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Abstract: The study involves the development of multi-objective optimization model for turning 

machining process. This model was developed using a GA - based weighted-sum of minimum 

production cost and time criteria of multipass turning machining process subject to relevant 

technological/practical constraints. The results of the single-objective machining process 

optimization models for the multipass turning machining process when compared with those of 

multi-objective machining process model yielded the minimum production cost and minimum 

production time as $5.775 and 8.320 min respectively (and the corresponding production time and 

production cost as 12.996 min and $6.992, respectively), while those of the multi-objective 

machining process optimization model were $5.841and 9.097 min. Thus, the multi-objective 

machining process optimization model performed better than each of the single-objective model 

for the two criteria of minimum production cost and minimum production time respectively. The 

results also show that minimum production time model performs better than the minimum 

production cost model. For the example considered, the multi-objective model gave a lower 

production time of 30.0% than the corresponding production time obtained from the minimum 

production cost model, while it gave a lower production cost of 16.46% than the corresponding 

cost obtained by the minimum production time model. 

Keywords: Turning process, Genetic Algorithms, minimum production cost, minimum 

production time, single-objective, multi-objective model 

 

1. INTRODUCTION 

The machining optimization problem being 

considered is a multi-objective problem.  

The multi-objective methods provide two ways to 

solve multi- objective problems: combine them into 

a single objective using the weighted sum method or 

utility functions; and solve to obtain a set of non-

dominated Pareto optimal solutions, each solution 

providing a different tradeoff between the objectives 

under consideration. However, these single objective 

approaches have a limited value to fix the optimal 

cutting conditions, due to the complex nature of the 

machining processes, where several different and 

contradictory objectives must be simultaneously 

optimized. 

Ahmad [1] stated that an optimal cutting condition 

for a machining operation is a multi-objective problem 

hence requires Multi-Criteria Decision-Making 

(MCDM) approaches. He used goal programming 

approach for the multi-objective optimization of the 

single-pass turning process, to find the optimal 

machining speed and feed rate values subject to 

a number of practical constraints including 

horsepower, permissible cutting speed, and 

permissible feed rate; with the objective functions of 

tool life and metal removal rate.  

Cus et al [2] presented a multi-objective 

optimization of the end milling process by using 

neural network modeling and particle swamp 

optimization. They used the neural network to predict 

cutting forces during the machining operation and the 

particle swamp optimization to obtain the cutting 

speed and feed rate. 
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Bouzakis et al [3] proposed, a multi-objective 

optimization procedure, based on Genetic Algorithms, 

to obtain the optimum cutting conditions (cutting 

depth, feed rate and cutting speed) in milling. 

Objective functions, like machining cost and 

machining time and several technological constrains 

were simultaneously taken into consideration. 

A Pareto ranking approach was used to determine the 

optimum cutting parameters. Milling simulation 

algorithms were taken into account in order to 

calculate chip thickness, cutting force, etc. An 

application example demonstrating the effectiveness 

of the proposed methodology was also presented.  

Marler and Arora [4] surveyed the current 

continuous non-linear Multi-Objective Optimization 

(MOO) methods as well as the Genetic Algorithms. 

They also provided commentaries on the advantages 

and pitfalls of individual methods, the different classes 

of methods, and the field of MOO as a whole as well 

as the characteristics of the most significant methods. 

They found that no single approach was superior. 

Rather, the selection of a specific method depends on 

the type of information that is provided in the 
he solution 

requirements, and the availability of software. 

Other multi-objective approaches have been 

reported in cutting parameters optimization [5, 6], but 

mainly use a priori techniques, where the decision 

maker combines the different objectives into a scalar 

cost function. This actually makes the multi-objective 

problem, single-objective prior to optimization [7]. 
Quiza-Sardinas et al [8], proposed a multi-

objective optimization method, based on a posteriori 

techniques and using genetic algorithms, to obtain the 

optimal parameters in turning processes. 

The widely used approach for solving multi-

objective optimization problems is to transform 

a multiple objective (vector) problem into a single-
objective (scalar) problem. Among decision methods, 

weighted-sum aggregation of preferences is by far the 

most common, as it is a direct specification of 

important weights [9]. The weighted sum method 

transforms multiple objectives into an aggregated 

scalar objective function by multiplying each objective 

function by a weighting coefficient and summing up 

all contributors to look for the Pareto solution [10]. 

