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Abstract: This article investigates the application of neural network models to 
create automated control systems for industrial processes. We reviewed and 
analysed works on dispatch control and evaluation of equipment operating modes 
and the use of artificial neural networks to solve problems of this type. It is shown 
that the main requirements for identification models are the accuracy of estimation 
and ease of algorithm implementation. It is shown that artificial neural networks 
meet the requirements for accuracy of classification problems, ease of execution 
and speed. We considered the structures of neural networks that can be used to 
recognise the modes of operation of technological equipment. Application of the 
model and structure of networks with radial basis functions and multilayer 
perceptrons for identifying the mode of operation of equipment under given 
conditions is substantiated. The input conditions for constructing neural network 
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models of two types with a given three-layer structure are offered. The results of 
training neural models on the model of a multilayer perceptron and a network 
with radial basis functions are presented. The estimation and comparative analysis 
of models depending on model parameters are made. It is shown that networks 
with radial basis functions offer greater accuracy in solving identification 
problems. The structural scheme of the automated process control system with 
mode identification based on artificial neural networks is offered. 
Keywords: classification, modelling, neural network, networks with radial basis 
functions, RBF, multilayer perceptron, MLP 

1. Introduction
Due to the development of digital technologies, more data is becoming available for 
control systems. The operation mode of the equipment is determined, as a rule, not 
by one parameter but by a set of parameters. However, the increase in the amount 
of information leads to an overload of the operator, which is most dangerous in 
critical situations: a stressful state of an operator, in combination with the grow-
ing flow of data about the plant, leads to incorrect decisions and even more 
significant losses. The advantage of operators in the control system is their ex-
perience in assessing operating modes, and the advantage of automated control 
systems is reliability and speed in decision-making. Therefore, there is a need to 
develop systems that could work in real-time to support or substitute the operator. 
Restoration of the normal operation of the equipment begins from the moment of 
identification of the event that caused the malfunction or violation of the mode. 

2. Analysis of recent research and publications
The heuristic nature of human operator decision-making and the implicit func-
tional relationship between the causes of equipment failures provide the precon-
dition for creating systems based on artificial intelligence. Expert systems, 
fuzzy logic, neural networks and genetic algorithms are used with varying de-
grees of success to create support and management systems (Kalinchyk et al. 
2021, Warwick et al. 1997). 

The main advantage of Artificial Neural Networks (ANN) in diagnosing 
equipment failures is their flexibility with significant data flow and information 
interference. The main disadvantage is the duration of the training and the need 
for significant training samples that characterise the situation. Generalised re-
gression neural networks (GRNN) with direct signal topology, probabilistic 
neural network (PNN), or adaptive (self-organised) fuzzy neural networks can 
be used to reduce learning time to acceptable results (Rolim et al. 2003). 

Experience in the operation of electric motors shows many failures associ-
ated with emergencies (Ponomarev et al. 2011). 
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Failure of the engine causes significant damage, associated with both down-
time of technological equipment and the need for repair work. Additional dam-
age can occur due to reduced electrical and fire safety, which is associated with 
possible short circuits in the windings of the damaged motor. It is known that 
when the engine is running, there are short-term fluctuations in electrical quanti-
ties, such as current, power, and voltage. Therefore, while analysing the wave-
form of electrical quantities, it is possible to determine the possible damage and 
determine its type. For example, by constructing an approximation function on 
several points of the signal that characterises a particular type of damage, and in 
the process of diagnosis, to compare the current values with the values of this 
function with a certain error. Artificial neural networks are used to build math-
ematical models of various processes, pattern recognition and signal prediction. 
Examples of using ANN to solve problems related to automated control are: the 
estimation of the spectral composition of the information signal and classification 
of signals for decision-making (Malisuwan et al. 2016, Faek et al. 2009), classifi-
cation of non-stationary data to create automatic control systems (Venkatesan et 
al. 2018), operational control of technological processes (Yang et al. 2021). Thus, 
neural networks make it possible to effectively determine the mode of operation 
of the complex and highlight the influence of individual factors on the target 
function, reflecting only the existence between the input and output values of 
the objective relationships. 

