,5	0,38	32,5	
12	0,055	0,40	40,7	0,40	39,7	0,39	39,5	0,37	32,3	0,38	32,5	0,38	32,5	
13	0,060	0,39	40,6	0,39	39,7	0,39	39,5	0,38	32,5	0,38	32,6	0,37	32,5	
14	0,065	0,37	40,5	0,38	39,7	0,38	39,5	0,38	32,7	0,37	32,6	0,37	32,6	
15	0,070	0,35	40,3	0,37	39,6	0,37	39,5	0,38	32,9	0,37	32,7	0,37	32,6	
16	0,075	0,33	40,2	0,35	39,6	0,36	39,5	0,38	33,0	0,36	32,8	0,36	32,6	
17	0,080	0,31	40,0	0,34	39,5	0,35	39,4	0,37	33,2	0,35	32,8	0,35	32,7	
18	0,085	0,28	39,9	0,31	39,5	0,33	39,4	0,35	33,3	0,33	32,9	0,33	32,7	
19	0,090	0,25	39,8	0,28	39,4	0,30	39,4	0,31	33,4	0,30	32,9	0,30	32,7	
20	0,095	0,21	39,7	0,24	39,4	0,25	39,3	0,23	33,5	0,25	33,0	0,26	32,7	
21	0,100	0,00	39,4	0,00	39,1	0,00	39,0	0,00	33,3	0,00	32,9	0,00	32,6	
W _{śr} [m/s	$\begin{bmatrix} T_{\acute{s}r} \\ 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$	0,317	39,9	0,324	39,5	0,325	39,4	0,296	32,2	0,315	32,4	0,317	32,4	

*) $I \div VI - przekroje pomiarowe diody (rys. 5.3)$

Na rysunku 6.21 przedstawiono wektorowy rozkład prędkości powietrza, jaki uzyskano prowadząc modelowanie przy efektywnej mocy "dodatniego" źródła ciepła \dot{Q}_{ef} = 78 W oraz wysokości diody równej *H* = 1,8 m. Obliczenia prędkości i temperatury powietrza wykonano również w sześciu przekrojach pomiarowych diody w odległościach 0,3; 0,6; 0,9 jej wysokości.

Rys. 6.21. Wektorowy rozkład prędkości dookoła pętli dla wysokości diody H = 1,8 m i efektywnego strumienia ciepła $\dot{Q}_{ef} = 78$ W

Na rys. 6.22÷6.25 przedstawiono rozkłady prędkości i temperatury dla parametrów podanych w tablicy 6.4.

Rys. 6.22. Rozkład temperatury powietrza w kanale "ciepłym" diody w przekrojach I-III dla wysokości diody H = 1,8 m oraz efektywnym strumieniu ciepła $\dot{Q}_{ef} = 78$ W

Rys. 6.23. Rozkład temperatury powietrza w kanale "zimnym" diody w przekrojach IV-VI dla wysokości diody H = 1,8 m oraz efektywnym strumieniu ciepła $\dot{Q}_{ef} = 78$ W

Rys. 6.24. Rozkład prędkości powietrza w kanale "ciepłym" diody w przekrojach I-III dla wysokości diody H = 1,8 m oraz efektywnym strumieniu ciepła $\dot{Q}_{ef} = 78$ W

Rys. 6.25. Rozkład prędkości powietrza w kanale "zimnym" diody w przekrojach IV-VI dla wysokości diody H = 1,8 m oraz efektywnym strumieniu ciepła $\dot{Q}_{ef} = 78$ W

Wyniki obliczeń numerycznych w zakresie wpływu zmian wysokości oraz kąta pochylenia diody na intensywność wymiany ciepła podczas jej pracy

Zmieniając wysokość diody można wpływać na intensywność wymiany ciepła. Można również pochylać ją o zadany kąt. W tablicy 6.5 przedstawiono przykładowe obliczenia dla wysokości diody H = 1,8 m, przy kącie pochylenia diody 45^{0} oraz efektywnym strumieniu ciepła $\dot{Q}_{ef} = 120$ W.

Tablica 6.5.

Wyniki	obliczeń i	numery	cznych lol	calnyc	h wartości pro	ędkości i ter	nperatury pow	rietrza w	prze-
krojach	kanałów	diody	uzyskane	przy	efektywnym	strumieniu	"dodatniego"	źródła	ciepła
$\dot{Q}_{ef} = 1$	20 W oraz	z wysok	ości diody	równ	ym H = 1,8 m	. i pochylen	iu diody o kąt 4	45^{0}	

	Odle- głość	Prę	Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C] w określonym przekroju											
Lp.	czujnika od		K	lanał "	,ciepły	"		Kanał "zimny"						
	ścianki	Ι	*	Ι	Ι	I	Ι	Г	V	V	7	V	Τ	
	<i>x</i> [m]	w	Т	w	Т	w	Т	w	т	w	Т	w	Т	
		[m/s]	[⁰C]	[m/s]	[°C]	[m/s]	[⁰C]	[m/s]	[°C]	[m/s]	[⁰C]	[m/s]	[⁰C]	
1	0,000	0,000	43,8	0,000	42,8	0,000	42,1	0,000	32,0	0,000	32,7	0,000	33,0	
2	0,005	0,304	44,2	0,305	43,1	0,279	42,4	0,172	32,2	0,215	32,9	0,228	33,1	
3	0,010	0,367	44,2	0,344	43,0	0,321	42,4	0,206	32,2	0,255	33,0	0,267	33,2	
4	0,015	0,383	44,0	0,359	42,9	0,341	42,4	0,228	32,3	0,280	33,0	0,288	33,2	
5	0,020	0,377	43,7	0,363	42,8	0,349	42,3	0,245	32,4	0,295	33,1	0,301	33,3	
6	0,025	0,362	43,3	0,363	42,6	0,352	42,3	0,261	32,5	0,305	33,2	0,309	33,3	
7	0,030	0,339	42,7	0,361	42,5	0,353	42,2	0,275	32,6	0,311	33,2	0,314	33,3	
8	0,035	0,316	42,2	0,356	42,4	0,351	42,2	0,288	32,7	0,316	33,3	0,317	33,4	
9	0,040	0,294	41,6	0,349	42,2	0,349	42,1	0,299	32,8	0,319	33,3	0,319	33,4	
10	0,045	0,275	41,2	0,339	42,0	0,345	42,0	0,309	33,0	0,321	33,4	0,320	33,4	
11	0,050	0,261	40,8	0,328	41,8	0,339	41,9	0,315	33,2	0,321	33,4	0,320	33,4	
12	0,055	0,249	40,5	0,316	41,6	0,332	41,9	0,320	33,3	0,321	33,4	0,319	33,4	
13	0,060	0,238	40,3	0,300	41,4	0,322	41,7	0,323	33,5	0,320	33,5	0,318	33,4	
14	0,065	0,228	40,1	0,284	41,3	0,309	41,6	0,324	33,7	0,318	33,5	0,316	33,5	
15	0,070	0,217	39,9	0,266	41,1	0,295	41,5	0,323	33,8	0,314	33,6	0,312	33,5	
16	0,075	0,204	39,7	0,248	40,9	0,279	41,4	0,319	33,9	0,309	33,6	0,307	33,5	
17	0,080	0,189	39,6	0,229	40,8	0,260	41,3	0,312	34,0	0,300	33,7	0,298	33,5	
18	0,085	0,172	39,4	0,209	40,6	0,239	41,2	0,297	34,1	0,285	33,7	0,285	33,5	
19	0,090	0,151	39,3	0,187	40,5	0,213	41,1	0,267	34,2	0,261	33,7	0,263	33,5	
20	0,095	0,121	39,2	0,156	40,4	0,177	41,0	0,209	34,2	0,222	33,7	0,224	33,5	
21	0,100	0,000	38,9	0,000	40,1	0,000	40,6	0,000	34,0	0,000	33,6	0,000	33,4	
$w_{\acute{s}r}$ [m/s	$\begin{bmatrix} T_{\acute{s}r} \\ [^0C] \end{bmatrix}$	0,240	41,3	0,270	41,7	0,276	41,8	0,252	33,2	0,266	33,4	0,268	33,4	

*) $I \div VI - przekroje pomiarowe diody (rys. 5.3)$

Na rys. 6.26 ÷ 6.30 przedstawiono rozkłady prędkości i temperatury powietrza uzyskane z obliczeń numerycznych dla danych zawartych w tablicy 6.5.

Rys. 6.26. Wektorowy rozkład prędkości powietrza dookoła pętli diody o wysokości H = 1,8 m i efektywnym strumieniu ciepła $\dot{Q}_{ef} = 120$ W, pochylenie diody o kąt 45^{0}

Rys. 6.27. Rozkład temperatury powietrza w kanale "ciepłym" diody w przekrojach I-III dla wysokości diody H = 1,8 m, kącie pochylenia diody 45° oraz efektywnym strumieniu ciepła $\dot{Q}_{ef} = 120$ W

Rys. 6.28. Rozkład temperatury powietrza w kanale "zimnym" diody w przekrojach IV-VI dla wysokości diody H = 1,8 m, kącie pochylenia diody 45° oraz efektywnym strumieniu ciepła $\dot{Q}_{ef} = 120$ W

Rys. 6.29. Rozkład prędkości powietrza w kanale "ciepłym" diody w przekrojach I-III dla wysokości diody H = 1,8 m, kącie pochylenia diody 45° oraz efektywnym strumieniu ciepła $\dot{Q}_{ef} = 120$ W

Rys. 6.30. Rozkład prędkości powietrza w kanale "zimnym" diody w przekrojach IV-VI dla wysokości diody H = 1,8 m, kącie pochylenia diody 45° oraz efektywnym strumieniu ciepła $\dot{Q}_{ef} = 120$ W

6.3.3. Analiza badań numeryczno-eksperymentalnych

Poprawność opracowanego modelu numerycznego sprawdzono porównując uzyskane wyniki obliczeń z wynikami badań przeprowadzonych na stanowisku laboratoryjnym. Ważnym było uzyskanie odpowiednio dużej zgodności, co świadczy o przyjęciu właściwych założeń i uproszczeń analizowanego zjawiska. Jeśli model numeryczny będzie dobrze odzwierciedlał wyniki uzyskane z badań eksperymentalnych to można uznać go za model adekwatny do przeprowadzonych badań. Jeśli model nie będzie odzwierciedlał wyników badań eksperymentalnych należy go udoskonalić i wprowadzić poprawki dla uzyskania zadawalających wyników obliczeń.

Na rysunkach 6.31÷6.34 przedstawiono porównanie wyników badań eksperymentalnych oraz modelowania numerycznego, rozkładu pól prędkości oraz temperatury w badanych przekrojach pomiarowych dla efektywnej mocy "dodatniego" źródła ciepła równej \dot{Q}_{ef} = 78 W (położenie I diody).

Rys. 6.31. Porównanie wyników obliczeń numerycznych z wynikami badań eksperymentalnych. Rozkład temperatury w przekroju VI diody

Rys. 6.32. Porównanie wyników temperatur obliczeń numerycznych i badań eksperymentalnych dotyczących wartości temperatury powietrza w kanałach I ÷ VI diody termicznej

Rys. 6.33. Porównanie wyników obliczeń numerycznych z wynikami badań eksperymentalnych. Rozkład prędkości w przekroju II diody

Rys. 6.34. Porównanie wyników prędkości obliczeń numerycznych i badań eksperymentalnych dotyczących wartości prędkości powietrza w kanałach I ÷ VI diody termicznej

Zauważa się, że wyniki uzyskane według modelu numerycznego nie odbiegają w znacznym stopniu od tych, jakie uzyskano podczas badań eksperymentalnych i mieszczą się w przedziale $\pm 30\%$ dla prędkości oraz $\pm 10\%$ dla temperatury cyrkulującego powietrza.

Na rysunkach 6.35 i 6.36 przedstawiono średnie wartości prędkości i temperatury powietrza uzyskane z badań eksperymentalnych i z obliczeń według modelu numerycznego. Przedstawione porównanie wykonano dla położenia I diody (położenie pionowe). Liniami ciągłymi oznaczono wyniki uzyskane w wyniku modelowania numerycznego, natomiast liniami punktowymi wyniki badań eksperymentalnych.

Rys. 6.35. Porównanie wyników badań eksperymentalnych i obliczeń numerycznych wartości średnich temperatury powietrza w kanałach diody termicznej

Rys. 6.36. Porównanie wyników wartości średnich temperatury powietrza obliczeń numerycznych i badań eksperymentalnych w diodzie termicznej

Na rys. 6.37 przedstawiono wpływ gęstości strumienia "dodatniego" źródła ciepła na prędkość powietrza w diodzie termicznej uzyskanych z badaniach eksperymentalnych oraz eksperymentalnych modelowania numerycznego. Na rys. 6.38 przedstawiono porównanie wyników badań eksperymentalnych i obliczeń numerycznych wartości średnich prędkości powietrza w kanałach diody termicznej.

Rys. 6.37. Porównanie wyników badań eksperymentalnych i obliczeń numerycznych wartości średnich prędkości powietrza w kanałach diody termicznej

Rys. 6.38. Porównanie wyników obliczeń numerycznych i badań eksperymentalnych wartości średnich prędkości powietrza w diodzie termicznej

Temperatura powietrza przepływającego podczas pracy diody rośnie w kanale "ciepłym" i "zimnym" wraz ze wzrostem gęstości zadawanego strumienia ciepła a różnice pomiędzy wynikami uzyskanymi podczas badań eksperymentalnych i modelowania numerycznego nie przekraczają praktycznie $\pm 20\%$ w całym przebadanym zakresie (rys. 6.35 i 6.36). Różnice pomiędzy średnimi prędkościami powietrza uzyskanymi z modelowania numerycznego i badań eksperymentalnych nie przekraczają $\pm 10\%$.

Analiza wyników badań numerycznych

Opracowany model numeryczny diody wykorzystano do przeprowadzenia oceny intensywności wymiany ciepła wewnątrz diody. Tablica 6.6 przedstawia zestawienie wartości średnich prędkości i temperatury powietrza, jakie uzyskano podczas badań numerycznych przy położeniu I i II diody dla różnych wartości strumienia doprowadzanego do źródła ciepła $\dot{Q}_{ef} = 0 \div 200 \text{ W}.$

Tablica 6.6.

à	ò	Т	T	EMPE	RATUR	A	PRĘDKOŚĆ				
<u> </u>	<i>L</i> ef	1 źr	Kanał Przekf	CIEPŁY Roje I-III	KANAŁ PRZEKR	KANAŁ ZIMNY PRZEKROJE IV-VI		KANAŁ CIEPŁY PRZEKROJE I-III		ZIMNY DJE IV-VI	
[W/m ²]	[W]	[⁰ C]	[⁰ C]	[ºC]	[⁰ C]	[⁰ C]	[m/s]	[m/s]	[m/s]	[m/s]	
			00	90 ⁰	00	90 ⁰	00	90 ⁰	00	90 ⁰	
2340	18	82	18,6	22,3	15,7	13,0	0,159	0,040	0,156	0,037	
3580	28	110	21,7	25,1	17,9	13,5	0,184	0,041	0,178	0,037	
4800	38	143	24,5	28,4	20,0	14,0	0,205	0,042	0,197	0,038	
6090	48	166	26,5	31,3	21,5	14,5	0,217	0,043	0,209	0,038	
7370	58	186	29,4	34,6	23,7	15,2	0,235	0,045	0,225	0,039	
8640	68	210	30,2	38,5	24,4	15,5	0,240	0,046	0,230	0,039	
9920	78	230	32,2	42,8	25,8	15,9	0,249	0,047	0,239	0,040	
11250	88	254	34,2	45,1	27,4	16,3	0,258	0,048	0,247	0,040	
12590	99	274	36,2	48,2	28,9	16,9	0,268	0,048	0,256	0,040	
13920	109	294	37,9	50,3	30,3	17,5	0,275	0,049	0,263	0,040	
15250	120	318	40,1	53,4	32,0	18,2	0,283	0,050	0,271	0,041	
16570	130	341	41,8	58,4	33,3	18,6	0,289	0,051	0,277	0,041	
17880	140	361	43,9	61,5	34,9	19,0	0,297	0,052	0,284	0,041	
19190	151	382	45,6	63,0	36,2	19,4	0,303	0,052	0,291	0,042	
20500	161	402	47,5	66,0	37,7	19,8	0,310	0,053	0,297	0,042	
21920	172	424	50,7	69,0	40,2	20,3	0,320	0,054	0,307	0,042	
23330	183	440	51,5	71,0	40,8	20,7	0,323	0,055	0,309	0,042	

Średnie prędkości oraz temperatury powietrza w poszczególnych przekrojach diody przy kącie pochylenia 0^0 i 90^0 dla różnych wartości strumienia ciepła (wyniki obliczeń numerycznych)

Na rys. 6.39 i 6.40 przedstawiono wpływ temperatury "dodatniego" źródła ciepła diody na średnią temperaturę i prędkość powietrza w kanałach diody termicznej w położeniu I i II. Przykładowe rozkłady pól prędkości i temperatury, jakie uzy-skano przy takim położeniu przedstawiono w rozdziale 6.3.2.