But the minimum production cost objective and 

the minimum production time objective are quite 

different by nature and values and could therefore not 

be aggregated as comparable objectives. Thus 

a normalization scheme is needed for the two 

objectives to be comparable criteria and their weights 

correctly applied to represent their relative importance 

[11, 12, 13]. The normalization not only transforms 

data to have comparable values but also transforms the 

problem to a maximization problem [9]. The weighted 

sum method requires multiplying each of the 

normalized objective functions by some weighting 

coefficients and summarizing them into a single 

objective function.  

This work presents a method that determines 

weights for the objective functions without the 

articulation of preferences among the many criteria by 

the decision maker and without arbitrary choice of 

weights. This method is based on Genetic Algorithms, 

which maintains a population of encoded feasible 

solutions and guides the population towards the 

optimum solutions [14]; then after each search interval 

(i.e. generation), ideas or information about the 

performance (or possible solution) found by each 

member of the Genetic Algorithms population (i.e. the 

search team) can be used to determine such weights. 

The contribution of each member of the Genetic 

Algorithms population is reflected in the weight 

assigned to each objective function in the multi-

objective optimization problem. This work is also 

concerns with evaluation of cost and time functions 

involved in multipass turning machining process, 

development of single-objective cost and time model 

as well as evaluation of the related practical 
constraints in order to determine optimum machining 

cutting parameters [15]. The model developed is then 

implemented in a Microsoft Visual Basic.Net 

environment to obtain optimum cutting machining 

parameters. 

2. METHODOLOGY 

2.1. Development of the single-objective turning 

machining process optimization models 
Mathematical models have been developed for the 

multipass turning machining process for the unit 

production cost and time. 

The unit production costs for the multi-pass 

turning Cut, is given by [16]: 
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The unit production time for the multi-pass turning 

Tut, as given by [17] is given in eqn. (2) as: 
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2.2. Development of the multi-objective 

machining process optimization model 
The developed multi-objective machining process 

optimization model can be written as: 

max.  (v, f, d) = (Cut (v, f, d), Tut (v, f, d)) T 

= Max. 1TwCw N
ut2

N
ut1  

subject to  gj (v, f, d) 0 j = 1, J 

hk (v, f, d) = 0 K = 1, K (3) 

vL   vU
 

fL f  fU
 

dL d dU
 

. 

The normalized production cost and time for the 

turning machining operations are given by eqns. (4) 

and (5) as: 
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The corresponding weights, w1 and w2 as given by 

[18] are shown in eqns. (6) and (7) as: 
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These models are optimized subject to the 

constraints specified by eqns. (8)  (31): 
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 chip-tool interface temperature constraint: 

 roughing: Urrrqr QdfvkQ , (20) 

 finishing: 
Usssqs QdfvkQ , (21) 

 dimensional accuracy constraint: 

 roughing:
Urrrgr DAdfvkDA , (22) 

 finishing: 
Usssgs DAdfvkDA , (23) 

 stable cutting region constraint: 

 roughing: SCdfvSC rrrr , (24) 

 finishing: SCdfvSC ssss , (25) 

 surface finish constraint: 

 finishing:
U

2
s

s SR
8R

f
SR , (26) 

 miscellaneous constraints: 

 finishing cutting speed:
rs 1.2vv , (27) 

 finishing feed rate: 
rs 0.6ff , (28) 

 finishing depth of cut:
rs d5.0d , (29) 

 Total depth of cut constraint: ds = dt n, (30) 

 bounds on number of rough cuts: 
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2.3. Steps in the multi-objective Genetic 

Algorithm methodology 
The multi-objective Genetic Algorithms 

methodology was implemented by applying the 

weighted method developed by [18], given as Figs 1-2. 