3. The goal of this paper 
This paper investigates the crushing and grinding complex’s characteristics and 
modes of operation. The work aims to create a control system of a crushing and 
grinding complex to identify the mode of operation. The following objectives 
are addressed in the paper to achieve this goa: 
 determining operating modes of the crushing and grinding complex, 
 selecting the type and configuration of the artificial neural network to iden-

tify the mode of operation of the plant, 
 modelling the operating modes of the plant and evaluating the quality of 

the neural network to identify the state, 
 creating a structural scheme of the control system of the crushing and 

grinding complex. 

4. Presentation of the primary research material 
When assessing the operational condition of the equipment, there are three pro-
visions (Lukomski et al. 2003, Nguyen et al. 1995): 
 normal or safe condition, where all indicators of the process are within 

normal limits, 
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 a warning or critical condition, where one or more indicators are approach-
ing dangerous values, 

 emergency or dangerous condition in which the normalised values are ex-
ceeded. 
 
When approaching emergency conditions, the operator’s load increases due 

to the flow of data that requires processing, which is called the “curse of dimen-
sionality”. However, the problem of exponential growth of information flow can 
be solved with the help of artificial neural networks. 

Among the many types of ANN, it is worth noting that the multilayer per-
ceptron, trained in the algorithm of backpropagation of error, capable of online 
learning. However, the main problem in the work of the perceptron is the selec-
tion of a training sequence of sufficient volume. 

Multilayer perceptron (MLP) (Fig. 1) is described by the following equa-
tions (Kruglov et al. 2002). 

 

 
Fig. 1. Multilayer perceptron 

 
At n inputs, input signals are fed, which then fall on the synapses of the 

three neurons that form the output layer of the network. At the outputs of the 
network, signals are generated: 
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The synapse weights of one layer of neurons can be represented as a matrix 
W, in which each element wij sets the value of the i-th synaptic connection of the 
j-th neuron. Thus, the processes occurring in the MLP neural network can be 
presented in matrix form: 

( )Y F X W  , (2) 
where: 
X and Y – input and output vectors, respectively, 
F – an activation function applied element by element to the parameters X, W. 
 

Another type of network used to solve classification problems is the radial 
basis function (RBF) network. Networks with RBFs in the simplest form consist 
of three layers: the input layer that performs the distribution of sample data for 
the first layer of weights and the hidden and source layer (Callan 2000). The 
mapping from the input layer to the hidden layer is non-linear, while the map-
ping from the hidden layer to the output layer is linear. 

Some hidden function φ is connected with each hidden element. Each of 
these functions accepts a combined input and generates an output activity value. 
The set of activity values of all hidden elements determines the vector on which 
the input vector is displayed. 

 )()...(),()( 21 Mxxxх   ,  (3) 
where: 
M – the number of hidden elements, 
x – the input vector. 

 
The connections of the elements of the hidden element determine the centre 

of the radial function for this hidden element. The input for each element is 
chosen equal to the Euclidean form: 

1
2

2
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 , (4) 

where: 
n – the number of input elements. 

 
Various functions are used for hidden elements, such as the Gaussian func-

tion: 
2( ) exp( )r r   or 2 2( )r c r   . (5) 
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Radial basis function (RBF) networks and multilayer perceptron (MLP) 
networks are examples of non-linear multilayer direct propagation networks 
(Haykin 2009). Both are universal approximators. However, these two types of 
networks differ in some essential aspects. 
1. An RBF network has one hidden layer, and a multilayer perceptron can have 

many hidden layers. 
2. Typically, computational nodes of a multilayer perceptron, which are locat-

ed in the hidden and source layers, use the same neuron model. Hidden net-
work computing nodes with radial basis functions may differ from the 
source layer and serve different purposes. 

3. The hidden layer of an RBF network is non-linear, while the source layer is 
linear. In a multilayer perceptron (MLP), the latent and source layers used 
as a classifier are non-linear. If an MLP is used to solve non-linear regres-
sion problems, linear neurons are usually chosen as the nodes of the source 
layer. 

4. The argument of the activation function of each hidden node of the RBF 
network is the Euclidean norm between the input vector and the centre of 
the radial function. The argument of the activation function of each hidden 
node is the scalar product of the input vector and the vector of synaptic 
weights of this neuron. 
 