Rys. 6.39. Rozkład średniej temperatury powietrza w kanałach diody termicznej przy pochyleniu diody o kąt 0⁰ (położenie I diody) i 90⁰ (położenie II diody)

Rys. 6.40. Rozkład średniej prędkości powietrza w kanałach diody termicznej przy pochyleniu diody o kąt 0⁰ (położenie I diody) i 90⁰(położenie II diody)

Temperatura cyrkulującego powietrza jest wyższa podczas pracy diody w położeniu pionowym (położenie I diody), natomiast prędkość cyrkulującego powietrza zmienia się nieznacznie i jest około pięć razy mniejsza w położeniu poziomym diody (położenie II diody).

W tablicy 6.7 przedstawiono wyniki obliczeń wpływu kąta pochylenia diody na prędkość powietrza w kanałach diody. Przedstawione wyniki uzyskano dla efektywnego strumienia "dodatniego" źródła ciepła $\dot{Q}_{ef} = 78$ W.

Tablica 6.7.

IZ - 4	PRĘD	KOŚĆ				
	KANAŁ CIEPŁY PRZEKROJE I-III	KANAŁ ZIMNY PRZEKROJE IV-VI				
	[m/s]	[m/s]				
10	0,231	0,215				
20	0,219	0,210				
30	0,210	0,197				
40	0,199	0,194				
50	0,185	0,180				
60	0,170	0,160				
70	0,123	0,099				
80	0,082	0,069				
90	0,047	0,040				

Wpływ kąta pochylenia diody na zmianę prędkość powietrza w kanałach. Obliczenia numeryczne dla: temperatura źródła ciepła $T_{zr} = 230$ °C; moc efektywna źródła ciepła $\dot{Q}_{ef} = 78$ W

Rysunek 6.41 przedstawia wpływ kąta pochylenia diody na prędkość powietrza w kanałach. Temperatura źródła ciepła $T_{zr} = 230$ ⁰C; moc efektywna "dodatniego" źródła ciepła $\dot{Q}_{ef} = 78$ W.

Rys. 6.41. Wpływ kąta pochylenia diody na średnią prędkość powietrza w kanałach diody przy efektywnym strumieniu "dodatniego" źródła ciepła $\dot{Q}_{ef} = 78 \text{ W}$

Na rysunkach 6.42 i 6.43 zaprezentowano przykładowo rozkłady prędkości powietrza w I oraz III przekroju pomiarowym diody, dla mocy efektywnej "dodatniego" źródła ciepła $\dot{Q}_{ef} = 78$ W oraz dla kąta pochylenia diody w przedziale $10^{\circ} \div 90^{\circ}$, (wyniki obliczeń numerycznych).

Rys. 6.42. Rozkłady prędkości powietrza w kanale "ciepłym" diody w I przekroju pomiarowym dla efektywnej mocy "dodatniego" źródła ciepła $\dot{Q}_{ef} = 78$ W oraz dla kątów pochylenia diody $10^{0} \div 90^{0}$ (wyniki obliczeń numerycznych)

Rys. 6.43. Rozkłady prędkości powietrza w kanale "ciepłym" diody w III przekroju pomiarowym dla efektywnej mocy "dodatniego" źródła ciepła $\dot{Q}_{ef} = 78$ W oraz dla kątów pochylenia diody $10^{0} \div 90^{0}$ (wyniki obliczeń numerycznych)

Prędkość przepływającego powietrza podczas pracy diody jest największa, dla położenia pionowego diody i maleje wraz z pochylaniem jej, aż do wartości najmniejszej dla położenia poziomego diody.

Zmieniając wysokość diody można również wpływać na intensywność wymiany ciepła podczas cyrkulacji powietrza w jej wnętrzu. Tablica 6.8 i rys. 6.44 przedstawiają wpływ wysokości diody na średnie prędkości i temperatury powietrza wewnątrz kanałów przy położeniu pionowym diody tj. położeniu I oraz przy stałym strumieniu doprowadzanego ciepła do źródła; $\dot{Q}_{ef} = 183$ W.

Tablica 6.8.

TTTTTTTTTTTTT	DDED	voéé
Wysokość	PRĘD	KUSC
Н	KANAŁ CIEPŁY	KANAŁ ZIMNY
[m]	PRZEKROJE I-III	PRZEKROJE IV-VI
[111]	<i>w</i> [m/s]	<i>w</i> [m/s]
0,30	0,226	0,204
0,45	0,246	0,214
0,60	0,261	0,234
0,75	0,272	0,247
0,90	0,286	0,267
1,05	0,305	0,287
1,35	0,334	0,313
1,50	0,347	0,326
1,65	0,356	0,340
1,80	0,363	0,350

Wpływ wysokości diody na średnie prędkości i temperatury powietrza wewnątrz kanałów przy położeniu pionowym diody tj. położeniu I; efektywny strumień ciepła \dot{Q}_{ef} = 183 W

Prędkość powietrza zależna jest również od wysokości diody. Ze wzrostem wysokości *H* diody wzrasta prędkość powietrza. Zależność tę przedstawiono na rysunku 6.44. Dla wysokości diody H = 0,3 m prędkość powietrza wynosi w = 0,226 m/s w kanale "ciepłym" diody oraz w = 0,204 m/s w kanale "zimnym" diody i rośnie odpowiednio do wartości w = 0,363 m/s i w = 0,350 m/s dla wysokości diody odpowiadającej H = 1,8 m.

Rys. 6.44. Wpływ wysokości H [m] diody na prędkość powietrza w kanałach

Określenie wpływu kąta pochylenia diody oraz strumienia zadawanego ciepła na wartości współczynnika przejmowania ciepła α na powierzchni "dodatniego" źródła ciepła

Wykorzystując wyniki modelowania numerycznego w postaci pól temperatury wyznaczono metodą gradientową wartości współczynnika przejmowania ciepła α na powierzchni "dodatniego" źródła ciepła przy różnych parametrach pracy diody. W tablicach 6.9÷6.11 przedstawiono wartości współczynnika przejmowania ciepła α w zależności od kąta pochylenia diody, wysokości diody oraz gęstości zadawanego strumienia ciepła.

Н					Kąt	: [⁰]				
[m]	0	10	20	30	40	50	60	70	80	90
0,30	6,23	6,19	5,86	5,71	5,56	5,24	4,90	4,35	3,47	2,27
0,45	6,50	6,22	6,01	5,86	5,62	5,34	4,99	4,46	3,54	2,38
0,60	6,69	6,24	6,15	5,98	5,80	5,43	5,08	4,63	3,64	2,52
0,75	6,83	6,88	6,35	6,08	5,86	5,54	5,16	4,72	3,71	2,62
0,90	7,01	7,00	6,55	6,22	5,96	5,61	5,29	4,80	3,80	2,75
1,05	7,24	7,09	6,68	6,33	6,05	5,71	5,36	4,96	3,89	2,84
1,20	7,41	7,18	6,81	6,42	6,15	5,82	5,40	5,08	3,93	2,93
1,35	7,57	7,30	6,93	6,53	6,28	5,86	5,50	5,19	4,00	2,99
1,50	7,72	7,41	7,06	6,62	6,35	5,88	5,59	5,28	4,04	3,07
1,65	7,82	7,53	7,18	6,72	6,46	5,90	5,70	5,40	4,10	2,19
1,80	7,90	7,64	7,30	6,81	6,55	5,93	5,77	5,48	4,14	3,21

Tablica 6.9 Wpływ kąta pochylenia diody oraz wysokości diody na wartości współczynnika przejmowania ciepła α na powierzchni "dodatniego" źródła ciepła

Na wykresach $6.45 \div 6.47$ przedstawiono (korzystając z wartości zawartych w tabelach $6.9 \div 6.11$) zależność współczynnika przejmowania ciepła α od kąta pochylenia diody oraz gęstości strumienia ciepła.

Tablica 6.10

Wpływ ką	ta pochylenia	diody or	az gęstości	strumienia	zadawanego	ciepła na	wartości	współ-
czynnika p	orzejmowania	ciepła α	na powierz	zchni "doda	tniego" źródła	a ciepła		

Gęstość stru-			-		Ką	t [⁰]		-		
mienia										
zadawanego	0	10	20	30	40	50	60	70	80	90
ciepła [W/m ²]										
2240	6,01	5,69	5,36	5,01	4,63	4,43	4,22	3,76	3,24	2,62
3580	6,08	5,76	5,43	5,08	4,70	4,50	4,28	3,83	3,31	2,69
4810	6,13	5,82	5,48	5,13	4,74	4,54	4,33	3,87	3,34	2,72
6090	6,43	6,10	5,74	5,36	4,95	4,73	4,50	4,00	3,43	2,75
7370	6,50	6,16	5,80	5,42	5,00	4,78	4,55	4,05	3,47	2,78
8640	6,71	6,35	5,98	5,58	5,14	4,91	4,67	4,14	3,54	2,81
9920	6,76	6,30	6,13	6,01	5,85	5,64	5,40	4,60	3,75	2,84
11250	6,87	6,74	6,61	6,34	6,05	5,75	5,18	4,54	3,79	2,86
12590	6,87	6,75	6,63	6,39	6,13	5,86	5,27	4,62	3,84	2,87
13920	7,07	6,94	6,81	6,54	6,26	5,97	5,37	4,69	3,90	2,89
15250	7,18	7,05	6,92	6,65	6,37	6,08	5,46	4,76	3,95	2,91
16570	7,18	7,03	6,87	6,55	6,22	5,86	5,28	4,63	3,87	2,92
17880	7,23	7,05	6,88	6,51	6,13	5,71	5,16	4,54	3,82	2,93
19190	7,31	7,11	6,91	6,49	6,04	5,55	5,03	4,45	3,78	2,97
20500	7,36	7,14	6,92	6,45	5,95	5,40	4,92	4,38	3,76	3,02
21920	7,39	7,16	6,92	6,41	5,85	5,24	4,79	4,29	3,72	3,05
23330	7,41	6,60	6,60	6,16	5,67	4,97	4,57	4,14	3,65	3,07

Tablica 6.11

Gęstość stru-						H [m]					
mienia zada-											
wanego ciepła	0,30	0,45	0,60	0,75	0,90	1,05	1,20	1,35	1,50	1,65	1,80
[W/m ²]											
2240	4,87	4,92	4,99	5,05	5,08	5,16	5,23	5,24	5,27	5,31	5,32
3580	4,96	5,06	5,16	5,30	5,39	5,48	5,62	5,68	5,74	5,76	5,80
4810	5,06	5,21	5,35	5,51	5,64	5,76	5,93	5,99	6,04	6,09	6,15
6090	5,15	5,32	5,48	5,65	5,80	5,94	6,10	6,22	6,33	6,44	6,55
7370	5,24	5,44	5,63	5,82	5,99	6,16	6,35	6,47	6,59	6,70	6,81
8640	5,33	5,53	5,72	5,90	6,08	6,25	6,42	6,59	6,75	6,90	7,06
9920	5,42	5,63	5,83	6,01	6,20	6,40	6,54	6,77	6,99	7,20	7,41
11250	5,51	5,72	5,92	6,11	6,30	6,49	6,66	6,86	7,05	7,24	7,42
12590	5,59	5,81	6,02	6,22	6,41	6,60	6,78	6,97	7,14	7,31	7,48
13920	5,67	5,89	6,10	6,30	6,49	6,68	6,87	7,04	7,21	7,37	7,53
15250	5,76	5,97	6,18	6,39	6,59	6,77	6,97	7,13	7,28	7,44	7,58
16570	5,84	6,05	6,26	6,47	6,66	6,85	7,04	7,20	7,36	7,51	7,66
17880	5,92	6,14	6,35	6,56	6,75	6,93	7,14	7,28	7,42	7,56	7,70
19190	6,00	6,21	6,42	6,63	6,82	7,00	7,21	7,35	7,49	7,62	7,75
20500	6,08	6,29	6,50	6,71	6,90	7,08	7,30	7,42	7,55	7,67	7,80
21920	6,15	6,37	6,57	6,78	6,96	7,14	7,36	7,48	7,61	7,73	7,85
23330	6,23	6,50	6,69	6,83	7,01	7,24	7,39	7,45	7,57	7,82	7,90

Wpływ wysokości diody oraz gęstości strumienia zadawanego ciepła na wartości współczynnika przejmowania ciepła α na powierzchni "dodatniego" źródła ciepła

Rys. 6.45. Wpływ kąta pochylenia diody oraz gęstości strumienia zadawanego ciepła na współczynnik przejmowania ciepła α na powierzchni "dodatniego" źródła ciepła

Rys. 6.46. Wpływ wysokości diody oraz gęstości strumienia zadawanego ciepła na współczynnik przejmowania ciepła α na powierzchni "dodatniego" źródła ciepła

Rys. 6.47. Wpływ kąta pochylenia diody oraz wysokości diody na współczynnik przejmowania ciepła α na powierzchni "dodatniego" źródła ciepła

Wartość współczynnika przejmowania ciepła α zależna jest zarówno od gęstości zadawanego strumienia dla "dodatniego" źródła ciepła, wysokości oraz kąta pochylenia diody. Wartości współczynnika przejmowania ciepła α rosną

wraz ze wzrostem wysokości diody H i gęstości strumienia ciepła oraz maleją wraz ze wzrostem kąta pochylenia diody.

Określenie oporów przepływu powietrza w kanałach diody termicznej

Zgodnie z hipotezą *Prandtla* na ściance nie występuje poślizg płynu, lecz bardzo cienka podwarstwa płynu o prędkości $w_w = 0$. Obszar przejściowy, w którym prędkość wzrasta stopniowo aż do osiągnięcia wielkości w_f charakteryzującej przepływ z dala od ścianki nosi nazwę hydraulicznej warstwy przyściennej. Wskutek istniejących gradientów prędkości w warstwie przyściennej występują naprężenia styczne [10, 55]:

$$\tau = \mu \frac{\partial w_x}{\partial_y}.$$
 (6.35)

Naprężenia te stanowią opór przepływu. W dużej odległości od ścianki prędkość płynu jest niezmienna, wobec czego:

$$\frac{\partial w_x}{\partial y} = \frac{\partial \overline{w}_x}{\partial y} = 0 \tag{6.36}$$

zaś siły tarcia są pomijalnie małe. Wielkość naprężenia stycznego w kanałach diody termicznej obliczono posługując się zależnością:

$$\tau = 0.5 f \rho w^2, \qquad (6.37)$$

gdzie *f* jest współczynnikiem oporu. W zakresie przepływu laminarnego, z jakim mamy do czynienie podczas pracy modelowej diody, współczynnik ten wynosi [61]:

$$f = \frac{16}{\text{Re}} \tag{6.38}$$

Do wyznaczenia oporu przepływu płynu wykorzystano zależność [61]:

$$\frac{\Delta p}{\Delta z} = \tau \cdot \frac{C}{A} \tag{6.39}$$

gdzie: C - obwód zwilżony, A - przekrój poprzeczny kanału Wyniki obliczeń naprężenia stycznego i oporów przepływu powietrza, przedstawiono w tablicy 6.12.

Tablica 6.12

Tźr	\dot{Q}_{ef}	ġ	Średnie naprężenia styczne	Opory przepływu
[⁰ C]	[W]	$[W/m^2]$	[<i>Pa</i>]	[Pa / m]
82	18	2340	4,16E-04	1,67E-02
110	28	3580	4,33E-04	1,73E-02
143	38	4800	4,84E-04	1,93E-02
166	48	6090	5,09E-04	2,03E-02
186	58	7370	5,34E-04	2,14E-02
210	68	8640	5,84E-04	2,34E-02
230	78	9920	6,09E-04	2,44E-02
254	88	11250	6,34E-04	2,54E-02
274	99	12590	6,56E-04	2,62E-02
294	109	13920	6,78E-04	2,71E-02
318	120	15250	7,00E-04	2,80E-02
341	130	16570	7,22E-04	2,89E-02
361	140	17880	7,44E-04	2,97E-02
382	151	19190	7,66E-04	3,06E-02
402	161	20500	7,88E-04	3,15E-02
424	172	21920	8,09E-04	3,24E-02
440	183	23330	8,27E-04	3,31E-02

Wartości naprężeń stycznych oraz oporów przepływu od mocy "dodatniego" źródła ciepła

Na rysunku 6.48 przedstawiono zależność oporów przepływu od temperatury "dodatniego" źródła ciepła.