// Set imax = Max. No. of generations  

i = 1: //Initialize generations  

For j = 1 To nq: // nq = 20 GA population size 

For k = 1 To nr: //  

// Generate initial random population  

// of nq chromosomes (suitable solutions  

// for the problem) 

//Evaluate the fitness fijk(x) = f(x) of each  

// chromosome x in the population 

Next k 

Next j 

1 For j = 1 To nq 

Sum = 0 

For k = 1 To nr 

 

 

 

Next k 

Next j 

SumTotal = 0 

For k = 1 To nr 

 

Next k 

For k = 1 To nr 

 

Next k 

For j = 1 To nq 

Cum = 0 

For k = 1 To nr 

 

 

 

If  Then GoTo 2 

Next k 

Next j 

//Carry out GA procedure of creation of new 

populations as thus: 

//Create a new population by repeating following 

steps until the new population is complete 

Fig. 1. Genetic Algorithm methodology 1/2 

a. [Selection] Select two parent chromosomes 

from a population according to their fitness 

(the better fitness, the bigger chance to be 

selected) 

b. [Crossover] With a crossover probability 

cross over the parents to form new offspring 

(children). If no crossover was performed, 

offspring is the exact copy of parents. 

c. [Mutation] With a mutation probability 

mutate new offspring at each locus (position 

in chromosome). 

d. [Accepting] Place new offspring in the new 

population 

// Evaluate the new generated population for 

a further run of the algorithm 

For j = 1 To nq: // nq = 20 GA population size 

For k = 1 To nr:  

//Evaluate the fitness fijk(x) = f(x) of  

//each chromosome x in the population 

Next k 

Next j 

i = i + 1 

GoTo 1 

2 /Display optimum results: Optimum decision 

variables; optimum objective functions  

// values; Optimum multi-objective function 

value; and no. of GA generations 

End 

Fig. 2. Genetic Algorithm methodology 2/2 

2.4. Implementation 
The elements of the proposed models developed 

using Genetic Algorithm have been implemented in 

the software developed in Microsoft Visual Basic.Net 

environment and run on a Pentium 4 PC with 3.0 GHz 

Intel Processor and 2 GB of RAM. The values set for 

different parameters of the genetic algorithm are 

shown in Table 1. 

Tab. 1. Genetic Algorithms parameters 

Population size 20 

Number of population 
generation 

50 

Length chromosomes 49 

Selection operator Roulette Wheel 

Crossover operator One-point operator 

Crossover probability 0.80 

Mutation probability 0.01 

Fitness measure Multi-objective model 
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2.5. Illustrative example 

An illustrative example has been adopted from 

[15, 16] to demonstrate the performance of the 
proposed models. Table 2 shows the data of the 

illustrative example. 

Tab. 2. Data of Chen and Tseng [19] and Onwubolu and 
Kumalu [16] 

vrL = 90 m/min vrU = 500 m/min vsL = 90 m/min 

vsU = 500 m/min frL = 0.1 mm/rev   = 5 

 = 0.40 fsL = 0.1 mm/rev fsU = 1.0 mm/rev 

drL = 1.0 mm drU = 3.0 mm dsL = 1.0 mm 

 = 0.95  = 0.75 Ko = 0.5 $/min 

Kt = 2.5 $/min TL = 25 min TU = 45 min 

SRU = 10 m  = 0.9709 QU = 1000 C 

h2 = 0.3 min FU = 5.0 kgf PU = 200 kW 

R = 1.2 mm  = 0.85 C = 140 

Kf = 108 Kq = 132 dsU = 3.0 mm 

 = 0.2 h1 = 7x10-4 min/mm  Te = 1.5 min/edge 

 = 0.105 frU = 1.0 mm/rev  = 1.75 

Co = 6x1011 kr = 100.66  = -0.2848 

Tc = 0.75 

min/piece 
 = 0.4905  = -1 

 = 0.75  = 2  

 

2.6. Illustration of the multi-objective model using 

data of Amiolemhen and Ibhadode [15] 
An illustrative example has been adopted from 

[15] to demonstrate the performance of the the multi-

objective model for multi-pass turning operation. 

The cutting parameters of cutting speed, feed rate 

and depth of cut are shown in columns 2, 3 and 4 of 

Table 3, while the objective functions values of the 

minimum production cost and minimum production 

time are shown in columns 5 and 6 of Table 3.  

The normalized values of the minimum production 

cost, minimum production time and the multi-

objective models are shown in columns 7, 8 and 9 of 

Table 3. 