In order to build a control system without any plant operator, it is necessary 

to solve the problem of error-free recognition of emergency modes and distin-
guish them from short-term modes allowed for this plant. This task is to identify 
the signs (properties) of the controlled plant and characteristics of the predomi-
nant class of modes and then develop the principle of operation of the protection 
and control system. The peculiarity of statistical image recognition is that the 
mode studied and described by n-parameters can be represented as an  
n-dimensional space of observations. If one gets a training statistical sample of 
situations with established affiliation to a class of modes, one can build in the 
space of boundary modes boundary surfaces that separate situations of different 
classes. The recognition procedure is a decision to establish belonging to a par-
ticular class of a new situation by comparing its parameters. 

The paper evaluates and classifies the modes of operation of the crushing 
and grinding complex based on data on specific power consumption (W), per-
formance (Q), the load of the mill (M) and grinding tone (T), which characteris-
es the quality of the original product. The total sample of observations consists 
of 113 observations, which is provided in the form of a table (Table 1) and 
a graph of the distribution in the coordinates of specific power consumption (W) 
and performance (Q) (Fig. 2). Modes are divided into three classes: a – mode of 
optimal performance and electricity consumption, b – mode of low performance, 
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c – mode of inflated specific electricity consumption. The classification will be 
based on 80 observations, and the last day’s data will serve as a control se-
quence to verify the model’s accuracy. The model’s accuracy will be assessed 
by the average value of the relative error in the control sequence and the value 
of the relative error in classification. 

 
Table 1. Indicators of operating modes of the complex 

№ 
Q M W T 

Cl
as

s 

№ 
Q M W T 

Cl
as

s 

x1 x2 y z x1 x2 y z 
1 8.65 0.98 30.630 14.00 b 27 9.90 0.68 27.820 14.00 a 
2 9.90 0.96 25.413 17.75 a 28 10.10 0.64 28.000 15.25 a 
3 8.80 0.91 29.043 14.00 b 29 10.60 0.61 24.350 14.80 a 
4 10.2 0.86 39.707 17.00 b 30 10.40 0.59 27.080 13.50 a 
5 9.40 0.84 40.446 16.00 b 31 10.40 0.57 26.880 14.00 a 
6 10.40 0.82 27.872 18.00 a 32 10.00 0.54 27.940 14.25 a 
7 11.00 0.78 24.402 19.00 a 33 10.20 0.51 26.360 14.00 a 
8 9.90 0.76 27.723 12.50 a 34 9.95 0.49 26.950 12.75 a 
9 10.60 0.73 28.136 18.50 a 35 9.90 0.94 26.390 16.75 a 
10 10.00 0.71 24.315 16.50 a 36 10.80 0.90 29.310 13.90 a 
11 9.60 0.70 25.760 14.50 a 37 10.50 0.87 30.390 11.75 a 
12 9.30 0.66 28.110 16.75 b 38 10.80 0.83 30.340 13.50 a 
13 9.50 0.63 27.903 13.75 b 39 10.80 0.80 26.980 15.25 a 
14 9.60 0.59 28.797 16.00 a 40 10.80 0.77 30.110 12.75 a 
15 9.20 0.57 27.627 16.00 b 41 10.80 0.73 29.120 13.70 a 
16 9.10 0.55 28.951 14.15 b 42 10.50 0.71 31.410 13.00 a 
17 9.50 0.98 32.845 14.75 b 43 9.90 0.69 33.590 14.75 b 
18 10.00 0.96 33.319 13.50 a 44 8.40 0.65 42.200 17.00 b 
19 10.40 0.92 29.870 14.00 a 45 10.30 0.64 29.710 18.25 a 
20 11.20 0.88 26.102 16.50 a 46 11.90 1.06 35.770 19.75 a 
21 10.80 0.84 27.543 16.50 a 47 10.20 1.05 31.580 21.00 a 
22 9.80 0.82 27.884 14.75 a 48 9.40 1.03 31.730 24.50 b 
23 10.10 0.78 29.882 13.75 a 49 11.00 1.01 31.500 18.50 a 
24 11.00 0.74 26.494 20.50 a 50 11.20 0.98 29.470 17.50 a 
25 10.20 0.72 30.420 11.20 a 51 11.60 0.95 30.860 20.80 a 
26 10.20 0.70 26.620 12.50 a 52 10.90 0.92 28.860 18.50 a 
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Table 1. cont. 