Rys. 6.48. Wyniki obliczeń zależności oporów przepływu powietrza od temperatury "dodatniego" źródła ciepła

Na rysunku 6.49 przedstawiono zależność oporów przepływu powietrza cyrkulującego w kanałach diody termicznej od efektywnej mocy "dodatniego" źródła ciepła.

Rys. 6.49. Zależność oporów przepływu powietrza od efektywnej mocy "dodatniego" źródła ciepła

W wyniku wzrostu mocy "dodatniego" źródła ciepła (a tym samym wzrostu temperatury źródła ciepła oraz średniej prędkości powietrza) rosną naprężenia styczne oraz opory przepływającego w niej powietrza.

6.3.4. Wnioski z modelowania numerycznego

- Dioda termiczna stanowi jedno z możliwych rozwiązań technicznych termosyfonu. W oparciu o zaproponowany model matematyczny przeprowadzono analizę teoretyczną transportu masy i ciepła w kanałach diody termicznej. Wykorzystano równania zachowania energii, pędu i masy oraz warunki brzegowe dla przyjętego rozwiązania fizycznego analizowanego obiektu. Uzyskano rozwiązania numeryczne przyjętego modelu dla szerokiego przedziału zmian parametrów geometrycznych diody termicznej oraz parametrów cieplno-przepływowych czynnika roboczego.
- 2. Teoretyczne obliczenia modelowe wykonano dla dwóch podstawowych położeń diody termicznej, gdy źródła ciepła "dodatnie" i "ujemne" umieszczone są w kanałach po przeciwległych stronach obwodu diody. Położenie I obejmowało przypadek, gdy źródła są nad sobą (położenie pionowe) a poło-

żenie II, gdy znajdują się na tej samej wysokości (położenie poziome). Powyższe obliczenia wykonano zmieniając w każdym przypadku moc "dodatniego" źródła ciepła. Zakres zmiany mocy odpowiadał zrealizowanym badaniom eksperymentalnym. Zmiana mocy "dodatniego" źródła ciepła powodowała zmianę pozostałych parametrów cieplno-przepływowych układu, który wykazywał własności adaptacyjne do nowej sytuacji. W wyniku przeprowadzonego modelowania uzyskano pola prędkości i temperatury powietrza wewnątrz kanałów diody termicznej. Ich znajomość pozwoliła na określenie współczynników wymiany ciepła dla obu źródeł oraz wartości naprężeń stycznych i oporów przepływu. Uzyskane dane pozwalają wnioskować odnośnie intensywności wymiany masy, pędu i energii w obszarze badanej diody termicznej.

- 3. Z uzyskanych obliczeń wynika, że intensywność wymiany ciepła w przypadku położenia I diody (położenie pionowe) jest znacznie większa, niż przy położeniu II (położenie poziome). Świadczą o tym znaczne różnice wartości prędkości czynnika roboczego powietrza. W przypadku położenia I prędkości te są kilkukrotnie (około pięć razy) większe niż przy położeniu II (rys. 6.40). W położeniu I wartości prędkości powietrza zmieniają się w przedziale od 0,15 do 0,30 m/s (w zależności od temperatury "dodatniego" źródła ciepła), gdy w położeniu II prędkości te nie przekraczają praktycznie wartości 0,05 m/s.
- 4. Spadek prędkości powietrza wywiera decydujący wpływ na wartość współczynnika przejmowania ciepła na powierzchni źródła ciepła (Tablica 6.10). Jeżeli w przypadku położenia I wartość współczynnika przejmowania ciepła na powierzchni "dodatniego" źródła ciepła zmienia się w granicach od 6,01 do 7,41 W/m²K (w zależności od prędkości powietrza) to dla położenia II jest on prawie trzykrotnie mniejszy i wynosi od 2,62 do 3,07 W/m²K.
- 5. Spadek intensywności wymiany ciepła na powierzchni źródeł wywiera niekorzystny wpływ na wartość temperatury czynnika roboczego w obiegu diody termicznej. Spadek wartości współczynników wymiany ciepła wywołuje wzrost temperatury powietrza, co jest bezpośrednią konsekwencją wzrostu

oporów cieplnych na powierzchni źródeł. Temperatura w kanale "ciepłym" diody jest znacznie wyższa dla położenia II diody (dioda pochylona o kąt 90°), lecz niższa w kanale zimnym w stosunku do położenia I.

- 6. Opracowany model komputerowy umożliwił przeprowadzenie symulacyjnych obliczeń transportu ciepła dla różnych parametrów geometrycznych kanałów diody termicznej. Dla szerokiego przedziału zmian mocy cieplnej "dodatniego" źródła ciepła przeprowadzono obliczenia, podczas, których pochylano, co 10° konstrukcję diody rozpoczynając od położenia I (położenie pionowe), aby w końcu uzyskać położenie II (położenie pionowe). Na podstawie uzyskanych wyników obliczeń (tablica 6.10) można stwierdzić, że wraz z pochylaniem diody sukcesywnie spada intensywność wymiany ciepła wynikiem czego są konsekwencje opisane podczas analizy położenia diody I i II.
- 7. Podczas konwekcji naturalnej w polu grawitacyjnym dużą rolę odgrywa wysokość słupa płynu i jego ciężar właściwy. Wartości te decydują o różnicy ciśnienia, która wymusza ruch płynu a w konsekwencji określają wielkość transportowanej energii cieplnej. Mając powyższe na uwadze przeprowadzono obliczenia numeryczne zmieniając odległość pomiędzy źródłami ciepła (wysokość diody) przy położeniu pionowym diody (położenie I). Wysokość diody *H* zmieniano w granicach od 0,3 do 1,8 m. Z uzyskanych wyników modelowania (tablica 6.11) wynika, że wzrost wysokości diody spowodował wzrost współczynnika przejmowania ciepła na powierzchni "dodatniego" źródła o około 25% (dla badanego zakresu).
- 8. W wyniku analizy naprężeń stycznych stwierdzono ich wzrost wraz z podwyższaniem mocy "dodatniego" źródła ciepła (a tym samym wzrostem temperatury źródła ciepła oraz średniej prędkości powietrza). Rosną również opory przepływającego wewnątrz kanałów diody powietrza.
- 9. Przeprowadzona analiza wyników modelowania numerycznego wskazuje na duży wpływ warunków geometrycznych i fizycznych na efektywność wymiany ciepła w kanałach rurowych diody termicznej, która stanowi jedno z rozwiązań konstrukcyjnych termosyfonu jednofazowego. Dużą rolę odgrywa położenie geometryczne źródeł ciepła a w szczególności odległość w pio

- nie pomiędzy nimi, co bezpośrednio wynika z oddziaływania pola grawitacyjnego. Zmiana warunków geometrycznych wpływa bezpośrednio na warunki fizyczne doprowadzania i odprowadzania ciepła, co objawia się zmianą wartości współczynników wymiany ciepła. Istotną rolę odgrywają również warunki brzegowe związane z fizyczną realizacją rozwiązań konstrukcyjnych źródeł ciepła. Układ kanałów diody termicznej wraz z czynnikiem roboczym samoczynnie dopasowuje się do stanu równowagi poprzez zmianę prędkości i temperatury czynnika roboczego.
- 10. Porównując wyniki badań eksperymentalnych z wynikami obliczeń numerycznych należy zauważyć, że wyniki modelowania komputerowego bardzo dobrze odzwierciedlają wyniki uzyskane w badaniach eksperymentalnych. Dodatkowo modelowanie komputerowe daje możliwość analizy tych rozwiązań konstrukcyjnych, które ze względu na czasochłonność i kosztowność nie mogły zostać przebadane eksperymentalnie.
- 11. Różnice w wynikach badań eksperymentalnych oraz obliczeń modelowania numerycznego mieszczą się w granicach ± 30% (w skrajnych przypadkach), co jest wynikiem zadawalającym. A zatem efekt modelowania numerycznego przemawia za jego stosowaniem, ponieważ dzięki niemu możemy uniknąć długiej i kosztownej pracy eksperymentatora na rzecz równie dokładnego modelowania komputerowego, tak bardzo obecnie rozpowszechnianego i stosowanego.

6.4. Praktyczne wykorzystanie diody termicznej do ogrzewania pomieszczeń

Na podstawie wykonanych badań eksperymentalnych i numerycznych (przedstawionych w poprzednich rozdziałach) zaprezentowano praktyczne rozwiązanie diody termicznej, z przeznaczeniem do zastosowania w budownictwie. Proponowaną diodę wykonano by w kształcie "płetwy" umieszczonej w ścianie budynku mieszkalnego. Dioda składa się z dwóch zbiorników połączonych kanałem. Wewnątrz diody znajduje się powietrze, jako czynnik cyrkulacyjny. Szerokość diody wynosi 1 m. Schemat modelowej diody przedstawiono na rys. 6.50 (wymiary podano w [m]).

Rys. 6.50. Schemat diody wykorzystanej do modelowania numerycznego

Poniżej przedstawiono wyniki modelowania numerycznego proponowanej diody termicznej. Schemat modelu diody przyjętej do analizy symulacji podano na rys 6.51.

Wprowadzono następujące:

- idealna izolacja cieplna odcinków diody termicznej znajdującej się wewnątrz ściany budynku,
- powierzchnia grzejna diody znajduje się na zewnętrznej ścianie budynku i wynosi 1 m²,
- powierzchnia diody oddająca ciepło znajduje się na wewnętrznej ścianie budynku.

Rys. 6.51. Schemat diody cieplnej - model przyjęty do symulacji numerycznej

Obliczenia numeryczne przeprowadzono na bazie rzeczywistych parametrów powietrza występujących w warunkach klimatycznych Polski. W tym celu przyjęto:

– strumień ciepła doprowadzany do powierzchni grzejnej $\dot{Q} = 0 \div 500$ W,

– temperaturę czynnika odbierającego ciepło (powietrze), $T_f = 293$ K.

Obliczenia przeprowadzono zakładając, że właściwości cyrkulującego powietrza (ciepło właściwe, współczynnik przewodzenia ciepła, gęstość, dynamiczny współczynnik lepkości) zmieniały się wraz ze zmianą temperatury. Proces zachodzi w warunkach konwekcji swobodnej w przestrzeni ograniczonej w polu grawitacyjnym.

W wyniku symulacji komputerowych uzyskano rozkłady prędkości i temperatury powietrza wewnątrz diody. Wykresy sporządzono dla strumienia ciepła doprowadzonego do powierzchni grzejnej $\dot{Q} = 150$ W, w płaszczyźnie poprzecznej diody, rys. 6.52.

Rys. 6.52. Widok płaszczyzny obserwacji rozkładów pól prędkości i temperatury w modelowej diodzie

Rys. 6.53. Rozkłady temperatury powietrza T [K] wewnątrz diody dla strumienia ciepła doprowadzonego do powierzchnie grzejnej $\dot{Q} = 150 \text{ W}$

Powietrze przemieszcza się wewnątrz diody pod wpływem działania sił wyporu, ogrzewając się od powierzchni grzejnej oraz oddając ciepło w górnej części diody. Rozkład temperatury powietrza przedstawiono na rys. 6.53.

Rys. 6.54. Rozkłady prędkości powietrza w [m/s] wewnątrz diody dla strumienia ciepła doprowadzonego do powierzchnie grzejnej $\dot{Q} = 150 \text{ W}$

Prędkość powietrza zależna jest od jego temperatury i osiąga największe wartości w kolektorze od strony powierzchni grzejnej, lokalnie osiągając wartości do 1 m/s. Rozkłady pól prędkości powietrza wewnątrz diody przedstawiono na rys. 6.54. Temperatura powietrza cyrkulującego wewnątrz diody zmienia się wraz z odległością od powierzchni grzejnej. Powietrze ogrzewając się od powierzchni grzejnej cyrkuluje do góry, pod wpływem sił grawitacji, oddając ciepło do pomieszczenia. Następnie schłodzone powietrze przepływa w dół, gdzie ponownie się ogrzewa (rys. 6.53).

Zjawisko to wykorzystywane jest w różnych rozwiązaniach konstrukcyjnych diody. Na rys 6.55 przedstawiono diodę w postaci kolektora i akumulatora połączonego przewodem kołowym o średnicy 0,02 m. Wyniki, jakie uzyskano przy takim rozwiązaniu przedstawiono na rysunkach 5.56 i 5.57.

Rys. 6.55. Schemat instalacji termosyfonowej diody oraz jej widok przestrzenny

Diodę stanowią dwa zbiorniki (akumulator oraz kolektor), które zostały połączone ze sobą za pomocą metalowych rurek w ten sposób, że jedną z rurek, czynnik ogrzany transportowany jest z kolektora do akumulatora a następnie ochłodzony czynnik pod wpływem sił

grawitacji cyrkuluje druga rurką z akumulatora do kolektora. Całość, w celu wyeliminowania strat ciepła do otoczenia została dokładnie zaizolowana. Dostarczając ciepła do zewnętrznej strony kolektora wpływano na wartości prędkości czynnika roboczego (powietrza).

Następnie wykonano obliczenia numeryczne i uzyskano rozkłady prędkości czynnika roboczego wewnątrz kolektora i akumulatora. Na rysunku 5.56 przedstawiono rozkład prędkości powietrza w wybranych przekrojach akumulatora diody a na rysunku 5.57 zaprezentowano rozkład prędkości powietrza w wybranych przekrojach kolektora.

Rys. 6.57. Rozkłady prędkości powietrza w [m/s] w przekroju kolektora diody dla strumieni ciepła doprowadzonego do powierzchnie grzejnej $\dot{Q} = 120$ W

Proponowane rozwiązania diody termicznej mogą posłużyć nie tylko w celu dogrzewania pomieszczeń, ale również może zapobiegać stratom ciepła na zewnątrz, gdyż przepływ ciepła jest jednokierunkowy – od powierzchni grzejnej do powierzchni oddającej ciepło do pomieszczenia. Nocą lub w zimniejszy dzień ciepłe powietrze zbiera się w akumulatorze a zimne w kolektorze (rys. 6.50, 6.56 i 6.57) i konwekcyjna wymiana ciepła nie jest możliwa. Ogrzane powietrze gromadzone w akumulatorze podczas dnia słonecznego, można również wykorzystać do ogrzania np. wody użytkowej.

7. Podsumowanie i wnioski

- Przedmiotem badań wykonanych w ramach niniejszej rozprawy były procesy cieplno-przepływowe towarzyszące zjawisku termosyfonowemu w diodzie termicznej. W badaniach wykorzystano modelową diodę termiczną składającą się z dwóch źródeł ciepła, "dodatniego" (grzałka o regulowanej mocy) i "ujemnego" (wymiennik typu rura w rurze) połączonych za pomocą kanału rurowego o przekroju kołowym w ten sposób, że czynnik roboczy – powietrze – przemieszczał się wewnątrz zamkniętej pętli. Ruch powietrza w diodzie wynikał z warunków konwekcji swobodnej w przestrzeni ograniczonej wskutek występowania zmian gęstości czynnika, wywoływanych gradientami temperatury.
- 2. Badania eksperymentalne na stanowisku laboratoryjnym wykonano w zakresie zmian parametrów cieplno-przepływowych:
 - wydajność cieplna źródeł:
 - "dodatniego" 18÷183 W,
 - "ujemnego" 17÷161 W,
 - temperatura wody zasilającej źródło "ujemne" $8\pm0,5$ ⁰C,
 - średnia temperatura czynnika roboczego w kanałach diody $18 \div 71$ ⁰C,
 - średnia prędkość przepływu powietrza w kanałach diody $0,04 \div 0,32$ m/s.

W wyniku przeprowadzonych badań eksperymentalnych określono pola prędkości i temperatury czynnika roboczego w charakterystycznych węzłach diody oraz współczynniki wymiany ciepła i opory przepływu. W badaniach numerycznych uwzględniono możliwość wprowadzania zmian konstrukcyjnych diody termicznej i wykazano ich wpływ na efektywność energetyczną pracy układu.

3. Zaproponowano model obliczeniowy pozwalający na analizę transportu masy i energii w diodzie termicznej. Na bazie uzyskanego rozwiązania numerycznego modelu otrzymano wyniki charakteryzujące wpływ parametrów cieplnoprzepływowych czynnika oraz parlamentów geometrycznych diody termicznej na pracę tego układu. Wyniki badań numerycznych porównano z badaniami eksperymentalnymi uzyskując zadowalającą zgodność w przedziale $\pm 20\%$.

- 4. Na podstawie doświadczeń eksperymentalnych oraz wyników badań numerycznych stwierdzono wpływ następujących parametrów na efektywność pracy jednofazowej diody termiczne:
 - istotny wpływ na intensyfikację prędkości powietrza w warunkach konwekcji swobodnej w objętości ograniczonej odgrywa wzajemne usytuowanie źródeł ciepła. W położeniu pionowym diody, średnia prędkość powietrza była około 5 razy większa niż w położeniu poziomym i wynosiła 0,15÷0,32 m/s,
 - wyniki badań wpływu kąta pochylenia diody przeprowadzone w zakresie 0 ÷90⁰ potwierdziły, że zalecanym jest przedział 0÷45⁰ (od położenia pionowego diody), w którym dioda termiczna pracuje w korzystnych uwarunkowaniach,
 - ze wzrostem wysokości diody polepszają się parametry cieplnoprzepływowe układu; wzrasta efektywność przejmowania ciepła α - w położeniu pionowym diody wartość współczynnika przejmowania ciepła α od powierzchni źródła dodatniego do powietrza jest około 3-krotnie większa, jak w położeniu poziomym.