The normalized values of the Multiobjective 

model, shown in column 9; were obtained by 

summation of each normalized single objective model 

multiply by its respective estimated weight, w*. And, 

these weights were determined from eqns. (6) and (7) 

as thus: 
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The normalization processes were computed using 

eqns. (4) and (5) as follows: 
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The multi-objective model values were computed 

using eqn. (3) as follows: 
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Tab. 3. Data of Amiolemhen and Ibhadode [15] 

S/N 
Cutting 
speed ,v 
(m/min) 

Feed rate, f 
(mm/rev) 

Depth of cut, 
d( mm) 

Min. prod. 
time, Tu 

(min/piece) 

Min. prod. 
cost, Cu 
($/piece) 

Norm. min. 
prod. time, 

TuN 

Norm. min. 
prod. cost, 

CuN 
Multi- obj. 

1 157.770 0.249 1.331 38.000 20.13033 0.923 0.872 0.898 

2 199.365 0.340 1.533 22.653 14.84944 1.000 0.975 0.988 

3 209.031 0.361 1.581 20.945 14.89608 0.999 0.987 0.993 

4 149.362 0.230 1.290 43.695 22.71106 0.886 0.834 0.860 

5 158.331 0.250 1.333 37.668 19.98419 0.925 0.874 0.900 

6 149.792 0.231 1.292 43.477 22.61254 0.887 0.835 0.862 

7 93.737 0.108 1.018 167.343 83.75185 0.000 0.000 0.000 

8 145.458 0.222 1.271 46.823 24.11693 0.865 0.813 0.839 

9 154.471 0.242 1.314 40.083 21.06037 0.910 0.858 0.884 

10 149.672 0.231 1.291 43.466 22.60522 0.887 0.835 0.862 

11 106.529 0.136 1.081 112.542 56.42846 0.397 0.369 0.383 

12 226.139 0.399 1.664 19.013 15.95387 0.984 1.000 0.992 

13 119.894 0.166 1.145 79.664 40.12018 0.633 0.591 0.613 

14 149.774 0.231 1.292 43.390 22.57031 0.888 0.836 0.862 

15 218.626 0.382 1.627 19.705 15.33786 0.993 0.995 0.994 

16 98.2160 0.118 1.040 144.239 72.22248 0.167 0.156 0.162 

17 116.554 0.158 1.130 86.436 43.46744 0.585 0.545 0.565 

18 104.948 0.133 1.073 117.760 59.02573 0.359 0.334 0.347 

19 106.948 0.137 1.083 111.342 55.83138 0.405 0.378 0.392 

20 222.380 0.391 1.646 19.330 15.61603 0.989 0.998 0.993 

 

3. RESULTS AND DISCUSSION 

3.1. Figures and Tables 
Figures 3 and 4 show the plot of the fractional 

fitness superimposed on the plots for the minimum 

production time, Tu and minimum production cost, 

Cu. The figure also shows that there seems to be no 

immediate discernable pattern of variation of 

fractional fitness with number of generations. This is 

due to the complex operations that take place in the 

implementation of the GAs solution that give rise to 

the fractional fitness. However, the spikes appearing at 

the 2nd, 18th, 26th, 28th, 40th, 42nd and 50th 

generations may be due to the resetting of the GAs 

operators at those generations. However, changes 

observed between the 1st and 9th, 16th and 21st, 21st 

and 32nd GA generations are due to the setting of the 
Gas operators of crossover and mutation at those 

generations.  

Figure 5 shows the plots of the normalized 

combined criteria superimposed on the plots for 

minimum production time Tu and minimum 

production cost Cu against number of generations. The 

figure shows that from the 1st to the 9th generations, 

there are sharp reductions in production time and 
production cost of 47.4% and 53.8% respectively 

along with instability in their variations within this 

region. From the 10th to the 33rd generations, further 

reductions are shown with some instability in 

variations observed more for the production cost 



 Amiolemhen P. E., Eseigbe J. A. | Journal of Mechanical and Energy Engineering, Vol. 3(43), No. 2, 2019, pp. 97-108 103 

 
 

curve. Thereafter, the curves converge to constant 

values of 9.1min/piece and $5.8/piece for the 

minimum production time and minimum production 

cost respectively. 

The figure also shows that there are variations of 

the combined criteria curve at generations where the 

minimum production time and minimum production 

cost are varying. At generations where minimum 

production time and minimum production cost are 

constant, the combined criteria curve has constant 

value of 1. This is a consequence of the definition of 

the multi-objective model given by eqn. (3). 

Figure 6 shows the variations of the normalized 

values of the minimum production time, Tu, minimum 

production cost, Cu and the combined criteria against 

number of generations. The figure shows that the 

combined criteria plot is a weighted mean of the 

normalized minimum production time and normalized 

minimum production cost as given by eqn. (3). 

