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Abstract: Estimating the amount of suspended sediment in rivers correctly is 
important due to the adverse impacts encountered during the design and 
maintenance of hydraulic structures such as dams, regulators, water channels and 
bridges. The sediment concentration and discharge currents have usually complex 
relationship, especially on long term scales, which can lead to high uncertainties in 
load estimates for certain components. In this paper, with several data-driven 
methods, including two types of perceptron support vector machines with radial 
basis function kernel (SVM-RBF), and poly kernel learning algorithms (SVM-PK), 
Library SVM (LibSVM), adaptive neuro-fuzzy (NF) and statistical approaches such 
as sediment rating curves (SRC), multi linear regression (MLR) are used for 
forecasting daily suspended sediment concentration from daily temperature of water 
and streamflow in the river. Daily data are measured at Augusta station by the US 
Geological Survey. 15 different input combinations (1 to 15) were used for SVM-
PK, SVM-RBF, LibSVM, NF and MLR model studies. All approaches are 
compared to each other according to three statistical criteria; mean absolute errors 
(MAE), root mean square errors (RMSE) and correlation coefficient (R). Of the 
applied linear and nonlinear methods, LibSVM and NF have good results, but 
LibSVM generates a slightly better fit under whole daily sediment values. 
Keywords: Prediction, Neuro-Fuzzy, Sediment Rating Curves,  
Support Vector Machines, Suspended Sediment 
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1. Introduction 
Estimation of suspended sediment amount in streams and rivers correctly is 
a substantial value in the design and maintenance of hydraulic structures such as 
dams, bridges, etc. In particular, the sediment that accumulates in the water 
storage structures such as dam reservoir reduces the reservoir capacity. De-
crease of the reservoir capacity causes shortening of the economic life of facili-
ties. In order to prevent or even delay these damages, a passive storage called 
dead storage is determined in the dam reservoir. It is designed to remain under 
the water intake structure. The service life of a dam, namely its useful life, de-
pends on the amount of storage. Therefore, it is important to accurately forecast 
the type and amount of sediments in dam projects. 

In rivers, suspended sediments are also transported with water during 
stream-flow movement. These sediments are consisted of either erosion in river 
basin or by abrasion in the stream bed. Throughout river, scouring and accumu-
lation in stream bed occur as a result of sediment movements. As a result of this 
scouring and accumulation, the shape of the river bed and morphological struc-
ture is expected to change. For the solution of these problems, suspended sedi-
ment estimations are needed.  

Determination of suspended sediments by measurements is the most ac-
curate method. However, this method takes time and is costly. In addition, there 
is no measurement of the amount of sediments in many observation stations, 
although water flow is measured. It is especially difficult to measure the amount 
of sediments in the stations in case of flooding. 

Artificial intelligence techniques have been widely used to solve complex 
problems in recent years. Examples of these are; artificial neural networks (ANN) 
(Saplıoglu & Cimen 2010, Turhan & Cağatay 2016, Demirci et al. 2017, Unes et 
al. 2018a, 2018b, Turhan et al. 2019) and adaptive network-based fuzzy inference 
system (ANFIS) (Jang 1993, Ghavidel & Montaseri 2017, Ebtehaj & Bonakdari 
2017, Demirci et al. 2018, Catal & Saplioglu 2018, Ehteram et al. 2021). 

In the past, many researchers also applied artificial intelligence methods 
and obtained different results in order to explain the sediment amount problem 
and provide correct solutions. Kisi (2005) estimated the concentration of sedi-
ment in the stream using ANN. Mirbagheri et al. (2010) evaluated the applica-
bility of the sediment rating curves (SRC), and fuzzy rule-based (NF) models in 
estimating the concentration of sediment in the rivers using the coefficient of 
determination and demonstrated that the NF model gives better results for pre-
dicting the sediment concentration. Fırat and Güngör (2010) used ANN and NF 
methods for sediment estimation. According to the results, they demonstrated 
that the NF approach provides high performance. Wieprecht et al. (2013) used 
an ANFIS to estimate bed load and total bed material load in the Rhine River. 
They used two-thirds of the available data sets (bed load and total bed material) 
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for the training phase and the remaining one for the testing phase. They stated 
that the ANFIS modeling approach could be a good alternative for estimating 
bed load and total bed material load. Demirci and Baltaci (2013) investigated 
the viability of the SRC, multi linear regression (MLR), and fuzzy logic (FL) 
methods in estimating sediment concentration. FL model has shown good re-
sults in comparisons for both 5-year and 50-year sediment estimations. Demirci 
et al. (2015) used an ANN approach for forecasting sediment concentration in 
Little Coal river, West Virginia, in the USA. It was found that the ANN model 
gives better estimates than other techniques. Kitsikoudis et al. (2015), derived 
sediment transport formulas for sand-bed rivers. They used ANN, ANFIS, and 
genetic programming based symbolic regression methods to derive these formu-
las. Partovian et al. (2016), made a study on the daily sediment and flow model 
of the Minnesota River. They applied the previously measured data to ANN and 
ANFIS models. They compared it with MLR and auto-regressive moving aver-
age (ARMA) models to evaluate the performance of their models. According to 
their results, ANN and ANFIS models performed better than MLR model. 