Należy podkreślić, że moc cieplna diody termicznej wynosiła w warunkach pomiaru 18÷183 W. Projektując diodę termiczną należy zwrócić uwagę na wielkość strumienia ciepła doprowadzonego do źródła dolnego.

- 5. Uzyskane w badaniach wyniki mogą być wykorzystane w konstrukcji jednofazowej diody termicznej oraz w jej eksploatacji. Wykorzystanie opracowanego przez autora modelu obliczeniowego pozwoli na rozszerzenie możliwości doskonalenia konstrukcji diody. W pracy, w rozdziale 6.4, przedstawiono aplikacyjne rozwiązanie diody termicznej wykorzystanej w budownictwie.
- 6. Wdrażając rozwiązanie diody termicznej należy stwierdzić, że dioda nie potrzebuje praktycznie żadnych nakładów eksploatacyjnych związanych z realizacją ruchu czynnika jednofazowego w kanałach diody. Ważnym obszarem zastosowań diody termicznej wydaje się być budownictwo, w tym instalacje

grzewczo-klimatyzacyjne. Skonstruowanie docelowo hybrydowego układu jednofazowej diody termicznej współpracującej z instalacją solarną pozwoli na praktyczne wdrożenie wyników badań autora w niekonwencjonalnej instalacji energetycznej.

8. Wykaz literatury

- 1. Ansys dokumentacja użytkownika
- Aptekar B. F., Baum J. M., Ivanowsky M. N., Kolgotin F. F., and Serbin V. I.: *Heat Pipes-Thermal Diodes*, Proceedinggs of the Seventh Internation Heat Transfer Conference, Vol 4, Munchen, FRG, pp. 213-217, 1982
- Backley S., Thermics: A Newy emerging control discipline, Proc. Joint Automatic Control Conf., pp.267-273. Purdue University, West Lafayette, Indiana 1976
- Backley S.: *Thermic diode solar panels for space heating*, Solar Energy, Vol. 20, pp.495-503, 1978
- Baton K. F.: *Experimental Heat Pipes*, AERE M1610, Herwell, Barks., Atomie Energy Research Establishment, Apel. Physics Div., June, 1965
- Bezrodny M, Gościk J.: *Termosyfonowe wymienniki ciepła*, Technika chłodnicza i klimatyzacyjna 1/1997 Str. 5-9
- Bieliński H., Mikielewicz J.: *Analiza stabilności w diodzie termicznej* ogrzewanej od dołu i z boków, Mat. Konf. XVI Zjazdu Termodynamików, Kołobrzeg- Koszalin, 1996, (str. 95-104)
- Bieliński H., Mikielewicz J.: Analiza ruchu turbulentnego w diodzie termicznej z niesymetrycznym ogrzewaniem bocznym, [XI Sympozjum Wymiany Ciepła i Masy – Tom 1, – str. 51-58]
- 9. Bieliński H., Mikielewicz J.: *Natural convection of thermal diode*, Archives of Thermodynamics, vol. 16, 1995,
- Bohdal T., Charun H., Ewertowska Z., Majka K., Sławecki J.: *Ćwiczenia* laboratoryjne z mechaniki płynów, Koszalin 1997
- Bohdal T., Charun H., Czapp M., Dutkowski K.: *Ćwiczenia laboratoryjne z termodynamiki*, Wydawnictwo Uczelniane Politechniki Koszalińskiej, Koszalin, 1998,
- Busse C. A., Caron R., Cappelletti C.: *Prototypes of Heat Pipe Thermionic Converters for Space Reactors*, JEE, 1 st Conf. on Thermionic Electrial ower Generation, London, 1965.

- Charun H., Czapp M., Dutkowski K.: Badanie wpływu wielkości przestrzeni ograniczonej na konwekcyjną wymianę ciepła, Mat. Konf. XXX Jubileuszowych Dni Chłodnictwa, Poznań, 1998,
- Chenn K.,: Desings of a Plane-Type Bidirectional Thermal Diode, Journal os Solar Energy Energineering, November 1988, Vol 110/229-305
- 15. Clone D.J.: *The performance of solar water heater with natural circulation*, Solar Enargy 6, 1962, 1, 33-38
- Cotter T. P.: *Theory of Heat Pipes*, USA EC Report LA-3246, Contract W-7405-eng-36 Los Alamos Scientific Laboratory, University of California, 1968.
- Creveling H. F., Bilandi J. Y., Schoenhals R. J.: Stability characteristics of a single-phase frez convection loop, Journal of Fluid Mechanics, vol. 67, 56-84, 1975
- Czapp M., Charun H., Bohdal T.: *Badania laboratoryjne urządzeń chłodniczych i klimatyzacyjnych*, Wydawnictwo Uczelniane Politechniki Koszalińskiej, Koszalin, 1996,
- Deverall J. E., Kemme J. W.: Satellite Heat Pipe, USA Ec Raport, LA-3278, Contract W-7405-eng-36 Los Alamos Scientific Laboratory, University of Kalifornia, Sept. 1970
- 20. Deverall J. E., Salmi E. W., Knapp R. J.: *Orbital Heat Pipe Experiment*, Los Alamos Scientific Laboratory, LA-3714, June 1965
- 21. Dobriański J.: *Termosyfon odwrotny (samorzutny obieg cyrkulacyjny o konwekcji odwrotnej)*, XVIII Zjad Termodynamików, Tom I s. 275-278
- 22. Ewertowska Z.: Mechanika płynów-tablice i wykresy, Koszalin 1994
- Gaugler R. S.: *Heat Transfer Device*, US Patent 2350348, Apel. 21 Dec., 1942, Published 6 June 1944
- Gołogórski J, Olak R: *Ciepłowody*, Chłodnictwo Listopad-Grudzień 1981 Zeszyt 11-12]
- 25. Gordon M., Ramos E., Castrejón A.: *Natoral convection in twodimensional square loop*, Journal Heat Mass Transfer, No. 5, vol. 33

- Groll M., Muszel W. D., Super W., and Savage C. J.,: *Development of a Liquid-Trap Heat Pipe Thermal Diode*, J. Spacecraft and Rockets, Vol. 10, No. 4, 1979, pp. 195-202
- 27. Grover G. M.: *Evaporation Condensation Heat Transfer Device*, US Patent 3229759, Appl 2 Dec. 1963, Published 18 January 1966
- 28. Grover G. M., Cotter T. P., Ericson G. F.: *Structure of Very High Thermal Conductance*, J. Appl. Phys., 1964, 35
- 29. Gupta C. L., Gang H.P.: System design in solar water heater with natural circulation, Solar Enargy 12, 1968, 163-182
- 30. Dolman P. J., Boogs H. J.: *Heat transfer to Freon 12 near the critical state in natural-circulation loop*, ASME Journal of Heat Transfer, 221-226, 1996
- Hobler Tadeusz: Ruch ciepła i wymienniki, Wydawnictwo Naukowo-Techniczne, Wydanie IV, Warszawa 1971
- 32. Janisky T., Buckley S.: *Thermosyphon Analysis of a Thermic Diode Solar Haeting System*, ASME Paper No. 77-WA/Sol-9, 1997
- Jones G. F.: *Heat Transfer in a Liquid Convective Diode*, ASME Journal of Solar Energy Engineering, Vol. 108, 1986, pp. 163-171
- Jones G. F.: Analisys of a Transient Asymmetrically Heated, Cooled Open Thermosyphon 1993, Vol 115/621
- 35. Khandani S. M. H.: *A thermic room-temperature controller*, M.S.Thesis, Mechanical Engineering Dept., M.I.T. Cambridge, Masseachusetts 1976
- Kijak S.: Metodyka obliczania termosyfonów z czynnikami dwuskładnikowymi, XII Zjazd Termodynamików, Materiały zjazdowe Część I Kraków-Rytro, 1984, str. 415-419
- Launder. B.E., Spalding. D.B.: *The Numerical Computation of Turbulent Flows*, Computer Methods In Applied Mechanics and Engineering, Vol. 3, pp 269-289 (1974)
- Ligęza P.: HPTT 96 Laboratoryjny Termoanemometr Stałotemperaturowy i Termometr Stałoprądowy, Kraków 1999
- Madejski J.: *Teoria wymiany ciepła*, Wydawnictwo Politechniki Szczecińskiej, Szczecin 1998

- 40. Madejski J., Mikielewicz J.: *Liquid fin A New Device for Heat Transfer Equipment*, Int. J. Heat Mas Transfer, 1971, Vol. 14.
- Metrol A., Greif R., Zvirin Y.: *Two-Dimensional Study of Heat Transfer* and Fluid Flow in a Natural Convection Loop, Journal of Heat Transfer, August 1992, vol. 104
- 42. Mikielewicz J.: *Modelowanie procesów cieplno- przepływowych*, Maszyny Przepływowe, tom 17. Wyd. PAN, Ossolineum, Wrocław, 1995
- 43. Mikielewicz J., Bieliński H.: *Konwekcja naturalna w diodzie termicznej*, Sympozjum wymiany Ciepła i Masy, Warszawa – Jabłonna 1986
- Mikielewicz J., Bieliński H.: Analiza diody termicznej z ogrzewaniem od dołu, III Sympozjum nt. "Zagadnienia energetyczne w mechanice", Bielsko Biała 1991
- 45. Mikielewicz J., Cieśliński J. T.: *Niekonwencjonalne urządzenia i systemy konwersji energii*, Maszyny Przepływowe, tom 24. Wyd. PAN, Ossolineum, Wrocław, 1999
- 46. Mikielewicz J., Kubski P.: *Wymiana ciepła i masy w zarysie,* Instytut budowy maszyn, Koszalin, 1979
- 47. Ney R.: Energia odnawialna, Nauka Polska, 1994, nr 1
- 48. Ong K.S.: An improced computer program for the thermal performance of a solar water heated, Solar Energy 16, 1974, 137-147
- 49. Ong K.S.: *A finite-difference method to evaluate the thermal performance of a solar water heated*, Solar Energy 18, 1976, 183-191
- 50. Ochęduszko S.: Termodynamika stosowana, WNT, Warszawa 1974
- 51. Orzechowski Z., Prywer J., Zarzycki R.: *Mechanika płynów w inżynierii* środowiska, WNT, Warszawa 2001
- 52. Pluta Zdzisław: *Analiza numeryczna pracy słonecznej termosyfonowej instalacji przygotowania ciepłej wody użytkowej*, Wydawnictwo Politechniki Koszalińskiej, Koszalin 1996, 217-228
- 53. Pudlik Wiesław: *Wymiana i wymienniki ciepła*, Wydawnictwo Politechniki Gdańskiej, Gdańsk 1980

- 54. Quardini J. A., and McGreight G. R.: *Development of a Thermal Diode for Cryogenic Applications*, FIAA Paper No. 192, 1997
- Staniszewski B.: *Termodynamika*, Państwowe Wydawnictwo Naukowe, Warszawa 1969
- Szada-Borzyszkowski W.: Konwekcyjna wymiana ciepła podczas pracy diody termicznej, Koszalińskie Studia i Materiały, Nr 8, 2005, str. 207 ÷ 214
- Szada-Borzyszkowski W., Bohdal T.: *Analiza wykorzystania diody termicnej w budownictwie*, Energia odnawialna na Pomorzu Zachodnim, 2003, str. 421 ÷ 430
- Szada-Borzyszkowski W., Bohdal T.: Propozycja wykorzystania energii słonecznej w budownictwie z zastosowaniem zjawiska termosyfonowego, Rozwój energii odnawialnej na Pomorzu Zachodnim, Koszalin 2004, str. 167-177
- 59. Szada-Borzyszkowski W., Dutkowski K.: Exparimental and theoretical analysis of heat exchange In thermal diodes, XIX Zjazd Termodynamików, Gdańska-Sopot 05-08 września 2005, str. 155-157
- Szada-Borzyszkowski W., Dutkowski K.: Analisis of velosity fields and temperature in thermal diode channel, Heat Transfer And Renewable Sources of Energy, 08-11.IX.2004, str. 503-510
- 61. Troskolański A.T.: Hydromechanika, WNT, Warszawa 1969,
- 62. Wiśniewski S.: *Termodynamika techniczna*, Wydawnictwo Naukowo-Techniczne Warszawa 1980
- 63. Zajdel A. N.: Elementarna ocena błędów pomiaru, PWN, Warszawa 1967
- 64. Zvirin Y.: *The onset of monion in a toroidal thermosyphon*, Journal of Engineering Mathematics, vol. 20, 3-20, 1986

ZAŁĄCZNIKI

- 9.1. Ocena błędów pomiaru
- 9.2. Wyciąg z protokołu badań
- 9.3. Własności fizyczne powietrza
- 9.4. Określenie strat ciepła "dodatniego" źródła

9.1. Ocena błędów pomiaru

Uzyskane z pomiarów lokalne wartości współczynnika przejmowania ciepła α , obarczone są błędem systematycznym i błędem przypadkowym. Z uwagi na niewielką ilość pomiarów wykonanych w tych samych warunkach, nie zajmowano się oceną błędu przypadkowego.

Błąd systematyczny wynikający z metod pomiarów lub obliczeń można oszacować, ponieważ nie zależy on od ich ilości. Obliczono jako najbardziej prawdopodobny błąd średni kwadratowy, a następnie błąd maksymalny [63].

W ogólnej postaci średni błąd kwadratowy zmiennej zależnej

$$y = y (x_1, x_2, ..., x_n)$$
 (Z.1.1)

wynosi:

$$\Delta y = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial y}{\partial x_i} \Delta x_i\right)^2} . \qquad (Z.1.2)$$

Współczynnik przejmowania ciepła α_{lok} wyliczany był na podstawie wzoru (5.6):

$$\alpha_{lok} = \frac{-\lambda \left(\frac{\partial T}{\partial n}\right)_{w}}{T_{w} - T_{F}}$$

Z powyższego wynika, że lokalny współczynnik przejmowania ciepła α_{lok} jest funkcją zmiennych:

$$\alpha_{lok} = \alpha_{lok} \left(\lambda, \left(\frac{\partial T}{\partial n} \right)_{W}, T_{W}, T_{F} \right).$$
 (Z.1.3)

Stąd na podstawie (Z.1.2) średni błąd kwadratowy współczynnika przejmowania ciepła określa wzór:

$$\Delta \alpha_{lok} = \sqrt{\left(\frac{\partial \alpha_{lok}}{\partial \lambda} \Delta \lambda\right)^2 + \left(\frac{\partial \alpha_{lok}}{\partial \left(\frac{\partial T}{\partial n}\right)_w} \Delta \left(\frac{\partial T}{\partial n}\right)_w\right)^2 + \left(\frac{\partial \alpha_{lok}}{\partial T_w} \Delta T_w\right)^2 + \left(\frac{\partial \alpha_{lok}}{\partial T_F} \Delta T_F\right)^2 \quad (Z.1.4)$$

Odpowiednie składniki w/w równania wynoszą:

a)
$$\frac{\partial \alpha_{lok}}{\partial \lambda} = -\frac{\left(\frac{\partial T}{\partial n}\right)_{W}}{T_{W} - T_{F}},$$

b)
$$\frac{\partial \alpha_{lok}}{\partial \left(\frac{\partial T}{\partial n}\right)_{W}} = -\frac{\lambda}{T_{W} - T_{F}},$$

c)
$$\frac{\partial \alpha_{lok}}{\partial T_w} = -\frac{\lambda \left(\frac{\partial T}{\partial n}\right)_W}{\left(T_W - T_F\right)^2},$$

d)
$$\frac{\partial \alpha_{lok}}{\partial T_F} = \frac{\lambda \left(\frac{\partial T}{\partial n}\right)_W}{\left(T_W - T_F\right)^2}$$

Wartości błędów wielkości wchodzących w skład wzoru (Z.1.3) wynoszą odpowiednio:

- Δλ- jako własność termodynamiczna odczytywana z tabel wynosi 1% jej wartości [62].
- $\Delta \left(\frac{\partial T}{\partial n}\right)_{W}$ składa się zarówno z błędów pomiaru temperatury, przesunięcia,

jak i wyznaczenia korelacji aproksymującej wyniki pomiarów- przyjęto 5% wartości gradientu temperatury,

-
$$\Delta T_w = 0,025 \ ^{0}\mathrm{C},$$

-
$$\Delta T_f = 0,025 \ ^{0}\text{C}.$$

Wykorzystując powyższe zależności oraz dane obliczono wartości błędów systematycznych lokalnego współczynnika przejmowania ciepła α_{lok} . Wartości te zestawiono w tablicy Z.1.1.