Figure 7 shows the plot of minimum production 

cost and minimum production time against the number 

of GA generations for the turning machining 

operation. The figure shows that the production cost 
drops rapidly from $15.338/piece from the 1st 

generation to 9.328/piece at the 2nd generation, giving 

a cost slope of $6.010/generation. From the 2nd 

generation to the 3rd generation the production cost 

drops from $9.328/piece to $8.615/piece giving a cost 

slope decrease of $0.0.713/generation. From the 3rd 

generation to the 4th generation the production cost 

remains constant. From the 4th generation to the 5th 
generation the production cost increases from 

$8.615/piece to $10.081/piece giving a cost slope rise 

of $1.466/generation. From the 5th generation to the 

6th generation the production cost remains constant. 

From the 6th generation to the 7th generation the 

production cost drops from $10.081/piece to 

$7.630/piece, giving a cost slope of $2.451/generation. 
From the 7th generation to the 8th generation the 

production cost drops from $7.630/piece to 

$7.483/piece, giving a cost slope of $0.147/generation. 

From the 8th generation to the 9th generation the 

production cost drops from $7.483/piece to 

$7.093/piece, giving a cost slope of $0.370/generation. 

From the 9th generation to the 16th generation the 

production time remains constant. From the 16th 

generation to the 17th generation, the production time 

increase from $7.093/piece to $8.013/piece, giving a 

time slope rise of $0.920/generation. From the 17th 

generation to the 20th generation the production time 

remains constant. From the 20th generation to the 21st 

generation the production cost drops from 

$8.013/piece to $7.062/piece, giving a cost slope of 

$0.951/generation. From the 21st generation to the 

22nd generation the production time remains constant. 

From the 22nd generation to the 23rd generation the 

production cost increases from $7.062/piece to 

$7.136/piece, giving a cost slope of $0.074/generation. 

From the 23rd generation to the 32nd generation the 

production time remains constant. From the 32nd 

generation to the 33rd generation the production cost 

drops from $7.136/piece to $5.841/piece, giving a cost 

slope of $1.265/generation. Thereafter, the production 

cost remains constant till the 50th generation. This is 

a cost slope of about 190 times less than that between 

the 1st and the 7th generations. This goes to show how 

effective the GAs solution technique is in converging 

quickly to the optimum value. 

The figure also shows that the production time 

drops rapidly from 19.705 min/piece from the 1st 

generation to 14.916 min/piece at the 2nd generation, 

giving a time slope of 4.789 min/generation. From the 

2nd generation to the 3rd generation the production 

time increases from 14.916 min/piece to 15.893 

min/piece giving a time slope increase of 0.977 

min/generation. From the 3rd generation to the 4th 

generation the production time remains constant. From 

the 4th generation to the 5th generation the production 

time drops from 15.893 min/piece to 14.338 min/piece 

giving a time slope drop of 1.555 min/generation. 
From the 5th generation to the 6th generation the 

production time remains constant. From the 6th 

generation to the 8th generation the production time 

had average drops of 1.68 min/generation. From the 

8th generation to the 16th generation the production 

time remains constant. From the 16th generation to the 

17th generation the production time drops from 10.369 

min/piece to 9.780 min/piece giving a time slope drop 
of 0.589 min/generation. From the 17th generation to 

the 20th generation the production time remains 

constant. From the 20th generation to the 33rd 

generation the production time drops from 9.780 

min/piece to 9.097 min/piece giving a time slope drop 

of 0.683 min/generation. Thereafter, the production 

time remains constant till the 50th generation giving a 
time slope of 0.04/generation. This is a time slope of 

about 180 times less than that between the 1st and the 

7th generations. This goes to show how effective the 

GAs solution technique is in converging quickly to the 

optimum value. 

Figure 8 shows the variation of the weights of the 

normalized criteria over the 50 population generations. 

The figure shows that the values of weights are mirror 

images of each other about the mean weight of 0.5. 

Figure 9 shows the optimum results obtained from 

the three models for the turning machining operation. 