Kisi and Zounemat (2016) conducted studies to forecast the amount of 
sediment in 2 stations on the Muddy river in the USA. The input parameters 
were the daily flow rate and the amount of sediment concentration data in the 
study. They used ANN, NF, SRC, and CNF models (Clustered Neuro-Fuzzy 
model, developed from classic NF). The CNF method has been shown to pro-
vide better sediment estimation results than others. CNF method can be present-
ed as an alternative to ANN, NF, SRC methods in sediment prediction. 
Seyedian and Rouhani (2015) studied the capabilities of the ANFIS to estimate 
daily sediment loads for four stations in the USA. They compared the ANFIS 
model they created with the SRC model in terms of error amounts (RMSE, 
MBE), and determination coefficient (R2) values. They stated that the ANFIS 
model performed better than the SRC model. Tasar et al. (2017) used M5tree 
(M5T), ANN approaches, and statistical approaches to estimate sediment load. 
Gunawan et al. (2017) estimated sediment load using the backpropagation net-
work (BPNN) scheme, which is an ANN method. As a result, they stated that 
this model performs better than other known calculation methods with its corre-
lation coefficient (R) and mean square error (MSE) stability. Buyukyildiz and 
Kumcu (2017) studied to predict sediment load which gauged at Ispir Bridge 
station, Çoruh River in Turkey. Choubin et al. (2018), estimated river sediment 
using the classification and regression tree (CART) model with machine learn-
ing techniques. Emamgholizadeh and Demneh (2019), compared artificial intel-
ligence models for the estimation of daily suspended sediment of Telar and 
Kasilian rivers in Iran. Results showed that ANN and ANFIS models were bet-
ter performance than the other models. Salih et al. (2020), predicted suspended 
sediment load in river-based on river discharge information by using newly 
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developed data mining models. Among the applied data mining models, the 
M5P model gave the best prediction result. Meshram et al. (2020), were used 
radial basis function (RBF), support vector machine (SVM), artificial neural 
networks (ANNs), and multiple model (MM)-ANNs to predict sediment yield. 
Results showed that the MM-ANNs model results gave best performance in all 
models.  

This study aims to investigate the performance of data-driven methods, 
including two types of perceptron support vector machines with radial basis 
function kernel (SVM-RBF), poly kernel learning algorithms (SVM-PK), adap-
tive neuro-fuzzy (NF), and statistical approaches such as sediment rating curves 
(SRC), multi linear regression (MLR) in sediment concentration predictions in 
rivers. Furthermore, the LibSVM model, which is one of the new modeling 
techniques, was used for sediment estimation in this study. 

2. Methods 
2.1. Sediment Rating Curve 
Conventional sediment rating curve (SRC) shows the connection between the 
sediment amount and the streamflow measured in any control section of the 
rivers. If Q indicates the streamflow and S indicates the concentration of sedi-
ment, the connection between these two variables; 

baQS   (1) 

where a and b are rating curve constant coefficients. Williams (1978) who ex-
amined the S-Q relationship given in Equation 1, proved that there is no uniform 
relationship. In some rivers, the S-Q relationship is followed by two different 
values. That is, the amount of sediment at different times in the stream can be 
different due to the hydrological causes for the same discharge value. In many 
cases, accurate sediments cannot be forecasted and are inadequate using these 
curves. 