Gradient		α	Δα	
		α_{lok}	$\Delta \alpha_{lok}$	$\Delta \alpha_{i}$
$\left(\frac{\partial T}{\partial T} \right)$	$T_w - T_f$	W	W	 ov _{lok}
$\langle \partial n \rangle_W$		$\left\lfloor \overline{m^2 \cdot K} \right\rfloor$	$\left\lfloor \overline{m^2 \cdot K} \right\rfloor$	[%]
12248	62,32	5,822	0,259	4,45
16648	84,9	6,141	0,260	4,23
21655	111,8	6,426	0,258	4,02
25279	132,1	6,587	0,256	3,89
28313	150	6,699	0,254	3,79
31941	171,5	6,834	0,252	3,68
34802	189,4	6,923	0,249	3,60
38161	210,9	7,016	0,247	3,52
40633	227,6	7,071	0,245	3,46
43399	245,5	7,152	0,243	3,40
46544	267	7,218	0,241	3,34
49383	286,8	7,275	0,239	3,29
52093	304,2	7,357	0,239	3,24
54369	321,6	7,376	0,237	3,21
56496	339	7,376	0,235	3,19
59210	357,6	7,431	0,234	3,15
61336	371,4	7,466	0,234	3,13

Tablica Z.1.1. Zestawienie wartości błędów wyznaczenia lokalnego współczynnika przejmowania ciepła

Z przeprowadzonych obliczeń wynika, że błąd wyznaczenia lokalnej wartości współczynnika α nie przekracza wartości 5%.

9.2. Wyciąg z protokołu badań

Tablica: Z.2.1. Wyniki pomiaru prędkości powietrza *w* [m/s] oraz temperatury T [⁰C] w przekrojach przy efektywnej mocy "dodatniego" źródła ciepła \dot{Q}_{ef} = 18 W, położenie I diody

	Odległość		Prędkość lokalna powietrza w $[m/s]$ oraz temperatura $T [{}^{0}C]$										
Lp.	czujnika			Kanał	cienły	W UKI	esiony		<u>skioju</u>	Kanał	zimny	7	
	od ścianki r [m]]	[I	I	Ι	I	Γ	V	V	V	V	Ί
	<i>х</i> [Ш]	W	Т	w	Т	w	Т	W	Т	W	Т	w	Т
1	0,000	0,000	23,6	0,000	23,3	0,000	23,0	0,000	22,8	0,000	23,1	0,000	23,3
2	0,005	0,211	24,9	0,156	24,1	0,142	23,3	0,123	22,0	0,151	22,0	0,185	22,0
3	0,010	0,305	25,7	0,305	25,1	0,193	23,5	0,228	21,6	0,250	21,6	0,282	21,7
4	0,015	0,345	25,9	0,309	25,0	0,191	23,7	0,236	21,7	0,253	21,7	0,306	21,7
5	0,020	0,345	25,5	0,267	24,5	0,222	23,8	0,239	21,6	0,259	21,6	0,308	21,7
6	0,025	0,344	25,1	0,262	24,5	0,242	24,0	0,239	21,6	0,255	21,6	0,321	21,7
7	0,030	0,325	24,9	0,258	24,3	0,261	24,1	0,237	21,7	0,252	21,7	0,301	21,7
8	0,035	0,263	24,5	0,256	24,5	0,272	24,1	0,242	21,7	0,242	21,7	0,248	21,8
9	0,040	0,227	24,6	0,254	24,4	0,283	24,2	0,243	22,3	0,233	21,7	0,226	21,7
10	0,045	0,199	24,5	0,240	24,4	0,285	24,2	0,247	22,3	0,223	21,6	0,199	21,7
11	0,050	0,173	24,6	0,227	24,4	0,287	24,3	0,251	18,3	0,211	21,7	0,187	21,8
12	0,055	0,180	24,6	0,231	24,5	0,288	24,3	0,253	21,3	0,213	21,7	0,179	21,8
13	0,060	0,186	24,5	0,235	24,4	0,289	24,3	0,256	21,5	0,215	21,3	0,179	21,9
14	0,065	0,172	24,4	0,224	24,3	0,281	24,3	0,258	21,7	0,207	21,3	0,161	21,9
15	0,070	0,160	24,5	0,213	24,3	0,274	24,2	0,259	20,7	0,199	21,3	0,145	21,3
16	0,075	0,152	24,5	0,199	24,3	0,251	24,1	0,252	20,8	0,196	21,3	0,146	20,9
17	0,080	0,144	24,5	0,185	24,4	0,231	24,2	0,244	20,9	0,193	21,4	0,147	20,8
18	0,085	0,143	24,1	0,206	24,2	0,275	24,0	0,231	21,1	0,190	21,2	0,153	21,1
19	0,090	0,152	23,9	0,176	23,6	0,204	23,9	0,207	21,3	0,162	21,4	0,121	21,4
20	0,095	0,104	23,8	0,130	23,5	0,161	23,8	0,169	21,9	0,152	21,3	0,135	21,7
21	0,100	0,000	23,6	0,000	23,3	0,000	23,0	0,000	22,8	0,000	23,1	0,000	21,9

Tablica: Z.2.2.

Wyniki pomiaru prędkości powietrza *w* [m/s] oraz temperatury T [⁰C] w przekrojach przy efektywnej mocy "dodatniego" źródła ciepła \dot{Q}_{ef} = 28 W, położenie I diody

	Odległość		Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C] w określonym przekroju										
Lp.	czujnika			Vanal	ai an h-	W OKI	esiony	m pize	ekioju	Vanal	_:		
	od ścianki			Kanai	ciepiy					Kanai	zimny	r	
	x [m]		[I	I	I	Ι	Г	V	N N	/	V	Ί
	W []	W	Т	W	Т	W	Т	W	Т	w	Т	W	Т
1	0,000	0,000	23,3	0,000	23,9	0,000	24,5	0,000	23,4	0,000	23,2	0,000	22,9
2	0,005	0,210	25,7	0,167	25,7	0,141	25,2	0,128	22,7	0,136	22,6	0,142	22,2
3	0,010	0,331	27,6	0,271	27,3	0,185	25,8	0,116	22,3	0,140	22,4	0,181	22,0
4	0,015	0,363	28,6	0,300	27,8	0,224	26,0	0,145	22,3	0,164	22,3	0,204	22,0
5	0,020	0,376	28,6	0,289	27,9	0,270	26,1	0,152	22,1	0,175	22,2	0,237	22,0
6	0,025	0,354	28,0	0,292	27,4	0,272	26,3	0,153	22,1	0,198	22,2	0,245	22,0
7	0,030	0,327	27,4	0,287	27,0	0,279	26,2	0,162	22,2	0,202	22,2	0,258	22,1
8	0,035	0,279	27,0	0,280	26,8	0,290	26,3	0,181	22,3	0,211	22,3	0,259	22,3
9	0,040	0,230	27,0	0,274	26,7	0,301	26,4	0,190	22,2	0,224	22,3	0,278	22,3
10	0,045	0,216	27,0	0,266	26,7	0,308	26,4	0,190	22,2	0,221	22,3	0,281	22,3
11	0,050	0,190	26,7	0,241	26,7	0,312	26,5	0,195	22,2	0,224	22,3	0,278	22,3
12	0,055	0,182	26,6	0,245	26,5	0,313	26,5	0,210	22,2	0,242	22,3	0,277	22,3
13	0,060	0,161	26,4	0,221	26,5	0,310	26,4	0,240	22,3	0,239	22,1	0,277	22,4
14	0,065	0,173	26,1	0,225	26,3	0,297	26,3	0,257	22,4	0,259	22,1	0,274	22,4
15	0,070	0,164	26,0	0,222	26,2	0,287	26,2	0,297	22,6	0,272	22,1	0,276	22,1
16	0,075	0,156	26,2	0,207	26,2	0,266	26,1	0,318	22,6	0,276	22,1	0,271	21,9
17	0,080	0,144	26,1	0,186	26,2	0,245	26,1	0,316	22,7	0,286	22,1	0,263	21,8
18	0,085	0,146	26,0	0,189	26,1	0,248	25,9	0,319	23,0	0,280	22,1	0,262	21,9
19	0,090	0,144	25,4	0,169	26,0	0,198	25,4	0,307	22,9	0,274	22,3	0,244	22,0
20	0,095	0,111	24,3	0,133	25,2	0,141	25,2	0,231	23,0	0,195	22,3	0,165	22,2
21	0,100	0,000	23,3	0,000	23,9	0,000	24,5	0,000	23,4	0,000	23,2	0,000	22,2

Tablica: Z.2.3.

	Odległość		Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C]										
Lp.	czujnika			Vanal	ajank	W OKI	esiony	m prze	ekroju	Vanal	zimnu	,	
	od ścianki			Kallai	clepiy	1				Nallai	ZIIIIIIY		
	r [m]]	[I	Ι	I	Ι	Г	V	1	/	V	Ί
	[]	W	Т	W	Т	w	Т	W	Т	W	Т	W	Т
1	0,000	0,000	22,9	0,000	24,4	0,000	25,9	0,000	24,0	0,000	23,4	0,000	22,5
2	0,005	0,210	26,5	0,178	27,3	0,140	27,1	0,120	23,4	0,119	23,3	0,116	22,4
3	0,010	0,318	28,8	0,237	28,9	0,178	28,0	0,118	23,0	0,119	23,2	0,156	22,4
4	0,015	0,347	31,3	0,291	30,1	0,237	28,3	0,137	22,9	0,138	22,9	0,177	22,4
5	0,020	0,406	31,7	0,310	30,6	0,286	28,3	0,157	22,7	0,157	22,8	0,230	22,4
6	0,025	0,365	30,7	0,322	30,4	0,293	28,6	0,161	22,7	0,201	22,8	0,239	22,4
7	0,030	0,328	29,9	0,316	29,6	0,297	28,3	0,178	22,7	0,205	22,8	0,256	22,4
8	0,035	0,295	29,5	0,304	29,1	0,308	28,4	0,201	22,8	0,215	22,8	0,260	22,8
9	0,040	0,233	29,4	0,294	29,0	0,320	28,6	0,201	22,9	0,234	22,8	0,301	22,8
10	0,045	0,233	29,4	0,292	29,0	0,332	28,7	0,202	23,0	0,249	22,9	0,309	22,8
11	0,050	0,206	29,5	0,255	29,1	0,337	28,7	0,202	23,0	0,259	22,9	0,306	22,8
12	0,055	0,193	29,5	0,258	29,1	0,337	28,7	0,221	23,1	0,262	23,0	0,307	22,8
13	0,060	0,197	29,4	0,250	29,7	0,331	28,4	0,255	23,1	0,261	23,0	0,310	22,9
14	0,065	0,194	29,3	0,233	29,6	0,313	28,3	0,266	23,0	0,276	23,0	0,307	22,9
15	0,070	0,168	29,4	0,231	29,0	0,301	28,1	0,292	23,3	0,306	23,1	0,315	22,9
16	0,075	0,161	29,5	0,215	29,0	0,280	28,1	0,315	23,6	0,310	23,2	0,303	22,9
17	0,080	0,144	28,6	0,186	28,9	0,259	28,0	0,325	23,8	0,314	23,3	0,288	22,8
18	0,085	0,149	27,9	0,173	28,7	0,220	27,8	0,333	24,0	0,308	23,4	0,287	22,8
19	0,090	0,145	26,9	0,162	28,3	0,193	26,8	0,332	24,3	0,297	23,5	0,259	22,7
20	0,095	0,118	24,7	0,137	26,8	0,122	26,7	0,276	24,0	0,240	23,4	0,206	22,7
21	0,100	0,000	22,9	0,000	24,4	0,000	25,9	0,000	24,0	0,000	23,4	0,000	22,5

Wyniki pomiaru prędkości powietrza *w* [m/s] oraz temperatury T [⁰C] w przekrojach przy efektywnej mocy "dodatniego" źródła ciepła \dot{Q}_{ef} = 38 W, położenie I diody

Tablica: Z.2.4.

Wyniki pomiaru prędkości powietrza *w* [m/s] oraz temperatury T [⁰C] w przekrojach przy efektywnej mocy "dodatniego" źródła ciepła \dot{Q}_{ef} = 48 W, położenie I diody

	Odległość		Pręc	lkość l	okalna	powie	etrza w	[m/s]	oraz te	empera	tura T	$[^{0}C]$	
Lp.	czujnika			Kanal	ajanh	W OKI	esiony	m prze	ekroju	Kanal	zimnu	,	
	od ścianki		-	Kallai	ciepiy					Kallai	Zinniy	-	-
	x [m]			1	1	I		Γ	V			V	1
		w	Т	w	Т	w	Т	W	Т	w	Т	w	Т
1	0,000	0,000	28,3	0,000	28,0	0,000	27,4	0,000	24,6	0,000	25,0	0,000	24,3
2	0,005	0,272	30,5	0,198	29,9	0,194	28,8	0,118	24,4	0,165	24,4	0,200	23,9
3	0,010	0,361	31,6	0,312	31,0	0,224	29,7	0,137	24,3	0,175	24,4	0,246	23,8
4	0,015	0,401	31,9	0,324	31,0	0,257	30,0	0,153	24,4	0,194	24,5	0,258	23,9
5	0,020	0,394	31,4	0,303	31,1	0,274	30,1	0,155	24,2	0,199	24,6	0,265	24,0
6	0,025	0,374	31,0	0,292	30,8	0,281	30,0	0,150	24,2	0,203	24,6	0,281	24,2
7	0,030	0,332	30,7	0,291	30,2	0,290	30,0	0,153	24,3	0,206	24,6	0,295	24,5
8	0,035	0,289	30,3	0,289	30,2	0,304	30,0	0,165	24,4	0,213	24,6	0,296	24,3
9	0,040	0,260	30,3	0,286	30,2	0,317	29,9	0,186	24,8	0,214	24,6	0,295	24,2
10	0,045	0,230	30,3	0,272	30,0	0,319	29,8	0,192	24,9	0,226	24,6	0,293	24,4
11	0,050	0,198	30,3	0,249	30,0	0,321	29,7	0,214	25,0	0,226	24,7	0,290	24,3
12	0,055	0,190	30,4	0,250	30,1	0,320	30,0	0,233	24,6	0,242	24,8	0,286	24,6
13	0,060	0,180	30,4	0,253	30,0	0,317	30,0	0,275	24,8	0,258	24,6	0,282	24,4
14	0,065	0,180	30,3	0,247	30,0	0,312	30,0	0,294	24,9	0,297	24,6	0,291	24,5
15	0,070	0,171	30,3	0,239	30,0	0,305	29,7	0,327	24,5	0,298	24,6	0,285	24,3
16	0,075	0,169	30,3	0,229	29,8	0,273	29,5	0,337	24,6	0,310	24,7	0,265	23,8
17	0,080	0,168	30,2	0,228	29,8	0,261	29,6	0,354	24,9	0,306	24,7	0,264	23,8
18	0,085	0,155	29,7	0,236	30,0	0,282	29,4	0,343	25,2	0,300	24,5	0,269	24,0
19	0,090	0,139	29,3	0,197	29,6	0,234	29,3	0,338	25,5	0,283	24,4	0,248	23,8
20	0,095	0,109	29,0	0,147	29,1	0,196	28,9	0,244	25,8	0,206	24,3	0,189	23,7
21	0,100	0,000	28,3	0,000	28,0	0,000	27,4	0,000	25,9	0,000	25,0	0,000	23,6

Tablica: Z.2.5.