№ 
Q M W T 

Cl
as

s 

№ 
Q M W T 

Cl
as

s 

x1 x2 y z x1 x2 y z 
53 10.60 0.89 32.320 18.50 a 84 9.75 0.4 21.65 15.75 a 
54 9.40 0.86 28.660 16.00 b 85 9.7 0.38 25.36 18.25 a 
55 8.40 0.84 30.860 12.00 b 86 10.6 0.36 23.85 19.25 a 
56 9.80 0.82 30.720 13.50 a 87 10.3 0.83 27.07 22.00 a 
57 10.60 0.79 28.200 14.00 a 88 9.5 0.79 31.97 18.00 b 
58 9.5 0.77 28.84 26.00 b 89 10.0 0.77 32.21 15.90 a 
59 8.9 0.73 35.39 19.00 b 90 10.4 0.73 32.92 17.25 a 
60 10.5 0.72 31.07 23.00 a 91 9.6 0.69 28.28 19.25 a 
61 10.3 0.69 29.57 20.00 a 92 10.6 0.66 29.56 19.65 a 
62 10.7 0.65 25.25 18.75 a 93 10.6 0.62 24.34 21.90 a 
63 11.6 0.62 26.67 23.00 a 94 10.1 0.59 31.86 19.33 a 
64 11.1 0.61 23.61 23.00 a 95 10.3 0.56 30.83 16.50 a 
65 10.2 0.59 28.87 16.25 a 96 10.3 0.53 31.97 18.50 a 
66 9.97 0.56 28.78 24.33 a 97 10.3 0.52 24.34 21.70 a 
67 12.0 0.53 35.83 23.50 a 98 10.3 0.5 28.14 20.00 a 
68 11.8 0.53 32.81 21.00 a 99 10.3 0.49 24.06 21.00 a 
69 11.6 0.93 29.74 18.75 a 100 10.3 0.48 28.14 20.00 a 
70 11.6 0.88 30.97 18.50 a 101 10.0 0.93 31.13 19.85 a 
71 11.6 0.84 29.45 19.50 a 102 9.8 0.88 32.65 20.00 a 
72 11.4 0.82 30.07 21.50 a 103 9.7 0.81 32.49 20.00 a 
73 11.3 0.76 30.59 17.50 a 104 10.1 0.79 30.56 18.50 a 
74 11.8 0.71 28.55 20.00 a 105 9.97 0.75 31.24 18.33 a 
75 10.8 0.67 28.94 18.25 a 106 10.1 0.72 32.38 24.40 a 
76 11.2 0.63 25.72 22.50 a 107 9.3 0.69 32.48 24.00 b 
77 10.6 0.59 24.06 21.50 a 108 10.0 0.68 37.49 15.50 b 
78 10.3 0.56 27.66 17.00 a 109 9.5 0.66 30.17 13.00 b 
79 10.2 0.54 24.65 17.25 a 110 9.33 0.64 29.70 14.17 a 
80 10.4 0.51 25.55 19.60 a 111 9.6 0.62 35.25 14.50 b 
81 10.4 0.48 24.48 18.85 a 112 9.2 0.6 31.09 13.50 b 
82 10.2 0.44 22.65 18.75 a 113 9.1 0.59 29.45 18.00 b 
83 10.2 0.42 24.54 19.00 a       
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Fig. 2. Graphic representation of operating modes of the complex 

 
Multilayer perceptron and networks with radial basis functions are accepted 

as models for the classification of modes. The number of inputs (2-3) of the 
network is determined by the number of parameters that determine the operating 
mode. In order to obtain a value that describes the target categorised function, 
three source elements are used, which correspond to a given number of classes. 
The number of neurons in the hidden layer of the perceptron is set at 3 to 25, 
and at 10 to 50 for networks with radial basis functions and will be adjusted 
depending on the accuracy of the model, which will be determined by perfor-
mance on training and test sequences (70, 15 and 15% of the total sample re-
spectively and selected at random). Threshold activation functions may take 
linear, logistic, hyperbolic, and exponential values. The error function is deter-
mined by the method of least squares and cross-entropy. We considered 2000 
networks with randomly formed initial weights, from which the 50 best results 
are automatically selected based on which conclusions will be made about the 
suitability of networks to solve this type of problem. Network learning algo-
rithms are BFGS (Broyden - Fletcher - Goldfarb - Shanno algorithm) for per-
ceptron and RBFT (Redundant Byzantine Fault. Tolerance). The outcomes of 
neural network learning are presented in Table 2. Table 2 uses the following 
notation: Training perf. – network performance on input data; Test perf. – net-
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work performance on the test sequence: Validation perf. – network performance 
on the control sequence. Productivity refers to the percentage of correct classifi-
cation in the data sample. The sum of squares of deviations (SOS) and cross-
entropy (Entropy) are used as the Error function. The Hidden activation func-
tions in the networks with the best performance are linear (Identity), logistic or 
sigmoidal (Logistic), hyperbolic tangent (Tanh), exponential (Exponentia) and 
Gaussian (Gaussian) functions. 

