
 
© 2023. Author(s). This work is licensed under a Creative Commons 
Attribution 4.0 International License (CC BY-SA) 

 

 
Rocznik Ochrona Środowiska 

Volume 25 Year 2023 ISSN 2720-7501 pp. 413-422

 https://doi.org/10.54740/ros.2023.042 open access 

 Received: December 2023 Accepted: December 2023 Published: December 2023 

The Use of Giant Miscanthus (Miscanthus × Giganteus)  
in 2G Bioethanol Production 

Małgorzata Smuga-Kogut1*, Sławomir Bugajski2, Tomasz Piskier3, Bartosz Walendzik4* 
1Department of Agrobiotechnology, Faculty of Mechanical Engineering,  

Koszalin University of Technology, Poland 
https://orcid.org/0000-0001-8486-5949 

2Department of Agrobiotechnology, Faculty of Mechanical Engineering,  
Koszalin University of Technology, Poland 

3Department of Agrobiotechnology, Faculty of Mechanical Engineering,  
Koszalin University of Technology, Poland 

https://orcid.org/0000-0003-0890-6301 
4Faculty of Civil Engineering, Environmental and Geodetic Sciences,  

Koszalin University of Technology, Poland 
https://orcid.org/0000-0001-8366-7457 

*corresponding author's e-mail: malgorzata.smuga-kogut@tu.koszalin.pl bartosz.walendzik@tu.koszalin.pl 
Abstract: The study aimed to obtain bioethanol from biomass using chemical treatment and enzymatic hydrolysis. 
Different concentrations of sodium hydroxide (5 and 10%) were used for the delignification process, and enzymatic 
hydrolysis was carried out using three commercial cellulolytic preparations (Cellic® CTec2, cellulase from 
Trichoderma reesei and cellulase from Aspergillus species). The final step involved an alcoholic fermentation process 
using Saccharomyces cerevisiae TYPE II yeast. After enzymatic hydrolysis, the content of reducing sugars was 
determined in the samples, and the fermentation yield was controlled by determining the ethanol content by 
pycnometry. Using chemical pretreatment increased the yield of the whole process by at least 50%. The content of 
reducing sugars after hydrolysis depended on the type of enzyme preparation used for hydrolysis and the use of NaOH 
in pretreatment. The highest reducing sugars content (45.8 g/dm3) was achieved in a sample of material purified with 
5% NaOH, and enzymatic hydrolysis was carried out using Cellic® CTec2. It means the efficiency of the enzymatic 
hydrolysis process equals 94.69%. The concentration of bioethanol after alcoholic fermentation in this sample was 
0.509 g/l. 
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1. Introduction 

Due to technological advances, there is a steady increase in global energy demand. Conventional energy 
sources are significantly limited and are gradually being depleted. The world's reserves of conventional fuels 
are steadily shrinking. As a result, the use of alternative sources of energy generation is increasingly being 
discussed. One of them is lignocellulosic biomass, from which bioethanol can be produced. Liquid biofuels 
such as ethanol are mostly produced from edible plants such as grains and sugar cane. The largest producers 
of this type of fuel are the United States and Brazil. These countries produce bioethanol based on crops mas-
sively grown in them. The United States bases its production on corn, and Brazil bases its production on sugar 
cane. In EU countries, bioethanol is produced from cereals, sugar beets and potatoes(Gumienna et al. 2009, 
Nowacki 2007, Szymanowska & Grajek 2009). In Poland, lignocellulosic biomass is considered the largest 
potential source of energy, and demand for it continues to grow year after year. In the world, plant biomass 
occupies a key position among renewable resources. Its annual production is about 170 billion tons, of which 
about 75% is carbohydrates, 20% is lignin, and only 5% is the remaining components (Burczyk 2012). The 
raw material for ethanol production can be food products, from which first-generation bioethanol is obtained, 
as well as lignocellulosic biomass based on wood-based materials. This waste from agricultural production or 
fast-growing plants is the second-generation bioethanol raw material. Third-generation biofuels are fuels de-
rived from algae. Fuels produced from bio-based products have a positive impact on reducing greenhouse gas 
emissions, reducing the use of fossil fuels, driving agricultural development and improving diversification in the 
fuel market. The EU Renewable Energy Directive 2015/1513 (Directive (EU) 2015/1513 of the European Par-
liament and of the Council of 9 September 2015 Amending Directive 98/70/EC Relating to the Quality of Petrol 
and Diesel Fuels and Amending Directive 2009/28/EC on the Promotion of the Use of Energy from Renewable 
Sources (Text with EEA Relevance), 2015) sets a target for 2020, i.e., a 10% share of biocomponents in liquid 
fuels; the maximum amount of first-generation biofuels must not exceed 7%; the minimum amount of higher-
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generation biofuels must be 3%. Directive 2018/2001, the so-called RED II or Biofuels Directive (Directive (EU) 
2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of 
Energy from Renewable Sources (Recast) (Text with EEA Relevance.), 2018) published in 2018, continues the 
EU's renewable energy sources (RES) policy, imposing a target of 32% of this energy in 2030, including 14% in 
transport, and a 40% reduction in CO2 emissions. Meeting this directive requires, among others, the production 
of second-generation bioethanol based on lignocellulosic biomass. The possibility of using ethanol as a potential 
alternative energy source necessitates reducing production costs so that they become competitive with the 
prices of traditional fuels. One solution is to develop new technological solutions based on low-cost raw ma-
terials to reduce the cost of production. Therefore, it has become very important to look for new, fast-growing 
plant species that form a large biomass, which, in addition, can be grown on soils of lower classes and agricul-
tural wastelands. The selection of particular species for targeted cultivation is determined by local climatic and 
soil conditions, cultivation costs, competitiveness of other markets, bioethanol yield obtained per unit area of 
cultivation, yield potential and stability. 