2.2. Multi Linear Regression 
Multi linear regression (MLR) is a type of analysis for predicting a dependent 
variable, depending on 2 or more independent variables associated with the 
dependent variable (Berk, 2004). In MLR analysis, the relationship between 
further than one independent variable (x1, x2 ... xn) and a dependent variable (y) 
is examined. That is, if the dependent variable “y” is assumed to be impressed 
by “n” independent variables such as x1, x2, x3 … xn . If the relationship be-
tween them is assumed to be linear, MLR equation “y” dependent variable can 
be expressed as: 
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nn2211 xb...xbxbay   (2) 

When starting the regression analysis, the variables (two or more varia-
bles) to be searched first must be determined, an acceptance must be made then 
for the type of equation that shows the relationship between these variables. 

2.3. Support Vector Machine  
Support vector machine (SVM) is an approach of learning found by Cortes and 
Vapnik (1995) for solving the classification and regression problems. It is likely 
that classification of variables on a plane by drawing a boundary between them. 
The boundary which is drawn between variables must be as far as possible to 
each variable. The SVM defines how to draw this boundary between variables 
group. SVM studies according to statistical learning theory. A set of training 
data [(x1, y1), (x2, y2),….. (xn, yn)], where “xi” value indicates that the input space 
of the sample and has a corresponding target “yi” value. The SVM estimating 
function expressed as: 

b)W(Ky jkxi   (3) 

Where the Kernel function is Kxi, b is bias term of SVM network and Wjk 
is called the Lagrange multipliers that obtain to the significance of the training 
data sets for the output data. The network architecture of SVM is given in Fig. 1. 
 

 
Fig. 1. Network architecture of SVM10 model 
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In the SVM model, firstly input data is determined and processing is 
started. Then Which Kernel type is decided (In this paper, radial basis function 
and polynomial Kernel is used). After decided Kernel type, parameters of kernel 
are obtained. Finally, Models trained and applied test results. All this SVM 
stage is given in Fig. 2. 

The kernel function of non-linear radial basis (Hsu et al. 2003) is: 

1,2,3,...ni    and 0γeK
2

iyixγ
xi    (4) 

where γ is a user-defined parameter. The kernel function of polynomial 
(Hsu et al. 2003) is: 

  1,2,3,...ni   .K xi  dcyx  (5) 
where function degree define as d and c is constant parameter. If d = 1, function 
became linear condition. 

 

 
Fig. 2. SVM model stage 

2.4. Library SVM  
Library SVM (LibSVM) is one of the machine learning algorithms for support 
vector classification, regression (Chang & Lin 2002). C-SVC, nu-SVC, epsilon-
SVR, and nu-SVR are the most commonly known LibSVM machine learning 
algorithms. It works with multi-class classification. 
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The difference between the LibSVM model from the classic SVM mod-
el is that SVM types can be selected. Once the SVM types have been deter-
mined, the processing steps are similar to the conventional SVM. In this model, 
nu-SVR SVM type and RBF Kernel type is selected. The RBF kernel portion 
was previously explained. Schölkopf et al. (1998) proposed a support vector 
classification algorithm called nu-SVR, which was self-adjusting the epsilon 
parameter. Nu-SVR provides a parameter that can set and control the number of 
support vectors based on the total number of samples in the data set. 

2.5. Neuro-Fuzzy 
Suitable methods for classical analysis (key curves, linear regression) cannot be 
applied successfully in the field of hydrology because hydrological events are 
dependent on many variables and have non-linear relationships. In order to ana-
lyze such hydrological events, simple, economical, and easy methods have been 
developed. Therefore, more accurate and efficient results can be obtained as the 
events are discussed in the perspective of fuzzy. Neuro-fuzzy (NF) is a very effec-
tive logical understanding that can be used for this approach (Üneş et al. 2015). 

NF was initially represented by Jang (1993). The NF system works as 
a learning algorithm created with neural network functional rules. The parame-
ters of neuro-fuzzy systems are obtained by neural network learning algorithms 
in fuzzy rule-based systems, and different analysis methods such as Sugeno can 
be applied. The NF with Sugeno type works according to "If-Then" rules and 
the NF structure uses the Sugeno-Fuzzy rules. It is possible to introduce fuzzy 
systems are logical models which is consisted of “If-Then” rules and member-
ship functions. The Sugeno NF system, generated by two rules using three in-
puts, is shown in Fig. 3. Where, w1 or w2 is obtained by weighted mean of indi-
vidual rule outputs. NF structure is shown in Fig. 4. NF is connected via direc-
tional links and contains several nodes. Every node has a node function that can 
be constant or adjustable parameters. During learning process, the fittest param-
eter values are obtained by adjusting training data. NF is a method with the 
basic learning rules that want to reduce the total of the squared errors between 
the network output data and the real output data. 