Table 3 presents the matrix of errors for each of the constructed networks, 
which contains the percentage of correctly or incorrectly classified data for each 
class and the total number for all classes. All trained networks have no errors in 
the training sequences. In the test and control sequences, the learning error for 
all classes does not exceed 6.25% for individual networks. These results indi-
cate sufficient accuracy of networks. 

 
Table 2. Neural Networks Learning Outcomes (Q, W, M) 

№ Net. name Training 
perf. 

Test 
perf. 

Valida-
tion perf. 

Training 
algorithm 

Error 
function 

Hidden 
activation 

1 RBF 3-10-3 91.3580247 100 100 RBFT SOS Gaussian 
2 RBF 3-50-3 98.7654321 93.75 100 RBFT Entropy Gaussian 
3 RBF 3-10-3 82.7160494 93.75 100 RBFT SOS Gaussian 
4 RBF 3-50-3 100 93.75 100 RBFT Entropy Gaussian 
5 RBF 3-50-3 95.0617284 93.75 100 RBFT Entropy Gaussian 
6 RBF 3-10-3 93.8271605 87.50 100 RBFT Entropy Gaussian 
7 RBF 3-10-3 91.3580247 81.25 100 RBFT Entropy Gaussian 
8 RBF 3-10-3 95.0617284 93.75 100 RBFT Entropy Gaussian 
9 MLP 3-10-3 90.1234568 87.50 100 BFGS 8 Entropy Identity 
10 RBF 3-50-3 97.5308642 87.50 100 RBFT Entropy Gaussian 
11 RBF 3-10-3 90.1234568 81.25 100 RBFT SOS Gaussian 
12 RBF 3-10-3 91.3580247 81.25 100 RBFT Entropy Gaussian 
13 RBF 3-50-3 100 93.75 100 RBFT Entropy Gaussian 
14 MLP 3-8-3 86.4197531 93.75 93.75 BFGS 8 Entropy Identity 
15 RBF 3-10-3 97.5308642 93.75 100 RBFT Entropy Gaussian 
16 RBF 3-10-3 95.0617284 93.75 100 RBFT Entropy Gaussian 
17 RBF 3-10-3 95.0617284 93.75 100 RBFT Entropy Gaussian 
18 RBF 3-10-3 81.4814815 93.75 93.75 RBFT Entropy Gaussian 
19 RBF 3-10-3 91.3580247 87.50 93.75 RBFT Entropy Gaussian 
20 RBF 3-50-3 100 100 93.75 RBFT Entropy Gaussian 
21 MLP 3-9-3 96.2962963 93.75 93.75 BFGS 15 Entropy Logistic 
22 RBF 3-10-3 97.5308642 87.50 93.75 RBFT Entropy Gaussian 
23 RBF 3-10-3 83.9506173 87.50 93.75 RBFT Entropy Gaussian 
24 RBF 3-50-3 96.2962963 93.75 93.75 RBFT Entropy Gaussian 
25 RBF 3-50-3 98.7654321 93.75 93.75 RBFT Entropy Gaussian 
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Table 2. cont. 

№ Net. name Training 
perf. 

Test 
perf. 

Valida-
tion perf. 