One of the more promising plants that has caught the attention of scientists looking for new raw materials 
for the biofuel industry in recent years is giant miscanthus (Miscanthus × giganteus). Giant miscanthus is 
a plant that can be grown on light and marginal soils, often degraded by industrial activities. Thus, it does not 
compete with areas for typical agricultural production. This grass belongs to the C-4 pathway group charac-
terized by a very efficient photosynthetic process, which provides a large increase in biomass from the assim-
ilative surface, which allows to obtain dry matter of 19 t/ha (Matyka & Kuś 2011), 25 t/ha (Wawro et al. 2013). 
Miscanthus biomass is characterized by high cellulose content, a favourable technological feature for bioeth-
anol production. The average cellulose content of miscanthus dry biomass (M×G) is 41.1% (Lee & Kuan 
2015), or 42.1% (Wawro et al. 2013). The hemicellulose content of 36.7% of dry matter is another favourable 
feature of miscanthus biomass. Suitable plant raw materials and optimized bioprocess technology are essential 
in bioethanol production. 

Obtaining bioethanol from stalks of giant miscanthus is a multi-step process, in which the most important 
processes are pretreatment to increase the availability of cellulose for cellulolytic enzymes and enzymatic 
hydrolysis to obtain a sufficient amount of fermentable sugars. The present study attempts to clarify the effect 
of chemical pretreatment and the type of enzyme preparation on the content of bioethanol obtained from giant 
miscanthus. 

2. Materials and Methods 

The research material consisted of stalks of giant miscanthus (Miscanthus × giganteus) from the Plant 
Collection of the Department of Agrobiotechnology. Aboveground parts were harvested in September 2017 
and ground in a colloid mill to a grain size of no more than 10 µm. 

Sodium hydroxide solutions of 5% and 10% (Roch) were used to pretreat shredded stalks of giant miscan-
thus. Sodium hydroxide is an inorganic chemical compound from the hydroxide group, belonging to the strong-
est bases. In liquid form, it is a colourless, odourless, non-flammable liquid called sodium lye. 

Enzymatic hydrolysis of giant miscanthus stalks (1 g miscanthus, 50 ml acetate buffer, pH 5.0) involved an 
addition of 250 µl of enzyme preparations: Cellic® CTec2 (Sigma Aldrich), cellulase from Trichoderma reesei 
(Sigma Aldrich) and cellulase from Aspergillus species (Sigma Aldrich). 

Saccharomyces cerevisiae type II yeast (Sigma Aldrich) was used for alcoholic fermentation. 

2.1. Biomass pretreatment 

Pretreatment was carried out in two variants: using solutions of 5% and 10% NaOH at a rate of 100 ml for 
every 5 g of raw material. At the same time, a control sample was prepared with 5 g of raw material and 100 ml 
of deionized water. The whole sample was incubated in a shaking water bath (Elpin Plus, type 357) at 250 rpm, 
at 50°C for 1.5 hours. After incubation, the miscanthus was separated from the NaOH solution and washed 
with deionized water. The raw material was dried at 105°C for 1 h and then subjected to enzymatic hydrolysis. 