Sugeno system in the first degree, two fuzzy If / Then rules with a typi-
cal set of rules can be specified as follows (Sayed et al. 2003). 
1. Rule: If x is A1, y is B1 and z is C1; then f 1 = p1x+ q1y+ r1z +s 
2. Rule: If x is A2, y is B2 and z is C2; then f 2 = p2x+ q2y+ r2z +s 
where: A1, B1, C1 and A2, B2, C2 are linguistic labels (such as “low”, “medium” 
or “high”), f1 and f2 denote, respectively, output functions of 1. and 2. rule, 
{pi, qi, ri, s} specified as result parameters. 



124 Fatih Üneş et al. 
 

 
Fig. 3. Sugeno type fuzzy model generated by two rules using three inputs 

 
With a Sugeno fuzzy inference system, NF network is generated. Re-

searchers who want more information about NF can be found in Jang (1993). 
 

 
Fig. 4. Structure of the Neuro-Fuzzy (NF) system using three inputs 
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3. Study area 
In this paper, Des Moines County area (Hydrologic Unit No: 18020109) in Io-
wa, United States was selected as the study area for estimating suspended sedi-
ment concentration amount. The Augusta station at the Skunk River has been 
studied (USGS Station No: 05474000]). Gage Datum at sea level is about 160 m 
(NGVD29, National Geodesy Vertical Datum). The location of the Augusta 
station at the Skunk River, which is the right tributary of Mississipi, is shown in 
Fig. 5. 

 

 
Fig. 5. Augusta station overviews on Skunk River (USGS) 

4. Datasets 
In this study, 3-year measurement data belonging to the Augusta station were 
used. Model performs was investigated by using daily average temperature of 
water, real-time streamflow, and sediment concentration data from Augusta Sta-
tion at the Skunk River in the USA. A total of 1095 days of three years (2007-
2009) was used for estimation. Daily mean temperature (Tmean), streamflow (Q) 
and sediment concentration (S) values are shown in Fig. 6, respectively. 
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Fig. 6. Daily mean water temperature (Tmean), streamflow (Q), and sediment 
concentration (S) values for 3 years  

5. Model results 
5.1. Error analysis 
The results of SRC, MLR, SVM-RBF, SVM-PK, LibSVM, and NF results for 
the models generated for 3 years data are as follows. For each model, the mean 
absolute errors (MAE), the root mean square errors (RMSE), and the correlation 
coefficients (R) between the models are also used to assess the performance of 
model estimations and observations. The MAE and RMSE were obtained as 
follows. The observed values were calculated.  





N

1i
estimateiobservedi YY

N
1MAE  (6) 

 2estimateiobservedi
N

1i
YY

N
1RMSE  


 (7) 

Here, N represents data numbers and Yi sediment concentration data. 
The model results of the statistical criteria calculated in the study are given in 
Table 1. 
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5.2. Model results 
In the Sediment Rating Curve (SRC), 3-year data were assessed. The SRC was 
drawn by fitting a curve to the flow rate (Qt) and sediment concentration (St) 
data from the station. From the equation expressing this curve, sediment con-
centration data for SRC were obtained by setting the measured flow values at 
the gauge station instead of the unknown x value. The SRC for the training data 
is shown in Fig. 7. 

 

 
Fig. 7. Sediment Rating Curve (SRC) using train data 

 
The established SRC model using training data is given in Equation 8 

and this equation is also applied to the test data. Statistical results (RMSE, MAE 
and R) and inputs of SRC model are given in Table 1. 

St = 7.4008 x (Qt)0.7241 (8) 

After determining the Sediment Rating Curve, a scatter plot is drawn for 
the test data. For the test phase, this scatter plot and distribution graph between 
measured values and the SRC results are shown in Fig. 8a. 