Training 
algorithm 

Error 
function 

Hidden 
activation 

26 RBF 3-10-3 91.3580247 93.75 93.75 RBFT Entropy Gaussian 
27 RBF 3-10-3 86.4197531 87.50 93.75 RBFT Entropy Gaussian 
28 MLP 3-4-3 97.5308642 87.50 93.75 BFGS 23 SOS Identity 
29 RBF 3-10-3 88.8888889 81.25 93.75 RBFT SOS Gaussian 
30 RBF 3-10-3 87.654321 93.75 93.75 RBFT SOS Gaussian 
31 RBF 3-10-3 86.4197531 81.25 93.75 RBFT SOS Gaussian 
32 MLP 3-4-3 80.2469136 93.75 93.75 BFGS 20 SOS Exponential 
33 RBF 3-10-3 91.3580247 93.75 93.75 RBFT Entropy Gaussian 
34 MLP 3-8-3 97.5308642 93.75 93.75 BFGS 18 Entropy Tanh 
35 RBF 3-10-3 91.3580247 93.75 93.75 RBFT Entropy Gaussian 
36 RBF 3-10-3 80.2469136 81.25 93.75 RBFT SOS Gaussian 
37 RBF 3-50-3 100 93.75 93.75 RBFT Entropy Gaussian 
38 RBF 3-50-3 98.7654321 93.75 93.75 RBFT SOS Gaussian 
39 RBF 3-50-3 93.8271605 93.75 93.75 RBFT Entropy Gaussian 
40 RBF 3-10-3 85.1851852 87.50 100 RBFT Entropy Gaussian 
41 RBF 3-10-3 91.3580247 93.75 93.75 RBFT Entropy Gaussian 
42 MLP 3-9-3 90.1234568 93.75 93.75 BFGS 36 SOS Identity 
43 RBF 3-50-3 97.5308642 93.75 93.75 RBFT Entropy Gaussian 
44 RBF 3-50-3 98.7654321 93.75 93.75 RBFT SOS Gaussian 
45 RBF 3-10-3 96.2962963 93.75 93.75 RBFT Entropy Gaussian 
46 RBF 3-10-3 90.1234568 81.25 93.75 RBFT SOS Gaussian 
47 RBF 3-10-3 87.654321 87.50 93.75 RBFT Entropy Gaussian 
48 RBF 3-50-3 100 93.75 93.75 RBFT Entropy Gaussian 
49 RBF 3-10-3 88.8888889 93.75 100 RBFT Entropy Gaussian 
50 RBF 3-10-3 88.8888889 93.75 93.75 RBFT Entropy Gaussian 

 
Table 3. Network errors in the training, test and control sequences 

Learning sequence 
  Class-a Class-b Class-c Class-All 

13
.R

BF
 3

-5
0-

3 Total 45.0000 16.0000 20.0000 81.0000 
Correct 45.0000 16.0000 20.0000 81.0000 
Incorrect 0.0000 0.0000 0.0000 0.0000 
Correct (%) 100.0000 100.0000 100.0000 100.0000 
Incorrect (%) 0.0000 0.0000 0.0000 0.0000 

 



Neural Network Model for Control of Operating Modes… 37
 

 

Table 3. cont. 

Learning sequence 
  Class-a Class-b Class-c Class-All 

20
.R

BF
 3

-5
0-

3 Total 45.0000 16.0000 20.0000 81.0000 
Correct 45.0000 16.0000 20.0000 81.0000 

Incorrect 0.0000 0.0000 0.0000 0.0000 

Correct (%) 100.0000 100.0000 100.0000 100.0000 

Incorrect (%) 0.0000 0.0000 0.0000 0.0000 

37
.R

BF
 3

-5
0-

3 Total 45.0000 16.0000 20.0000 81.0000 
Correct 45.0000 16.0000 20.0000 81.0000 
Incorrect 0.0000 0.0000 0.0000 0.0000 
Correct (%) 100.0000 100.0000 100.0000 100.0000 
Incorrect (%) 0.0000 0.0000 0.0000 0.0000 

48
.R

BF
 3

-5
0-

3 Total 45.0000 16.0000 20.0000 81.0000 
Correct 45.0000 16.0000 20.0000 81.0000 
Incorrect 0.0000 0.0000 0.0000 0.0000 
Correct (%) 100.0000 100.0000 100.0000 100.0000 
Incorrect (%) 0.0000 0.0000 0.0000 0.0000 