The figure shows that using the minimum production 

cost model while giving an optimum production cost 

of $5.775 predicts a much higher production time of 

12.996 min over the optimum production time of 

8.320 min predicted by the minimum production time 

model; that is 56.20% greater. On the other hand, the 

minimum production time model giving an optimum 

production time of 8.32 min predicts a slightly more 



104 Amiolemhen P. E., Eseigbe J. A. | Journal of Mechanical and Energy Engineering, Vol. 3(43), No. 2, 2019, pp. 97-108  

production cost of $6.992 over the optimum 

production cost of $5.775 predicted by the minimum 

production cost model, that is, 21.07% greater. These 

results suggest that the minimum production time 

model seems to perform better than the minimum 

production cost model. This may be true for most 

cases in the real world of work. Hence, we find that 

the minimum production time model is adopted when 

productive efficiency is desired. Whereas, the 

minimum production cost model is adopted when 

there is ample time for production. However, in high-

performing organizations which all organizations 

strive to be, time is of utmost importance; and it will 

be counter-productive to spend more time on a job 

which can be done in less time for the same quality. 

The multi-objective model gave the production 

cost of $5.841/piece and the production time of 9.097 

min/piece. The multi-objective model gives a higher 

production cost of 1.14% than the minimum 

production cost model while it also gives a higher 

production time of 9.34% than the minimum 

production time model. These higher results from the 

multi-objective model than the single-objective 

models are expected because the multi-objective 

model is a combination of the two conflicting single-

objective models and therefore gives compromise 

results (or tradeoff results). However, the figure shows 

that the multi-objective model gives a lower 

production time of 43.9% than the corresponding 

production time obtained from the minimum 

production cost model while it also gives a lower 

production cost of 19.7% than the corresponding 

production cost obtained by the minimum production 

time model. 

 

Fig. 3. Plots of fractional fitness and minimum production time against number of generations 

 

Fig. 4. Plots of fractional fitness and minimum production cost against number of generations 
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Fig. 5. Plots of normalized combined criteria, minimum production time and minimum production cost against number of 
generations 

 

Fig. 6. Plots of normalized values of minimum production time, minimum production cost and the combined criteria against 
number of generations 

 

Fig. 7. Plots of minimum production time and minimum production cost against number of generations 
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Fig. 8. Plots of weights of minimum production time and minimum production cost against number of generations 

 

Fig. 9. Comparison of results of the three models

4. CONCLUSIONS 

The results of the single-objective machining 

process optimization models for the multipass turning 

machining process when compared with those of 

multi-objective machining process model yielded the 

minimum production cost and minimum production 

time as $5.775 and 8.320 min respectively (and the 

corresponding production time and production cost as 

12.996 min and $6.992, respectively), while those of 

the multi-objective machining process optimization 

model were $5.841 and 9.097 min. Thus, the multi-

objective machining process optimization model 

performed better than each of the single-objective 

model for the two criteria of minimum production cost 

and minimum production time respectively. From the 

analysis of results, it appears that the minimum 

production time model performs better than the 

minimum production cost model. Thus, for real shop 

floor conditions in which time is of essence, it is 

recommended that the minimum production time 

model be used. Moreover, the analysis of results 

further shows that the machining process optimization 

problem is actually a multi-objective optimization 

problem with several constraints and two conflicting 

objective functions of minimum production cost and 

minimum production time models. Due to the ability 

of the multi-objective criteria model to combine the 

effects of two conflicting objectives, the model is able 

to predict better performance indices than the single-

objective models of cost and time. Thus, for the 

example considered, the multi-objective model gave 

a lower production time of 30.0% than the 

corresponding production time obtained from the 

minim,um production cost model, while it gave 

a lower production cost of 16.46% than the 
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corresponding cost obtained by the minimum 

production time model. 

Nomenclature 

Symbols 

C conservative tool-life constant, dependent on cutting 

tool material/work-piece combination 

Cfi  cumulative fitness of a population 

Cit machine idle cost due to loading and unloading 

operations and tool idle motion 
Cmt cutting cost by actual time in cut for turning ($/piece) 

 normalized minimum production cost 

Co tool-life constant, dependent on cutting tool 

material/work-piece combination  

Crt tool replacement cost for turning ($/piece) 
Ctt tool cost for turning ($/piece) 

Cut unit production cost except material cost for ($/piece) 
D diameter of work-piece (mm) 

DAr dimensional accuracy in roughing machining 

operation (mm) 

DAU limit of dimensional accuracy (mm) 
F {Fr, Fs}, cutting forces during rough and finishing 

machining (kgf) 