	Odległość		Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C]										
Lp.	czuinika					w okr	eslony	m prze	ekroju		<u> </u>		
r.	od ścianki			Kanał	ciepły					Kanał	zımny	-	
	r [m]]	[I	I	I	Ι	Г	V	۱ I	V	V	Ί
	~ [111]	W	Т	W	Т	W	Т	w	Т	W	Т	W	Т
1	0,000	0,000	28,0	0,000	28,5	0,000	28,8	0,000	25,2	0,000	25,1	0,000	23,8
2	0,005	0,271	31,3	0,209	31,1	0,193	30,3	0,110	25,1	0,148	25,1	0,173	24,1
3	0,010	0,368	33,5	0,278	32,8	0,263	31,3	0,136	25,4	0,154	25,2	0,220	25,0
4	0,015	0,402	34,6	0,320	33,6	0,266	31,6	0,145	25,2	0,168	25,1	0,231	25,1
5	0,020	0,408	34,7	0,326	33,5	0,306	31,6	0,160	25,2	0,181	25,2	0,258	25,3
6	0,025	0,370	33,8	0,352	33,2	0,307	31,7	0,157	25,2	0,205	25,1	0,275	25,2
7	0,030	0,334	33,3	0,320	32,8	0,308	31,7	0,170	24,9	0,210	25,1	0,293	25,2
8	0,035	0,305	32,8	0,312	32,6	0,322	31,9	0,185	25,0	0,210	25,2	0,297	24,9
9	0,040	0,263	32,7	0,306	32,5	0,336	32,1	0,197	25,4	0,221	25,2	0,317	24,9
10	0,045	0,247	32,7	0,298	32,2	0,343	32,0	0,203	25,6	0,231	25,2	0,319	25,0
11	0,050	0,218	32,5	0,267	32,3	0,338	31,9	0,219	25,7	0,235	25,3	0,312	25,1
12	0,055	0,203	32,5	0,248	32,2	0,344	32,1	0,244	25,8	0,260	25,4	0,316	25,1
13	0,060	0,194	32,7	0,270	32,0	0,338	32,0	0,290	25,9	0,272	25,4	0,315	25,1
14	0,065	0,191	32,7	0,261	32,2	0,328	32,0	0,304	25,9	0,314	25,4	0,321	25,3
15	0,070	0,175	32,7	0,258	32,3	0,319	31,7	0,312	25,8	0,325	25,5	0,321	25,3
16	0,075	0,174	32,1	0,247	32,0	0,287	31,6	0,335	26,0	0,322	25,6	0,297	25,7
17	0,080	0,168	32,3	0,229	32,0	0,275	31,5	0,345	26,3	0,323	26,2	0,289	25,6
18	0,085	0,158	31,7	0,219	32,0	0,254	31,2	0,346	26,6	0,312	26,2	0,295	25,9
19	0,090	0,135	30,9	0,191	31,6	0,229	30,8	0,344	27,0	0,307	25,9	0,263	25,7
20	0,095	0,117	29,5	0,151	30,8	0,176	30,3	0,290	26,8	0,251	25,6	0,231	24,7
21	0,100	0,000	28,0	0,000	28,5	0,000	28,8	0,000	26,4	0,000	25,1	0,000	23,9

Wyniki pomiaru prędkości powietrza *w* [m/s] oraz temperatury T [⁰C] w przekrojach przy efektywnej mocy "dodatniego" źródła ciepła \dot{Q}_{ef} = 58 W, położenie I diody

Tablica: Z.2.6.

Wyniki pomiaru prędkości powietrza *w* [m/s] oraz temperatury T [⁰C] w przekrojach przy efektywnej mocy "dodatniego" źródła ciepła \dot{Q}_{ef} = 68 W, położenie I diody

	Odległość czujnika od ścianki r [m]	Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C]													
In			w okresionym przekroju												
Lp.				Kanał	ciepły		Kanał zimny								
		Ι		Π		III		IV		V		VI			
	<i>x</i> [m]	W	Т	W	Т	W	Т	w	Т	W	Т	W	Т		
1	0,000	0,000	30,5	0,000	30,5	0,000	30,3	0,000	25,7	0,000	26,0	0,000	24,5		
2	0,005	0,302	33,7	0,224	33,0	0,219	31,9	0,106	26,0	0,128	26,0	0,186	25,0		
3	0,010	0,393	35,9	0,315	35,4	0,279	33,0	0,145	26,5	0,168	26,2	0,232	25,5		
4	0,015	0,430	36,2	0,352	36,0	0,313	33,3	0,149	26,7	0,181	26,2	0,258	25,6		
5	0,020	0,425	36,3	0,332	35,8	0,316	33,3	0,162	26,9	0,193	26,4	0,272	25,8		
6	0,025	0,387	35,4	0,337	34,6	0,314	33,3	0,186	26,8	0,207	26,3	0,292	25,9		
7	0,030	0,337	34,9	0,323	34,4	0,314	33,4	0,191	27,0	0,212	26,3	0,312	26,3		
8	0,035	0,310	34,5	0,317	34,3	0,329	33,7	0,193	26,8	0,215	26,4	0,315	25,9		
9	0,040	0,278	34,4	0,312	34,3	0,344	33,9	0,195	26,9	0,218	26,4	0,326	25,8		
10	0,045	0,254	34,4	0,301	33,9	0,348	33,7	0,204	26,7	0,235	26,4	0,326	26,1		
11	0,050	0,224	34,3	0,280	34,0	0,347	33,5	0,213	26,8	0,238	26,5	0,321	26,2		
12	0,055	0,207	34,4	0,269	33,9	0,348	33,9	0,255	26,8	0,261	26,7	0,320	26,2		
13	0,060	0,193	34,5	0,280	33,8	0,342	33,8	0,307	27,0	0,277	26,6	0,318	26,1		
14	0,065	0,189	34,5	0,275	33,9	0,336	33,8	0,323	27,0	0,332	26,6	0,331	26,3		
15	0,070	0,179	34,4	0,272	34,0	0,328	33,2	0,333	27,1	0,334	26,7	0,327	26,3		
16	0,075	0,180	34,0	0,262	33,7	0,291	32,7	0,344	27,2	0,328	26,8	0,294	26,5		
17	0,080	0,180	34,1	0,250	33,6	0,283	32,4	0,355	27,5	0,328	27,1	0,289	27,0		
18	0,085	0,163	33,5	0,243	33,9	0,271	32,2	0,352	27,9	0,314	27,0	0,299	27,4		
19	0,090	0,130	32,8	0,205	33,6	0,247	32,2	0,351	28,3	0,312	27,1	0,266	26,9		
20	0,095	0,116	31,8	0,158	32,8	0,203	31,7	0,297	28,2	0,256	26,5	0,243	25,5		
21	0,100	0,000	30,5	0,000	30,5	0,000	30,3	0,000	27,7	0,000	26,0	0,000	24,6		

Tablica: Z.2.7.

	Odległość		Pręc	lkość l	okalna	powie	etrza w	[m/s]	oraz te	empera	tura T	[⁰ C]		
Lp.	czujnika			Vanal	ai an h-	W OKI	/m przekroju							
_	od ścianki	Kanar ciepły						Kanał zimny						
	r [m]		I		II		III		IV		V		ľ	
	w [m]	W	Т	W	Т	W	Т	W	Т	W	Т	W	Т	
1	0,000	0,000	33,1	0,000	32,6	0,000	31,7	0,000	26,3	0,000	26,9	0,000	25,2	
2	0,005	0,333	36,1	0,240	35,0	0,245	33,5	0,101	26,9	0,177	26,8	0,231	25,9	
3	0,010	0,418	38,3	0,319	35,6	0,255	34,6	0,154	26,9	0,188	27,2	0,284	26,0	
4	0,015	0,458	37,8	0,339	36,4	0,323	34,9	0,153	27,0	0,199	27,3	0,285	26,2	
5	0,020	0,442	37,8	0,338	36,4	0,326	34,9	0,163	26,8	0,205	27,6	0,286	26,3	
6	0,025	0,405	37,0	0,323	36,0	0,321	34,9	0,154	26,8	0,209	27,5	0,310	26,6	
7	0,030	0,339	36,6	0,325	36,0	0,319	35,2	0,162	27,0	0,214	27,5	0,331	27,3	
8	0,035	0,315	36,2	0,321	36,0	0,336	35,4	0,169	27,2	0,219	27,5	0,334	26,9	
9	0,040	0,292	36,0	0,318	36,1	0,352	35,7	0,193	27,3	0,214	27,5	0,334	26,7	
10	0,045	0,261	36,0	0,303	35,6	0,353	35,4	0,206	27,5	0,239	27,5	0,333	27,2	
11	0,050	0,230	36,0	0,292	35,6	0,355	35,2	0,240	27,7	0,240	27,7	0,330	27,3	
12	0,055	0,212	36,3	0,290	35,6	0,351	35,6	0,267	27,8	0,262	27,9	0,324	27,3	
13	0,060	0,192	36,2	0,291	35,6	0,345	35,7	0,325	28,0	0,283	27,9	0,321	27,2	
14	0,065	0,187	36,2	0,289	35,6	0,343	35,7	0,341	28,2	0,351	27,8	0,341	27,3	
15	0,070	0,182	36,1	0,286	35,6	0,337	35,3	0,354	28,3	0,343	27,9	0,333	27,3	
16	0,075	0,187	36,0	0,278	35,4	0,295	35,0	0,354	28,4	0,334	28,0	0,291	27,4	
17	0,080	0,192	36,0	0,271	35,2	0,291	34,9	0,364	28,8	0,332	27,9	0,289	28,3	
18	0,085	0,168	35,4	0,266	35,9	0,288	34,7	0,359	29,2	0,316	27,8	0,303	29,0	
19	0,090	0,125	34,8	0,219	35,6	0,265	34,7	0,357	29,7	0,316	28,2	0,268	26,2	
20	0,095	0,115	34,2	0,165	34,7	0,230	34,0	0,303	29,7	0,262	27,4	0,256	25,7	
21	0,100	0,000	33,1	0,000	32,6	0,000	31,7	0,000	28,9	0,000	26,9	0,000	25,2	

Wyniki pomiaru prędkości powietrza *w* [m/s] oraz temperatury T [⁰C] w przekrojach przy efektywnej mocy "dodatniego" źródła ciepła \dot{Q}_{ef} = 78 W, położenie I diody

Tablica: Z.2.8.

Wyniki pomiaru prędkości powietrza *w* [m/s] oraz temperatury T [⁰C] w przekrojach przy efektywnej mocy "dodatniego" źródła ciepła \dot{Q}_{ef} = 88 W, położenie I diody

	Odległość czujnika		Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C]												
In			w okresionym przekroju												
Lp.		Kanał ciepły							Kanał zimny						
	r [m]	I		I	I	I	III		IV		V		Ί		
	<i>х</i> [Ш]	W	Т	W	Т	W	Т	W	Т	W	Т	W	Т		
1	0,000	0,000	33,8	0,000	34,2	0,000	33,8	0,000	27,4	0,000	27,4	0,000	26,1		
2	0,005	0,301	38,2	0,247	37,7	0,246	36,4	0,135	28,2	0,183	27,6	0,229	26,9		
3	0,010	0,406	40,4	0,369	39,0	0,310	37,1	0,170	28,4	0,212	28,0	0,275	27,5		
4	0,015	0,433	40,5	0,392	39,6	0,312	37,3	0,173	28,4	0,212	27,9	0,292	27,8		
5	0,020	0,430	40,5	0,380	39,5	0,321	37,3	0,191	28,4	0,226	28,2	0,303	28,0		
6	0,025	0,407	40,0	0,345	39,4	0,328	37,9	0,187	28,4	0,238	28,0	0,311	28,0		
7	0,030	0,380	38,8	0,328	38,6	0,335	37,7	0,192	28,3	0,242	28,1	0,323	28,0		
8	0,035	0,348	38,6	0,323	38,4	0,345	37,8	0,197	28,3	0,241	28,2	0,323	27,9		
9	0,040	0,297	38,4	0,319	38,1	0,356	37,9	0,201	28,7	0,245	28,3	0,331	27,9		
10	0,045	0,280	38,3	0,305	38,0	0,360	37,8	0,207	28,7	0,251	28,4	0,330	27,9		
11	0,050	0,247	38,0	0,287	37,7	0,358	37,8	0,220	28,8	0,253	28,4	0,326	28,0		
12	0,055	0,214	38,1	0,284	37,7	0,362	37,9	0,242	29,1	0,269	28,4	0,325	28,0		
13	0,060	0,203	37,9	0,295	37,9	0,359	37,9	0,278	29,2	0,276	28,5	0,324	28,0		
14	0,065	0,194	37,8	0,283	37,8	0,348	37,8	0,291	28,8	0,298	28,8	0,328	28,1		
15	0,070	0,179	37,8	0,276	37,7	0,339	37,6	0,340	29,1	0,303	28,8	0,326	28,1		
16	0,075	0,184	37,6	0,264	37,4	0,319	37,5	0,359	29,4	0,314	29,0	0,323	28,3		
17	0,080	0,188	37,9	0,249	37,3	0,302	37,1	0,371	29,7	0,319	29,5	0,316	29,0		
18	0,085	0,172	37,4	0,250	37,2	0,279	36,6	0,370	29,9	0,313	29,4	0,316	28,8		
19	0,090	0,147	36,8	0,224	37,2	0,254	36,1	0,363	30,6	0,308	29,0	0,295	28,3		
20	0,095	0,124	36,0	0,188	36,1	0,206	35,2	0,309	30,3	0,256	28,2	0,263	27,0		
21	0,100	0,000	33,8	0,000	34,1	0,000	33,6	0,000	29,8	0,000	27,7	0,000	25,9		

Tablica: Z.2.9.

	Odległość		Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C]												
T m	oulegiose					w okr	eślony	m prze	ekroju						
Lp.	od ścienki	Kanał ciepły							Kanał zimny						
			Ι		II		III		IV		V		Ί		
		W	Т	W	Т	W	Т	w	Т	W	Т	W	Т		
1	0,000	0,000	34,4	0,000	35,6	0,000	33,9	0,000	30,0	0,000	27,9	0,000	26,4		
2	0,005	0,303	38,6	0,230	38,8	0,217	37,6	0,139	30,1	0,176	29,4	0,223	28,6		
3	0,010	0,386	41,4	0,303	40,5	0,280	40,0	0,174	30,2	0,180	29,5	0,283	28,7		
4	0,015	0,431	42,9	0,363	41,5	0,328	40,5	0,182	30,1	0,196	29,4	0,300	29,1		
5	0,020	0,434	43,3	0,377	41,7	0,361	40,1	0,190	30,0	0,213	29,4	0,303	29,2		
6	0,025	0,416	43,1	0,388	41,7	0,374	40,0	0,191	30,0	0,246	29,5	0,317	29,2		
7	0,030	0,397	42,8	0,387	41,1	0,396	39,8	0,207	29,9	0,257	29,5	0,321	29,2		
8	0,035	0,346	42,4	0,362	40,7	0,389	39,9	0,201	29,8	0,259	29,5	0,324	29,5		
9	0,040	0,284	42,1	0,362	40,5	0,381	39,9	0,210	30,0	0,266	29,6	0,332	29,5		
10	0,045	0,269	42,0	0,361	40,3	0,376	39,8	0,214	29,6	0,276	29,6	0,337	29,5		
11	0,050	0,244	41,1	0,354	40,3	0,352	39,7	0,238	29,8	0,283	29,7	0,338	29,5		
12	0,055	0,218	41,2	0,296	39,8	0,350	39,7	0,256	30,0	0,293	29,7	0,335	29,5		
13	0,060	0,217	41,0	0,291	39,7	0,358	39,9	0,297	30,0	0,298	29,7	0,334	29,5		
14	0,065	0,212	40,9	0,276	39,6	0,340	39,7	0,314	30,1	0,310	29,7	0,342	29,5		
15	0,070	0,196	41,0	0,267	39,4	0,330	39,5	0,343	30,7	0,323	29,9	0,345	29,5		
16	0,075	0,200	41,1	0,259	39,2	0,321	39,5	0,363	31,4	0,327	30,0	0,342	29,5		
17	0,080	0,199	40,5	0,247	39,1	0,296	39,1	0,369	31,5	0,321	30,1	0,331	29,3		
18	0,085	0,192	40,0	0,232	38,8	0,270	38,6	0,372	31,6	0,316	30,1	0,321	29,2		
19	0,090	0,171	38,4	0,220	38,4	0,240	38,0	0,345	32,1	0,306	30,0	0,281	28,5		
20	0,095	0,128	36,4	0,170	38,1	0,186	37,7	0,305	31,3	0,270	29,3	0,227	27,5		
21	0,100	0,000	34,4	0,000	35,6	0,000	34,9	0,000	30,7	0,000	27,9	0,000	26,5		

Wyniki pomiaru prędkości powietrza *w* [m/s] oraz temperatury *T* [⁰C] w przekrojach przy efektywnej mocy "dodatniego" źródła ciepła \dot{Q}_{ef} = 99 W, położenie I diody

Tablica: Z.2.10.