2.2. Enzymatic hydrolysis 

For enzymatic hydrolysis, 1 g each of pretreated giant miscanthus was used and dissolved in 50 ml of acetic 
buffer, pH 5.0. Enzyme preparations were added to the samples so prepared according to the following scheme:  
 10T - cellulase from Trichoderma reesei – 250 µl per 1 g of miscanthus pretreated with 10% NaOH,  

50 ml of acetate buffer pH 5.0; 
 10A - cellulase from Aspergillus species – 250 µl per 1 g of miscanthus pretreated with 10% NaOH,  

50 ml of acetate buffer pH 5.0; 
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 10C - Cellic® CTec2 enzyme preparation – 250 µl per 1 g of miscanthus pretreated with 10% NaOH,  
50 ml of acetate buffer pH 5.0; 

 5T - cellulase from Trichoderma reesei – 250 µl per 1 g of miscanthus pretreated with 5% NaOH,  
50 ml of acetate buffer pH 5.0; 

 5A - cellulase from Aspergillus species – 250 µl per 1 g of miscanthus pretreated with 5% NaOH,  
50 ml of acetate buffer pH 5.0; 

 5C - Cellic® CTec2 enzyme preparation – 250 µl per 1 g of miscanthus pretreated with 5% NaOH,  
50 ml of acetate buffer pH 5.0; 

 0 - Enzyme preparation Cellic® CTec2 – 250 µl per 1 g of miscanthus without pretreatment,  
50 ml of acetate buffer pH 5.0. 
 
The study was conducted in triplicate for each variant (both before and after pretreatment). Enzymatic 

hydrolysis was performed in a shaking water bath (250 rpm) for 72 h, at 50°C. During the process, the content 
of reducing sugars was determined at appropriate time intervals (every 24 h). After enzymatic hydrolysis, 
biomass solutions were decanted, and the hydrolysates were subjected to alcoholic fermentation using the 
Saccharomyces cerevisiae type II yeast (Sigma Aldrich). 

2.3. Alcoholic fermentation 

Alcoholic fermentation was carried out in 100 ml fermentation flasks with a fermentation plug filled with 
H2O. After adding yeast (5% w/w), the samples were incubated at 37°C for 96 h. After this time, the ethanol 
content was determined using the pycnometric method. 

2.4. Analytical methods 

The dry weight content of cellulosic substrates was determined in the samples. The content of reducing 
sugars was determined using the DNS method (Ghose 1987). Ethyl alcohol after fermentation was determined 
using the pycnometric method. The method involves distilling alcohol from a sample and then, based on the 
pycnometric determination of the distillate's density, reading the sample's ethanol content expressed as a per-
centage by volume from alcoholometric tables. The alcohol was distilled in a Bűchi Distillation Unit K – 314 
apparatus to determine the ethanol content of each sample. The Student's t-test was applied, using Statistica 13 
software from StatSoft, to determine the significance of differences in the content of reducing sugars and eth-
anol concentration in the samples. 

3. Results and Discussion 

Bioethanol production technology is a multi-step process in which pretreatment determines the success of 
the entire method. The goal of any pretreatment used is to break the bonds between lignin, cellulose, and 
hemicellulose molecules and remove them completely or partially (Kim et al. 2016, Wilk & Krzywonos 2015). 
The effect of lignin composition and cellulose type on the digestibility of biomass saccharification was de-
scribed by (Chen & Dixon 2007, Studer et al. 2011, Yoshida et al. 2008). In this way, cellulose pulp is obtained 
analogously to paper production. Depending on how pretreatment is applied, cellulose with an amorphous or 
crystalline structure is obtained to varying degrees (Ebringerová et al. 2005, Kumar et al. 2009). Amorphous 
fractions are more desirable in bioethanol production because they are first converted to fermentable sugars 
during hydrolysis. When choosing the type of pretreatment, consideration should also be given to the low cost 
of solvents used, their concentration and non-toxic environmental impact (Alvira et al. 2010). In the present 
study, miscanthus stalks were ground and pretreated by suspending the material in a 5 and 10% NaOH solution 
for 1.5h at 50°C. The material was then rinsed with distilled water and dried. Pretreatment with NaOH is 
mainly aimed at delignifying the biomass. Ester and glycosidic bonds of biomass are broken using this method, 
which causes changes in the structure of lignin, partial decrystallization of cellulose and partial dissolution of 
hemicellulose (Li et al. 2013, Wilk & Krzywonos 2015). 

In the method of chemical hydrolysis of biomass with alkali, concentrations of 0.5 to 5% m/v of these 
compounds are used. Reaction time is from several minutes for high concentrations to several days for very 
low concentrations. The process temperatures are 100-150°C, or ambient temperature (Kumar et al. 2009). 
Using alkali results in less loss of sugars compared to acid hydrolysis. The advantages of using NaOH in 
pretreatment include high delignification efficiency, significant degradation of hemicelluloses, swelling of bi-
omass that facilitates the availability of hydrolytic enzymes (Hendriks & Zeeman 2009), mild process condi-
tions (relatively low temperature, low concentration and pressure), no need for plants with special features that 
would increase the operating and investment costs of the technology (Mosier et al. 2005), market availability 
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and low purchase price, low concentrations that have less impact on the environment. The disadvantages of 
using NaOH for biomass pretreatment include the impact on cellulose's structure, which deteriorates its suscep-
tibility to enzymes (Li et al. 2013), and the release of large amounts of inhibitors such as phenolic compounds. 