FU maximum allowable cutting force (kgf) 

Ko direct labour cost + overhead ($/min) 
Kt cutting edge cost ($/edge) 

L length of work-piece (mm) 

N {Nr, Ns}, spindle speeds for roughing and finishing 

machining (rpm) 

Nj  length of chromosome (binary string) of each design 
variable  

Nrp number of rough passes 

P {Pr, Ps}, cutting powers during roughing and 

finishing machining (kW) 

Pfi  % fitness of each chromosome 

PU maximum allowable cutting power (kW) 

Q {Qr, Qs}, chip-tool interface temperature constraints 

for roughing and finishing machining ( C) 

QU maximum allowable chip-tool interface temperature C) 

R nose radius of cutting tool (mm) 

SCr stable cutting region for roughing machining 

SCs  stable cutting region for finishing machining 

SCU  limit of stable cutting region  

SRU maximum allowable surface roughness ( m) 

T  {Tr, Ts}, expected tool-lives for roughing and 

finishing machining (min) 

 normalized minimum production time 

TL, TU lower and upper bounds for tool life for roughing and 

finishing machining (min) 

Ti machine idling time (min) 

Tm actual machining time (min) 

Tp tool life of weighted combination of Tr and Ts (min) 

 undesired production time estimate (min) 

 desired production time estimate (min) 

 normalized production time for turning 
bi  { bi-1 , bi-2 0 } binary string comprising genes 

d {dr, ds}, depth of cut in rough and finish machining 

operations (mm) 

dr  {drL, drU}, lower and upper bound of depth of cut in 

roughing machining (mm)  

drt depth of cut in roughing for straight turning (mm) 

ds {dsL, dsU}, lower and upper bound of depth of cut in 

finish machining (mm) 

dt depth of material to be removed (mm) 

f {fr, fs}, feed rates in roughing and finishing 

machining operations (rev/mm) 

fij the ith objective function value in the jth position of 

the current population 

 the minimum ith objective function value 

 the maximum ith objective function value 

 { , , }, the i, j and n normalized objective 

function values  

fr  {frL, frU}, lower and upper bound of feed rate in 

roughing machining (rev/mm)  
fs  {fsL, fsU}, lower and upper bound of feed rate in 

finishing machining (rev/mm) 

gi   

h1 constant relating to tool travel and 

approach/departure time (min/mm)  

h2 constant relating to tool travel and 

approach/departure time (min)  

hk  

kf constant pertaining to a specific tool-workpiece 

combination for cutting force and cutting power  

kq constant pertaining to the constraint of chip-tool 

interface temperature 

kr constant pertaining to the constraint of dimensional 

accuracy 
l { lv , ld, lf }lengths of range of the variables of cutting 

speed, depth of cut and feed rate  

lr run back length (mm) 

m number of objective functions 
n number of rough cuts (an integer) 

nt an exponent that depends on cutting conditions 

np population size 

npt number of passes in roughing turning 

q {qv, qd, qf } levels of precision of the variables of 

cutting speed, depth of cut and feed rate  

r r  (0,1) random number 

tc constant term( due to loading and unloading 
operations) (min) 

te tool exchange time (min) 

v {vr, vs}, cutting speeds in rough and finish machining 

operations (m/min) 

vr {vrL, vrU}, lower and upper bound of cutting speed in 

rough machining (m/min) 

vs {vsL, vsU}, lower and upper bound of cutting speed in 

finish machining (rev/mm) 
w1 weight coefficient representing the relative 

importance of production cost criterion 

w2 weight coefficient representing the relative 

importance of production time criterion 

 estimated value of w1 

 estimated value of w2 

x {x1 , x2} lower and upper values of the variables  
x' integer value of the corresponding random binary 

string 

z {zv , zd, zf}binary string lengths of the variables 

Greek letters 

t utility function of turning multi-objective model 

, ,  constants in the modified 

relating to cutting speed, feed rate and depth of cut 

,  constants relating to expression of cutting force and 

cutting power constraints 

 machine efficiency 
 a weight for Tp [0,1] 
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,  constants relating to expression of stable cutting 

region constraint  

, ,   constants relating to expression of chip-tool interface 

temperature constraint 
, ,   constants relating to the dimensional accuracy 

constraint  

Acronyms 

CNC Computer Numerical Control  

GAs Genetic Algorithms 
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