Wyniki pomiaru prędkości powietrza *w* [m/s] oraz temperatury T [⁰C] w przekrojach przy efektywnej mocy "dodatniego" źródła ciepła \dot{Q}_{ef} = 109 W, położenie I diody

	Odległość czujnika		Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C] w określonym przekroju												
Lp.		Kanał cienty							Kanał zimny						
	od ścianki		ſ					г	1 7	N/I					
	<i>x</i> [m]		TT I	1	1	1	<u>т</u>	1	V T		V T	v	1		
-		W	T	W	T	W	T	W	T	W	T	W	T		
1	0,000	0,000	36,5	0,000	36,9	0,000	36,4	0,000	29,2	0,000	28,6	0,000	26,1		
2	0,005	0,333	43,0	0,263	41,9	0,253	39,0	0,137	30,2	0,185	29,8	0,240	28,9		
3	0,010	0,468	44,5	0,364	43,5	0,286	40,5	0,183	30,2	0,190	30,2	0,307	29,5		
4	0,015	0,497	44,8	0,389	43,5	0,336	40,9	0,185	30,2	0,210	30,3	0,317	29,8		
5	0,020	0,439	44,5	0,397	43,1	0,355	40,8	0,194	30,1	0,226	30,4	0,311	29,9		
6	0,025	0,413	43,8	0,368	43,0	0,359	40,8	0,190	30,2	0,238	30,5	0,327	30,1		
7	0,030	0,372	42,9	0,362	42,4	0,360	40,9	0,192	30,4	0,245	30,5	0,339	30,5		
8	0,035	0,346	42,5	0,344	41,6	0,365	41,3	0,199	30,4	0,251	30,5	0,341	30,3		
9	0,040	0,313	42,1	0,343	41,5	0,372	41,3	0,219	30,5	0,253	30,6	0,343	30,2		
10	0,045	0,282	42,2	0,330	41,3	0,375	41,0	0,228	30,6	0,269	30,6	0,344	30,5		
11	0,050	0,255	41,9	0,317	41,2	0,368	40,7	0,263	30,7	0,272	30,7	0,343	30,6		
12	0,055	0,228	42,0	0,299	41,1	0,368	41,0	0,277	30,9	0,288	30,8	0,339	30,6		
13	0,060	0,214	41,9	0,296	40,9	0,357	40,8	0,323	31,0	0,303	30,9	0,335	30,5		
14	0,065	0,206	41,8	0,292	40,7	0,365	40,8	0,326	31,2	0,339	30,9	0,346	30,5		
15	0,070	0,200	41,6	0,287	40,4	0,354	40,5	0,340	31,7	0,339	31,1	0,343	30,5		
16	0,075	0,199	41,4	0,278	40,2	0,323	40,2	0,350	32,7	0,337	31,3	0,336	30,7		
17	0,080	0,201	41,5	0,270	40,6	0,318	40,1	0,368	32,9	0,337	31,3	0,326	31,4		
18	0,085	0,178	40,9	0,258	40,7	0,303	40,2	0,369	33,0	0,331	31,5	0,326	30,9		
19	0,090	0,147	39,9	0,226	40,2	0,276	39,9	0,351	33,3	0,323	31,6	0,314	30,0		
20	0,095	0,132	39,3	0,184	39,3	0,233	39,3	0,307	32,8	0,266	30,4	0,244	28,3		
21	0,100	0,000	36,5	0,000	36,9	0,000	36,6	0,000	31,7	0,000	28,6	0,000	26,1		

Tablica: Z.2.11.

	Odległość		Pręc	lkość l	okalna	powie	etrza w	[m/s]	oraz te	empera	tura T	[⁰ C]	
Lp.	czujnika			Kanał	cienły	w UKI	Kanał zimny						
	od ścianki		r					T	57	V		VI	
	<i>x</i> [m]	1		11		111		10		V		V	1
		W	T	W	T	W	T	W	T	W	T	W	T
1	0,000	0,000	39,7	0,000	40,0	0,000	38,8	0,000	29,6	0,000	29,7	0,000	28,4
2	0,005	0,330	45,0	0,285	44,3	0,299	42,5	0,159	31,2	0,218	30,2	0,285	29,6
3	0,010	0,445	47,6	0,369	45,2	0,356	42,9	0,205	31,4	0,269	30,8	0,330	30,1
4	0,015	0,464	47,5	0,393	45,6	0,359	43,0	0,201	31,5	0,255	30,6	0,354	30,4
5	0,020	0,451	46,6	0,375	45,5	0,336	43,1	0,221	31,6	0,271	31,2	0,347	30,7
6	0,025	0,443	46,4	0,338	45,7	0,348	44,1	0,217	31,6	0,271	30,9	0,348	30,7
7	0,030	0,426	44,3	0,335	44,3	0,363	43,7	0,215	31,6	0,274	31,1	0,352	30,8
8	0,035	0,391	44,3	0,333	44,3	0,368	43,6	0,209	31,7	0,273	31,3	0,349	30,9
9	0,040	0,332	44,1	0,332	43,7	0,377	43,6	0,205	32,0	0,269	31,4	0,344	30,8
10	0,045	0,314	43,9	0,312	43,7	0,377	43,5	0,211	31,9	0,270	31,6	0,341	30,8
11	0,050	0,275	43,5	0,306	43,1	0,379	43,7	0,220	32,0	0,270	31,5	0,340	30,8
12	0,055	0,225	43,7	0,320	43,1	0,379	43,7	0,241	32,3	0,278	31,4	0,335	30,9
13	0,060	0,211	43,1	0,321	43,7	0,380	43,7	0,267	32,4	0,280	31,5	0,333	30,9
14	0,065	0,197	42,8	0,305	43,4	0,369	43,6	0,278	31,8	0,282	32,1	0,332	30,9
15	0,070	0,184	42,9	0,294	43,1	0,358	43,5	0,367	32,3	0,281	32,1	0,331	30,9
16	0,075	0,193	43,1	0,281	42,8	0,350	43,4	0,383	32,8	0,305	32,4	0,328	31,0
17	0,080	0,209	43,5	0,269	42,5	0,330	42,6	0,397	33,0	0,315	32,8	0,321	30,7
18	0,085	0,186	43,1	0,281	43,9	0,304	41,9	0,399	33,2	0,314	32,6	0,325	31,6
19	0,090	0,159	42,8	0,258	43,4	0,279	41,4	0,382	34,1	0,309	32,1	0,306	30,2
20	0,095	0,132	42,5	0,225	41,8	0,236	40,0	0,328	33,8	0,262	30,9	0,296	29,3
21	0,100	0,000	39,6	0,000	39,6	0,000	38,4	0,000	33,2	0,000	30,2	0,000	27,9

Wyniki pomiaru prędkości powietrza *w* [m/s] oraz temperatury T [⁰C] w przekrojach przy efektywnej mocy "dodatniego" źródła ciepła \dot{Q}_{ef} = 120 W, położenie I diody

Tablica: Z.2.12.

Wyniki pomiaru prędkości powietrza *w* [m/s] oraz temperatury *T* [⁰C] w przekrojach przy efektywnej mocy "dodatniego" źródła ciepła \dot{Q}_{ef} = 130 W, położenie I diody

	Lp. Odległość czujnika od ścianki r [m]		Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C] w określonym przekroju												
Lp.				Kanał	ciepły		Kanał zimny								
		Ι		II		I	III		IV		V		Ί		
	л [Ш]	W	Т	W	Т	W	Т	w	Т	w	Т	W	Т		
1	0,000	0,000	40,2	0,000	41,2	0,000	38,8	0,000	32,9	0,000	30,2	0,000	26,4		
2	0,005	0,350	44,7	0,256	44,6	0,255	42,9	0,148	32,8	0,204	32,5	0,276	31,7		
3	0,010	0,409	47,6	0,335	46,3	0,322	46,0	0,201	33,0	0,211	32,6	0,317	31,9		
4	0,015	0,449	48,5	0,381	47,2	0,364	46,6	0,205	32,9	0,225	32,7	0,333	32,5		
5	0,020	0,449	48,7	0,399	47,3	0,382	46,1	0,209	32,7	0,241	32,8	0,332	32,5		
6	0,025	0,416	48,5	0,371	47,3	0,387	45,7	0,210	32,9	0,269	32,8	0,345	32,6		
7	0,030	0,401	48,2	0,365	46,9	0,399	45,6	0,222	32,9	0,284	32,9	0,347	32,7		
8	0,035	0,371	47,9	0,350	46,4	0,396	45,7	0,225	32,9	0,282	32,9	0,346	32,9		
9	0,040	0,339	47,4	0,349	46,4	0,393	45,7	0,238	33,0	0,283	32,9	0,347	32,9		
10	0,045	0,272	47,3	0,348	46,4	0,391	45,7	0,242	33,0	0,290	33,0	0,352	32,8		
11	0,050	0,263	46,9	0,343	46,4	0,386	45,5	0,256	33,2	0,295	33,0	0,354	32,8		
12	0,055	0,231	46,8	0,315	46,1	0,375	45,5	0,294	33,4	0,308	33,1	0,350	32,8		
13	0,060	0,227	46,6	0,312	45,9	0,366	45,6	0,317	33,5	0,316	33,1	0,346	32,8		
14	0,065	0,221	46,3	0,298	45,8	0,355	45,4	0,338	33,6	0,334	33,1	0,350	32,9		
15	0,070	0,211	46,0	0,285	45,4	0,354	45,2	0,368	34,4	0,342	33,2	0,350	32,8		
16	0,075	0,216	45,8	0,281	45,0	0,343	45,1	0,388	35,3	0,341	33,4	0,348	32,8		
17	0,080	0,215	45,5	0,278	44,9	0,321	44,6	0,392	35,3	0,334	33,4	0,343	32,6		
18	0,085	0,214	45,0	0,261	44,6	0,295	44,0	0,392	35,4	0,330	33,4	0,333	32,4		
19	0,090	0,184	44,1	0,249	44,4	0,264	43,5	0,351	36,0	0,311	33,3	0,321	31,4		
20	0,095	0,133	42,3	0,187	44,2	0,219	43,3	0,319	34,9	0,256	32,3	0,244	30,0		
21	0,100	0,000	40,2	0,000	41,2	0,000	39,3	0,000	34,0	0,000	30,2	0,000	26,4		
Tablica: Z.2.13.

	Odległość	Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C] w określonym przekroju												
Lp.	czujnika			Kanał	ciepły	W OIL	Kanał zimny							
	od scianki	Ι		II		III		IV		V		V	Ί	
	л [III]	W	Т	W	Т	W	Т	W	Т	W	Т	W	Т	
1	0,000	0,000	39,9	0,000	41,3	0,000	41,0	0,000	32,1	0,000	30,3	0,000	26,9	
2	0,005	0,333	45,9	0,287	46,0	0,260	44,4	0,174	33,5	0,220	32,8	0,249	31,9	
3	0,010	0,416	49,8	0,363	48,0	0,318	46,3	0,211	33,6	0,225	33,2	0,331	32,9	
4	0,015	0,472	50,6	0,399	49,0	0,349	46,9	0,217	33,4	0,236	33,2	0,349	33,4	
5	0,020	0,436	50,4	0,409	48,4	0,384	46,7	0,225	33,4	0,247	33,3	0,337	33,5	
6	0,025	0,420	50,0	0,413	47,9	0,397	46,6	0,227	33,7	0,266	33,5	0,344	33,6	
7	0,030	0,405	49,3	0,399	47,4	0,400	46,6	0,222	33,6	0,276	33,5	0,348	33,7	
8	0,035	0,378	48,9	0,367	47,2	0,394	47,1	0,229	33,5	0,282	33,5	0,349	33,8	
9	0,040	0,333	48,1	0,368	47,0	0,392	47,0	0,244	33,8	0,291	33,6	0,353	33,8	
10	0,045	0,303	48,4	0,357	46,9	0,396	46,6	0,250	33,7	0,299	33,7	0,356	33,8	
11	0,050	0,280	47,9	0,341	46,7	0,380	46,1	0,287	33,8	0,305	33,7	0,357	33,8	
12	0,055	0,245	47,7	0,307	46,5	0,384	46,4	0,288	33,9	0,314	33,8	0,353	33,8	
13	0,060	0,237	47,6	0,302	46,2	0,370	46,0	0,322	34,1	0,322	33,8	0,350	33,8	
14	0,065	0,225	47,4	0,294	45,8	0,387	46,0	0,330	34,2	0,327	33,9	0,351	33,8	
15	0,070	0,218	47,1	0,288	45,2	0,371	45,8	0,347	35,1	0,334	34,2	0,351	33,7	
16	0,075	0,212	46,9	0,278	45,0	0,351	45,5	0,366	35,9	0,340	34,5	0,349	34,0	
17	0,080	0,209	47,0	0,269	46,1	0,345	45,2	0,392	36,2	0,341	34,8	0,342	34,4	
18	0,085	0,189	46,5	0,251	45,6	0,319	45,7	0,398	36,5	0,346	35,2	0,330	34,7	
19	0,090	0,168	45,0	0,232	44,8	0,287	45,1	0,366	36,6	0,329	35,0	0,341	33,8	
20	0,095	0,150	44,4	0,203	43,9	0,236	44,7	0,310	35,9	0,270	33,5	0,233	30,9	
21	0,100	0,000	39,9	0,000	41,3	0,000	41,5	0,000	34,5	0,000	30,3	0,000	26,9	

Wyniki pomiaru prędkości powietrza *w* [m/s] oraz temperatury T [⁰C] w przekrojach przy efektywnej mocy "dodatniego" źródła ciepła \dot{Q}_{ef} = 140 W, położenie I diody

Tablica: Z.2.14.

Wyniki pomiaru prędkości powietrza w [m/s] oraz temperatury T [⁰C] w przekrojach przy efektywnej mocy "dodatniego" źródła ciepła \dot{Q}_{ef} = 151 W, położenie I diody

	Odległość	Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C] w określonym przekroju												
Lp.	czujnika			Kanał	ciepłv	· · · ·	Kanał zimny							
	od scianki]	[I	I	I	III		IV		V		Ί	
		W	Т	W	Т	W	Т	w	Т	w	Т	W	Т	
1	0,000	0,000	42,6	0,000	43,5	0,000	43,5	0,000	31,9	0,000	31,1	0,000	27,9	
2	0,005	0,347	49,1	0,314	48,7	0,301	46,9	0,184	34,1	0,254	33,5	0,281	32,4	
3	0,010	0,445	52,6	0,375	49,9	0,366	47,7	0,226	34,2	0,277	33,9	0,344	33,6	
4	0,015	0,461	52,8	0,402	50,3	0,365	48,2	0,227	34,1	0,277	33,8	0,361	34,0	
5	0,020	0,444	52,0	0,392	50,3	0,365	48,2	0,240	34,2	0,276	34,2	0,359	34,3	
6	0,025	0,434	51,2	0,368	49,9	0,362	48,7	0,240	34,5	0,279	34,2	0,359	34,4	
7	0,030	0,420	50,9	0,360	49,0	0,376	48,5	0,245	34,5	0,284	34,3	0,363	34,5	
8	0,035	0,400	49,8	0,352	49,0	0,384	48,9	0,243	34,5	0,289	34,4	0,361	34,5	
9	0,040	0,357	49,2	0,354	48,6	0,390	48,8	0,241	34,8	0,293	34,5	0,359	34,5	
10	0,045	0,325	49,4	0,332	48,6	0,387	48,7	0,249	34,8	0,296	34,7	0,358	34,4	
11	0,050	0,295	49,1	0,317	48,1	0,386	48,7	0,258	34,9	0,298	34,7	0,357	34,5	
12	0,055	0,249	49,0	0,319	48,3	0,383	48,7	0,280	35,1	0,307	34,6	0,353	34,6	
13	0,060	0,234	48,6	0,316	49,0	0,381	48,8	0,307	35,3	0,313	34,7	0,349	34,5	
14	0,065	0,218	48,3	0,308	48,8	0,371	48,6	0,312	35,1	0,313	35,1	0,346	34,5	
15	0,070	0,212	48,1	0,301	48,5	0,361	48,5	0,359	35,9	0,313	35,4	0,344	34,4	
16	0,075	0,209	47,9	0,289	48,1	0,353	48,4	0,376	36,6	0,329	35,7	0,342	34,4	
17	0,080	0,214	48,6	0,280	48,3	0,340	48,0	0,391	37,0	0,339	36,1	0,337	34,2	
18	0,085	0,186	48,3	0,275	48,7	0,312	47,4	0,397	37,4	0,336	36,0	0,332	34,5	
19	0,090	0,162	47,5	0,251	47,8	0,281	46,8	0,378	37,6	0,321	35,7	0,307	33,6	
20	0,095	0,151	47,4	0,230	46,8	0,261	45,8	0,322	37,2	0,266	34,3	0,268	31,8	
21	0,100	0,000	42,5	0,000	43,3	0,000	43,3	0,000	35,7	0,000	31,4	0,000	27,6	

Tablica: Z.2.15.