The correlation coefficient, between measured values and SRC predic-
tion results, R = 0.47 was obtained for the test. The sediment rating curve multi-
plies the observed value by the predicted value of real values. When the distribu-
tion graph for the test data is examined, it is seen that the SRC sediment estimated 
values differ than the actual values. According to the SRC results, SRC method 
has low R value for the test data and when the distribution graph is examined, it 
is seen that the desired estimates cannot be obtained and it is considerably lower 
than the station measurement data. 
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Fig. 8. Measurement and Model distribution-scatter graph for test data a) SRC  
b) MLR14 c) SVM-RBF 7 

 
As for the Multi Linear Regression (MLR 1 to 15), 3-year data were as-

sessed and the results were determined as follows. The mean temperature (Tt), 
the lagged time mean temperatures (Tt-1, Tt-2), the streamflow (Qt), the lagged 
time stream-flows (Qt-1, Qt-2), and the lagged time sediment concentrations (St-1, 

a 

b 

c 
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St-2, St-3) at the time “t-1”; “t-2”; “t-3” were used as input values for the MLR 
model analysis.15 different models (MLR 1 to MLR 15) were used for MLR 
model studies. Statistical results (RMSE, MAE and R) and inputs of MLR mod-
el are given in Table 1. 

According to Table 1, the best results in the MLR model belong to the 
"MLR14" model. The results of the MLR14 model are given below. The equa-
tion of MLR predictions is obtained by using training data in the MLR14 model 
and this equation is also applied to the test data. The equation used in MLR 
model estimation is given in Equation 15. 

St = 232.21 + 3.43Qt – 3.08Qt-1 – 3.7T + 4.14Tt-1 + 0.27Tt-2 +  
+ 0.7St-1 + 0.05St-2 + 0.06St-3 (9) 

For the 3-year data generated, MLR 14 model was evaluated, and MLR 
14 distribution and scatter graphs are shown, Fig. 8b. 

In the scatter plot generated during the test phase, the correlation coeffi-
cient was obtained as R = 0.80. MLR1 test data estimations are lower than train-
ing data estimations. The MLR1 estimates in the test phase yield far-reaching 
estimates of actual values, although the daily sediment values yield better re-
sults than the SRC values. It has been observed that the MLR14 prediction val-
ues are smaller than the real sediment observation values in the scatter graphs. 

For the SVM-RBF model analysis, as in MLR, the 3-year data are di-
vided into training and test data. 15 different models (SVM-RBF 1 to SVM-
RBF 15) were used for SVM-RBF model studies. Statistical results (RMSE, 
MAE, and R) and inputs of the SVM-RBF model are given in Table 1. 

According to Table 1, the best results in the SVM-RBF model belong to 
the "SVM-RBF 7" model. The results of the SVM-RBF 7 model are given be-
low. For the 3-year data generated, SVM-RBF 7 model was evaluated. Distribu-
tion and scatter graphs of the SVM-RBF 7 model are shown in Fig. 8c.  

The correlation coefficient R = 0.75 was obtained for the graph generat-
ed for the test with the SVM-RBF 7 model results. The SVM-RBF 7 estima-
tions at the test phase show better results than SRC model estimation values for 
the observed daily real-time sediment concentrations. But the MLR 14 model 
gave slightly better prediction results than the SVM-RBF 7. 

For the SVM-PK model analysis, as in MLR and SVM-RBF, the 3-year 
data are divided into training and test data. 15 different models (SVM-PK 1 to 
SVM-PK 15) were used for SVM-PK model studies. Statistical results (RMSE, 
MAE, and R) and inputs of these models are given in Table 1. 

According to Table 1, the best results in the SVM-PK model belong to 
the "SVM-PK 15" model. The results of the SVM-RBF 7 model are given 
below. Distribution and scatter graphs of the SVM-PK 15 model are shown in 
Fig. 9a. below, respectively. 
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Fig. 9. Measurement and Model distribution-scatter graph for test data a) SVM- PK 15 
b) LibSVM 11 c) NF 13 

 
In the scatter plot generated during the test phase, the correlation coeffi-

cient was determined as R = 0.83. The SVM-PK 15 estimations at the test phase 
show better results than the other models (SRC, MLR 14, SVM-RBF 7) values 

a 

b 

c 
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for the observed daily real-time sediment concentrations. The SVM-PK 15 
model predictions have close to the actual sediment measurements. 

For the LibSVM model analysis, as in MLR; SVM-RBF, and SVM-PK, 
the 3-year data are divided into training and test data. 15 different models 
(LibSVM 1 to LibSVM 15) were used for LibSVM model studies. Statistical 
results (RMSE, MAE and R) and inputs of these models are given in Table 1. 