Test sequence 
  Class-a Class-b Class-c Class-All 

13
.R

BF
 3

-5
0-

3 Total 10.0000 5.0000 1.0000 16.0000 
Correct 9.0000 5.0000 1.0000 15.0000 
Incorrect 1.0000 0.0000 0.0000 1.0000 
Correct (%) 90.0000 100.0000 100.0000 93.7500 
Incorrect (%) 10.0000 0.0000 0.0000 6.2500 

20
.R

BF
 3

-5
0-

3 Total 10.0000 5.0000 1.0000 16.0000 
Correct 10.0000 5.0000 1.0000 16.0000 
Incorrect 0.0000 0.0000 0.0000 0.0000 
Correct (%) 100.0000 100.0000 100.0000 100.0000 
Incorrect (%) 0.0000 0.0000 0.0000 0.0000 

37
.R

BF
 3

-5
0-

3 Total 10.0000 5.0000 1.0000 16.0000 
Correct 9.0000 5.0000 1.0000 15.0000 
Incorrect 1.0000 0.0000 0.0000 1.0000 
Correct (%) 90.0000 100.0000 100.0000 93.7500 
Incorrect (%) 10.0000 0.0000 0.0000 6.2500 
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Table 3. cont. 

Test sequence 
  Class-a Class-b Class-c Class-All 

48
.R

BF
 3

-5
0-

3 Total 10.0000 5.0000 1.0000 16.0000 
Correct 9.0000 5.0000 1.0000 15.0000 
Incorrect 1.0000 0.0000 0.0000 1.0000 
Correct (%) 90.0000 100.0000 100.0000 93.7500 
Incorrect (%) 10.0000 0.0000 0.0000 6.2500 

Control sequence 

  Class-a Class-b Class-c Class-All 

13
.R

BF
 3

-5
0-

3 Total 7.0000 5.0000 4.0000 16.0000 
Correct 7.0000 5.0000 4.0000 16.0000 
Incorrect 0.0000 0.0000 0.0000 0.0000 
Correct (%) 100.0000 100.0000 100.0000 100.0000 
Incorrect (%) 0.0000 0.0000 0.0000 0.0000 

20
.R

BF
 3

-5
0-

3 Total 7.0000 5.0000 4.0000 16.0000 
Correct 7.0000 5.0000 3.0000 15.0000 
Incorrect 0.0000 0.0000 1.0000 1.0000 
Correct (%) 100.0000 100.0000 75.0000 93.7500 
Incorrect (%) 0.0000 0.0000 25.0000 6.2500 

37
.R

BF
 3

-5
0-

3 Total 7.0000 5.0000 4.0000 16.0000 
Correct 6.0000 5.0000 4.0000 15.0000 
Incorrect 1.0000 0.0000 0.0000 1.0000 
Correct (%) 85.7143 100.0000 100.0000 93.7500 
Incorrect (%) 14.2857 0.0000 0.0000 6.2500 

48
.R

BF
 3

-5
0-

3 Total 7.0000 5.0000 4.0000 16.0000 
Correct 6.0000 5.0000 4.0000 15.0000 
Incorrect 1.0000 0.0000 0.0000 1.0000 
Correct (%) 85.7143 100.0000 100.0000 93.7500 
Incorrect (%) 14.2857 0.0000 0.0000 6.2500 

 
Based on the selected network (RBF), we can create an automated control 

system for the crushing and grinding complex, considering the facility’s per-
formance and power consumption to maintain the optimal mode. The structure 
of the control system of the crushing and grinding complex is shown in Fig. 3. 
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Fig. 3. Structural scheme of the control system of the crushing and grinding complex 

 
The proposed structure of the control system envisages feedback on produc-

tivity and power consumption, which with the help of an artificial neural network, 
will assess the operating mode of the complex and form a control effect. 

5. Conclusions 
According to the research results, the following significant indicators were de-
termined to assess the operation of the crushing and grinding complex, such as 
the performance of the complex, specific electricity consumption and the grind-
ing load. Artificial neural networks such as MLP and RBF were trained based 
on the numerical values of significant indicators. The best indicators for solving 
the classification problem were shown by the RBF network, which indicates the 
advantages of such networks in their use to create automated control systems to 
identify the state of the complex. Increasing the number of parameters taken 
into account when determining the mode complicates the model and reduces its 
accuracy; therefore, when building control systems, it is advisable to use only 
the basic of the accepted parameters (performance and power consumption). 
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