	Odległość	Prędkość lokalna powietrza w $[m/s]$ oraz temperatura $T [^{0}C]$												
Lp.	czujnika			17 1	· 1	W OKI	esiony	m prze	ekroju	17 1				
1	od ścianki			Kanał	ciepty			Kanał zimny						
	r [m]	Ι		II		III		IV		V		V	Ί	
	~ [111]		Т	W	Т	W	Т	W	Т	W	Т	W	Т	
1	0,000	0,000	46,0	0,000	46,8	0,000	43,8	0,000	35,8	0,000	32,5	0,000	26,4	
2	0,005	0,396	50,8	0,282	50,3	0,293	48,2	0,157	35,5	0,233	35,5	0,330	34,8	
3	0,010	0,432	53,7	0,368	52,1	0,363	52,0	0,229	35,8	0,242	35,8	0,351	35,0	
4	0,015	0,468	54,1	0,400	53,0	0,400	52,7	0,227	35,7	0,254	36,0	0,366	35,9	
5	0,020	0,463	54,0	0,399	52,8	0,404	52,0	0,229	35,4	0,269	36,1	0,362	35,9	
6	0,025	0,416	53,9	0,354	53,0	0,401	51,4	0,230	35,8	0,292	36,2	0,374	36,0	
7	0,030	0,405	53,6	0,344	52,7	0,402	51,4	0,236	35,8	0,310	36,2	0,372	36,1	
8	0,035	0,397	53,3	0,338	52,2	0,404	51,4	0,250	35,9	0,304	36,3	0,368	36,2	
9	0,040	0,304	52,7	0,336	52,3	0,405	51,5	0,267	36,1	0,299	36,3	0,363	36,2	
10	0,045	0,274	52,5	0,334	52,4	0,406	51,6	0,270	36,3	0,303	36,3	0,366	36,2	
11	0,050	0,282	52,7	0,332	52,5	0,361	51,4	0,274	36,6	0,307	36,4	0,369	36,2	
12	0,055	0,243	52,8	0,334	52,4	0,357	51,4	0,332	36,9	0,323	36,5	0,364	36,2	
13	0,060	0,237	52,6	0,333	52,0	0,353	51,4	0,338	37,0	0,335	36,5	0,358	36,2	
14	0,065	0,230	52,6	0,320	52,0	0,355	51,1	0,362	37,1	0,358	36,4	0,357	36,2	
15	0,070	0,225	52,6	0,303	51,4	0,358	50,9	0,380	38,1	0,361	36,6	0,356	36,1	
16	0,075	0,232	52,6	0,304	50,7	0,348	50,8	0,402	39,1	0,355	36,8	0,346	36,1	
17	0,080	0,231	52,4	0,308	50,7	0,333	50,1	0,400	39,2	0,347	36,8	0,335	35,8	
18	0,085	0,235	52,1	0,291	50,5	0,320	49,5	0,400	39,2	0,343	36,8	0,334	35,6	
19	0,090	0,197	49,8	0,279	50,3	0,287	49,1	0,358	39,9	0,315	36,5	0,302	34,3	
20	0,095	0,138	48,2	0,204	50,2	0,251	48,8	0,333	38,5	0,301	35,2	0,247	32,4	
21	0,100	0,000	46,0	0,000	46,8	0,000	43,8	0,000	37,3	0,000	32,5	0,000	26,4	

Wyniki pomiaru prędkości powietrza *w* [m/s] oraz temperatury T [⁰C] w przekrojach przy efektywnej mocy "dodatniego" źródła ciepła \dot{Q}_{ef} = 161 W, położenie I diody

Tablica: Z.2.16.

Wyniki pomiaru prędkości powietrza *w* [m/s] oraz temperatury T [⁰C] w przekrojach przy efektywnej mocy "dodatniego" źródła ciepła \dot{Q}_{ef} = 172 W, położenie I diody

	Lp. Odległość czujnika		Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C]													
In			w okresionym przekroju													
Lp.				Kanał	ciepły		Kanał zimny									
	r [m]]	[II		III		IV		V		VI				
		W	Т	w	Т	W	Т	W	Т	w	Т	W	Т			
1	0,000	0,000	45,7	0,000	46,9	0,000	46,0	0,000	35,0	0,000	32,6	0,000	29,9			
2	0,005	0,380	52,0	0,313	51,7	0,298	49,7	0,183	36,2	0,248	36,1	0,303	35,0			
3	0,010	0,438	55,7	0,384	53,7	0,359	52,3	0,239	36,4	0,256	36,3	0,355	36,1			
4	0,015	0,463	56,2	0,407	54,2	0,375	53,0	0,239	36,2	0,265	36,5	0,367	36,8			
5	0,020	0,450	55,7	0,406	54,0	0,384	52,7	0,244	36,1	0,275	36,6	0,366	36,9			
6	0,025	0,421	55,0	0,386	53,6	0,389	52,3	0,247	36,6	0,289	36,9	0,372	37,0			
7	0,030	0,410	54,7	0,375	53,2	0,396	52,4	0,236	36,6	0,302	36,9	0,373	37,1			
8	0,035	0,403	54,3	0,355	52,9	0,391	52,8	0,253	36,6	0,303	36,9	0,371	37,2			
9	0,040	0,343	53,5	0,356	52,9	0,393	52,8	0,272	36,8	0,308	37,0	0,368	37,2			
10	0,045	0,305	53,7	0,343	53,0	0,389	52,7	0,279	37,0	0,312	37,1	0,370	37,1			
11	0,050	0,299	53,7	0,330	52,9	0,377	52,6	0,285	37,2	0,317	37,1	0,372	37,2			
12	0,055	0,257	53,6	0,326	52,9	0,372	52,6	0,326	37,3	0,330	37,2	0,367	37,2			
13	0,060	0,247	53,4	0,323	53,1	0,367	52,6	0,342	37,6	0,341	37,2	0,362	37,2			
14	0,065	0,234	53,2	0,316	53,1	0,364	52,3	0,354	37,8	0,351	37,4	0,359	37,1			
15	0,070	0,232	52,9	0,306	52,6	0,361	52,3	0,372	38,8	0,353	37,6	0,356	37,1			
16	0,075	0,228	52,7	0,300	52,1	0,352	52,1	0,390	39,8	0,354	37,9	0,351	37,0			
17	0,080	0,225	53,1	0,300	52,4	0,342	51,7	0,399	40,1	0,355	38,2	0,344	36,7			
18	0,085	0,211	52,8	0,280	52,0	0,319	51,2	0,403	40,0	0,351	38,1	0,337	36,4			
19	0,090	0,181	51,0	0,261	51,2	0,285	50,7	0,366	40,1	0,324	37,9	0,305	35,7			
20	0,095	0,155	50,2	0,220	51,0	0,269	50,2	0,325	39,5	0,285	36,5	0,244	33,4			
21	0,100	0,000	45,7	0,000	46,9	0,000	46,0	0,000	37,8	0,000	32,6	0,000	29,9			

Tablica: Z.2.17.

	Odległość		Prędkość lokalna powietrza w [m/s] oraz temperatura T [⁰ C] w określonym przekroju												
Lp.	czujnika			Kanał	ciepły		Kanał zimny								
	od scianki	Ι		II		I	III		IV		7	V	Ί		
	л [III]	W	Т	W	Т	W	Т	W	Т	W	Т	W	Т		
1	0,000	0,000	45,4	0,000	47,0	0,000	48,1	0,000	34,2	0,000	32,6	0,000	27,3		
2	0,005	0,363	53,1	0,344	53,1	0,303	51,2	0,209	36,9	0,264	36,7	0,276	35,2		
3	0,010	0,445	57,6	0,381	54,7	0,355	52,6	0,248	36,9	0,269	36,9	0,359	37,1		
4	0,015	0,459	57,7	0,410	54,9	0,350	53,3	0,252	36,7	0,277	37,0	0,368	37,6		
5	0,020	0,438	57,3	0,410	55,1	0,364	53,3	0,260	36,8	0,281	37,1	0,371	37,8		
6	0,025	0,425	56,0	0,398	54,1	0,377	53,3	0,264	37,3	0,287	37,5	0,371	38,0		
7	0,030	0,414	55,7	0,385	53,7	0,390	53,4	0,236	37,3	0,294	37,5	0,374	38,1		
8	0,035	0,409	55,3	0,372	53,7	0,400	54,3	0,256	37,3	0,305	37,6	0,374	38,1		
9	0,040	0,382	54,2	0,375	53,5	0,403	54,0	0,278	37,5	0,316	37,7	0,374	38,1		
10	0,045	0,337	54,9	0,353	53,5	0,397	53,8	0,287	37,8	0,321	37,8	0,374	38,1		
11	0,050	0,316	54,6	0,328	53,2	0,393	53,8	0,295	37,8	0,326	37,8	0,375	38,1		
12	0,055	0,272	54,3	0,319	53,4	0,387	53,8	0,320	37,8	0,336	37,9	0,371	38,2		
13	0,060	0,257	54,1	0,312	54,2	0,382	53,8	0,347	38,1	0,347	38,0	0,365	38,1		
14	0,065	0,238	53,9	0,311	54,1	0,372	53,6	0,346	38,4	0,345	38,1	0,361	38,0		
15	0,070	0,240	53,3	0,308	53,8	0,364	53,6	0,351	39,5	0,344	38,6	0,357	38,0		
16	0,075	0,225	52,7	0,297	53,5	0,357	53,4	0,369	40,5	0,353	39,0	0,356	37,9		
17	0,080	0,219	53,8	0,292	54,1	0,350	53,4	0,384	41,0	0,362	39,5	0,354	37,6		
18	0,085	0,186	53,5	0,270	53,5	0,319	52,9	0,396	41,5	0,358	39,5	0,339	37,3		
19	0,090	0,165	52,3	0,244	52,2	0,283	52,2	0,373	41,0	0,333	39,2	0,308	37,0		
20	0,095	0,171	52,3	0,235	51,7	0,286	51,6	0,316	40,6	0,269	37,7	0,240	34,3		
21	0.100	0.000	45.4	0.000	47.0	0.000	48.1	0.000	38.2	0.000	32.6	0.000	27.3		

Wyniki pomiaru prędkości powietrza *w* [m/s] oraz temperatury *T* [⁰C] w przekrojach przy efektywnej mocy "dodatniego" źródła ciepła \dot{Q}_{ef} = 183 W, położenie I diody

9.3. Własności fizyczne powietrza

Tablica Z.3.1.

Т	Ental- pia	ρ	Т	λ		Т	$v \cdot 10^{-6}$	$a \cdot 10^{-6}$	
[⁰ C]	$\left[\frac{kJ}{kg}\right]$	$\left[\frac{kg}{m^3}\right]$	[⁰ C]	$\left[\frac{W}{m^2 \cdot K}\right]$		[⁰ C]	$\left[\frac{m^2}{s}\right]$	$\left[\frac{m^2}{s}\right]$	
0	0	1,293	-50	0.0205		-50	93	13 16	
10	10050	1,247	-30	0,0205		-30),5	15,10	
20	20100	1,205	0	0.0242		0	13.3	18 88	
30	30150	1,165	0	0,0242		0	15,5	10,00	
40	40200	1,128	20	0.0256		20	15.1	21.44	
50	50250	1,093	20	0,0250		20	13,1	21,44	
60	60300	1,06	50	0,0278		50	18 1	25.66	
70	70630	1,029	50			50	10,1	25,00	
80	80720	1	100	0,0311		100	22.2	33	
90	90810	0,972	100			100	23,5	55	
100	100900	0,946	200	0,0368		200	34,85	51,36	

Zestawienie parametrów powietrza [22,42,53]

Poniżej przedstawione zostały zależności z tablicy Z.3.1 na wykresach

Rys. Z.3.1. Zależność entalpii powietrza od temperatury

Rys. Z.3.2. Zależność gęstości powietrza od temperatury

Rys. Z.3.3. Zależność współczynnika przewodzenia ciepła powietrza od temperatury

Rys. Z.3.4. Zależność lepkości powietrza od temperatury

Rys. Z.3.5. Zależność współczynnika wyrównania temperatury powietrza od temperatury

9.4. Określenie strat ciepła "dodatniego" źródła

Aby określić rzeczywisty strumień ciepła przekazywanego od "dodatniego" źródła ciepła do powietrza cyrkulującego wewnątrz diody termicznej należało oszacować straty ciepła do otoczenia. Straty ciepła do otoczenia, przez cylindryczną ścianę źródła ciepła oszacowano w następujący sposób.

Metoda eksperymentalna. Skonstruowane "dodatnie" źródło ciepła zostało bardzo dokładnie zaizolowane w górnej jego części. W takim rozwiązaniu praktycznie cały strumień ciepła przenikał przez zewnętrzne ścianki izolacji źródła (rys.Z.4.1, widok z góry).

Rys. Z.4.1. Schemat pomiarowy strat źródła ciepła

Wewnątrz izolacji źródła ciepła umieszczono termopary (jak na rysunku) połączone z układem pomiarowym.

Pomiary wykonano, po uzyskaniu stanu równowagi cieplnej, dla kilku różnych mocy źródła. Zakładano, że całkowity spadek temperatury spowodowany jest wyłącznie przenikaniem ciepła przez izolację obudowy. Można to opisać zależ-nością:

$$\dot{Q}_{strat} = \frac{T_w - T_z}{R} \tag{Z.4.1}$$

, gdzie R – oznacza opór cieplny izolacji

$$R = \frac{T_w - T_z}{\dot{Q}_{\dot{z}r}} \tag{Z.4.2}$$

Dla tak skonstruowanej zależności po dokonaniu pomiarów określono opór cieplny izolacji i uzyskano jego wartość równą $R \cong 4$ [K/W]. Następnie po zamontowaniu źródła w diodzie termicznej przy zadawanej mocy mierzono straty cieplne na rzecz otoczenia.

Wyniki uzyskanych pomiarów przedstawiono w tablicy Z.4.1, zaś zależność strat źródła w funkcji zadanej mocy źródła pokazano na rys. Z.4.2.

Rys. Z.4.2. Zależność strat ciepła od mocy źródła ciepła

Lp.	$\dot{Q}_{\acute{z}r}$ [W]	$\begin{bmatrix} T_w \\ [^0C] \end{bmatrix}$	$\begin{bmatrix} T_z \\ [^0C] \end{bmatrix}$	Obliczenie strat źródła	$\dot{\mathcal{Q}}_{strat}$ [W]	$\dot{\mathcal{Q}}_{strat}$ [%]	\dot{Q}_{ef} [W]	\dot{q}_{rz} [w/m ²]
1.	6,0	20,8	14,0	$\dot{Q}_{strat} = \frac{20, 8 - 14}{4}$	1,7	28,3	4,3	547
2.	12,5	32,0	16,0	$\dot{Q}_{strat} = \frac{32 - 16}{4}$	4,0	32,0	8,5	1082
3.	25,0	48,6	22,0	$\dot{Q}_{strat} = \frac{48, 6-22}{4}$	6,65	26,6	18,35	2336
4.	37,5	64,5	26,0	$\dot{Q}_{strat} = \frac{64, 5-26}{4}$	9,6	25,6	27,9	3575
5.	50,0	80,3	29,7	$\dot{Q}_{strat} = \frac{80, 3 - 29, 7}{4}$	12,2	24,4	37,8	4813
6.	62,5	94,3	34,3	$\dot{Q}_{strat} = \frac{94, 3 - 34, 3}{4}$	15,0	24,0	47,5	6089
7.	75,0	107,1	38,2	$\dot{Q}_{strat} = \frac{107 , 1 - 38 , 2}{4}$	17,2	22,9	57,8	7366
8.	87,5	120,6	42,4	$\dot{Q}_{strat} = \frac{120, 6-42, 4}{4}$	19,55	22,3	67,95	8642
9.	100,0	134,6	46,1	$\dot{Q}_{strat} = \frac{134}{4}, 6 - 46, 1}{4}$	22,1	22,1	77,9	9919
10.	112,5	144,8	48,7	$\dot{Q}_{strat} = \frac{144, 8-48, 7}{4}$	24,0	21,3	91,2	11252
11.	125,0	156,0	51,6	$\dot{Q}_{strat} = \frac{156 - 51, 6}{4}$	26,1	20,9	98,9	12586
12.	137,5	166,9	53,2	$\dot{Q}_{strat} = \frac{166, 9-53, 2}{4}$	28,4	20,6	109,1	13920
13.	150,0	178,0	57,1	$\dot{Q}_{strat} = \frac{178 - 57 , 1}{4}$	30,2	20,1	119,8	15253
14.	162,5	189,1	60,2	$\dot{Q}_{strat} = \frac{189, 1-60, 2}{4}$	32,2	19,8	130,3	16565
15.	175,0	200,4	62,6	$\dot{Q}_{strat} = \frac{200, 4-62, 6}{4}$	34,4	19,6	140,6	17876
16.	187,5	210,9	64,7	$\dot{Q}_{strat} = \frac{210, 9-64, 7}{4}$	36,5	19,4	151,0	19188
17.	200,0	222,0	66,0	$\dot{Q}_{strat} = \frac{222 - 66}{4}$	39,0	19,5	161,0	20499
18.	212,5	233,8	72,2	$\dot{Q}_{strat} = \frac{233, 8 - 72, 2}{4}$	40,4	19,0	172,1	21916
19.	225	245,0	78,0	$\dot{Q}_{strat} = \frac{245 - 78}{4}$	41,75	18,5	183,25	23332

Wyciąg z protokołu - pomiar strat ciepła źródła

Tablica Z.4.1.