According to Table 1, the best results in the LibSVM model belong to 
the "LibSVM 11" model. The results of the LibSVM 11 model are given be-
low. Distribution and scatter graphs of the LibSVM model are shown in Fig. 9b. 
below, respectively.  

The correlation coefficient R = 0.90 was obtained for the graph generat-
ed for the test with the LibSVM 11 model results. The LibSVM 11 estimations 
at the test phase show better results than the other models (SRC, MLR 14, 
SVM-RBF 7 and SVM-PK 15) values for the observed daily real-time sediment 
concentrations.  

In NF analysis, Gaussian parabolic 3x3x4x4x3x4x3 Membership Func-
tions (MFs) and Grid Partition section were analyzed with 300 iterations, as-
suming the output as linear. For the NF model analysis, as in MLR; SVM-RBF, 
SVM-PK and LibSVM the 3-year data are divided into training and test data. 15 
different models (NF 1 to NF 15) were used for NF model studies. Statistical 
results (RMSE, MAE and R) and inputs of these models are given in Table 1. 

According to Table 1, the best results in the NF model belong to the 
"NF 13" model. The results of the NF 13 model are given below. Distribution 
and scatter graphs of the NF 13 model are shown in Fig. 9c. below.  

The correlation coefficient R = 0.89 was obtained for the graph generat-
ed for the test with the NF 13 model results. The NF 13 estimations at the test 
phase show better results than the other models (SRC, MLR 14, SVM-RBF 7, 
and SVM-PK 15) values for the observed daily real-time sediment concentra-
tions. It is seen that NF and LibSVM models have low error rates and a high 
correlation when a general evaluation is carried out. 
5.3. General evaluation  
Sediment amounts from 875-day observations used in the training of the NF 
model were also trained for MLR, SVM models as input set. Then, the models 
created were applied to the inputs of the test data generated from 220-day ob-
servations. The model results were compared with the measured values. The 
correlation coefficient variation of prediction models are given in Fig. 10. 
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Fig. 10. Correlation coefficient variations according to SRC, MLR, SVM,  
and NF models 

 
The model with the best result according to Table 1 is obtained when 

RMSE, MAE have the smallest, and R has the largest value. According to 
RMSE, MAE, and R, the SRC model (278,77-163,19-0,47) has the lowest suc-
cess rate. The MLR 14 (230,92-103,42-0,80) model performed better than the 
SRC model. The SVM-PK 15 (180,72-79,41-0,83) model performed better than 
the SRC, MLR 14, and SVM-RBF 7 model. The NF 13 (131,25-73,71-0,89) 
and LibSVM 11 (121,38-64,39-0,90) models were found to perform better than 
the other classical methods at all estimation performance evaluations. 

6. Conclusions 
In the present study, the potential of sediment rating curve (SRC), multi linear 
regressions (MLR), neuro-fuzzy (NF) and support vector machines with radial 
basis function kernel (SVM-RBF), support vector machines with the poly kernel 
(SVM-PK), LibSVM for the predicting of daily suspended sediment concentra-
tion is questioned by comparing the results with the observed suspended sedi-
ment concentration. Daily mean temperature, real-time streamflow, sediment 
concentration, 3-year data from the Skunk River Augusta station in the US were 
used. As a result of this study, it is possible to draw the following conclusions: 

For the 3-year data, the best results according to the correlation coeffi-
cient and error analysis criteria were obtained in the neuro-fuzzy and LibSVM 
models. But, the LibSVM approach slightly better than the NF model for fore-
casting daily sediment concentrations. The worst estimation results in all criteria 
were obtained in the sediment rating curve model. 
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The MLR model could not find the desired accuracy in the same ques-
tion due to the nonlinearity of the suspended sediment behavior while explain-
ing empirical relationships. 

Support vector machines with poly kernel model has better performance 
than SRC, MLR, and SVM RBF models  

The neuro-fuzzy and LibSVM models whose inputs are the air tempera-
ture, streamflow, lagged time stream-flows and suspended sediment concentra-
tions performed the best among the input combinations tried in this paper. This 
indicates that all these variables are needed for better suspended sediment 
modeling. 

As a result, it is demonstrated in this paper that the neuro-fuzzy and 
LibSVM models can be an applicable and alternative method for suspended 
sediment prediction in future studies.  

 
The hydrological data in this study were obtained from the USGS.  
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