(Lee & Kuan 2015) incubated shredded giant miscanthus biomass in a 12% NaOH solution at 70°C for 
4 hours and obtained 77% delignification of the biomass and removal of 44% of hemicelluloses, resulting in 
a cellulose hydrolysis efficiency above 95%. The same authors pretreated with NaOH and obtained 83.92% 
glucose from a miscanthus harvest in Korea under optimal conditions. (Scheller & Ulvskov 2010) studied the 
negative effect of crosslinking hemicelluloses with cellulose through hydrogen bonds. (Li et al. 2013) proved 
in their study that hemicelluloses in miscanthus biomass are tightly bound to cellulose, which negatively affects 
cellulose crystallinity. (Adani et al. 2011) found that removing hemicelluloses increases the average pore size 
of the substrate, which facilitates the hydrolysis of cellulose. 

In the present study, the miscanthus pulp was hydrolyzed after the pretreatment step using three types of 
enzyme preparations. At the same time, a control sample was made, which was ground, not pretreated miscan-
thus. The study made it possible to assess the content of fermentable sugars after enzymatic hydrolysis in 
miscanthus samples and classify the suitability of each pretreatment method for bioethanol production. The 
effect of the type of enzyme preparation on the content of reducing sugars after enzymatic hydrolysis was also 
checked. The results of reducing sugars concentrations are shown in Figures 1-3. 

The enzyme preparation Cellic® CTec2 from Novozymes (Denmark) was used for enzymatic hydrolysis. 
It is a high-performance, industrially used preparation for hydrolysis of lignocellulosic raw materials, showing 
high cellulolytic and hemicellulolytic activity. The preparation is characterized by increased glucosidase ac-
tivity, improving the hydrolysis efficiency of lignocellulosic raw materials due to reducing the inhibitory effect 
of cellobiose. It contains a complex of aggressive cellulases for the degradation of cellulose to fermentable 
sugars, is characterized by a high level of β-glucosidases, and also has hemicellulases in its composition. The 
enzyme preparation Cellic® CTec2 contains state-of-the-art enzymes that have proven effective in hydrolyzing 
various pretreated lignocellulosic materials (Dąbkowska et al. 2012, Dąbkowska & Pilarek 2013). In the pre-
sent study, using a 5% and 10% NaOH solution and Cellic® CTec2 enzyme preparation for enzymatic hydrol-
ysis in the pretreatment, the highest concentration of reducing sugars of 45.8 g/l was obtained. The native 
sample yielded 19.4 g/l. 

 

 

Fig. 1. Reducing sugars contents during enzymatic hydrolysis for samples of giant miscanthus pretreated with 5% and 
10% NaOH and enzymatic hydrolysis with cellulases from Trichoderma reesei, at pH 5.0 
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Fig. 2. Reducing sugars contents during enzymatic hydrolysis for samples of giant miscanthus pretreated with 5% and 
10% NaOH and enzymatic hydrolysis with cellulases from Aspergillus species, at pH 5.0 
 

 

Fig. 3. Reducing sugars contents during enzymatic hydrolysis for samples of giant miscanthus pretreated with 5% and 
10% NaOH and enzymatic hydrolysis with cellulases from Cellic® CTec2, at pH 5.0 
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preparations used (p = 0.02). In contrast, the concentration of NaOH used for pretreatment had no statistically 
significant effect on the content of these sugars after hydrolysis. 

The third enzyme preparation used in the study was cellulases from Aspergillus species (Sigma Aldrich). It 
contains endo-β-D-glucanase, which is one of the main enzyme components of the cellulase complex. It cata-
lyzes the hydrolysis of cellulose by randomly dividing the sugar residues in the molecule. It also contains exo-
β-D-glucanase and β-glucosidase that can synergistically convert cellulose into glucose. The student's t-test 
was used to determine the significance of reducing sugars' content after enzymatic hydrolysis and ethanol after 
alcoholic fermentation. It was shown that pretreatment significantly affects the content of reducing sugars after 
enzymatic hydrolysis for samples in which Aspergillus species and Cellic® CTec2 were used for enzymatic 
hydrolysis. For miscanthus samples hydrolyzed with cellulases from Trichoderma reesei, pretreatment with 
NaOH did not significantly affect the contents of reducing sugars after enzymatic hydrolysis. (Muzakhar 2019) 
determined the optimal conditions for the action of this enzyme complex are temperature 55°C and pH 5.0, 
but these enzymes are also stable at temperatures below 50°C and pH range 3.0-6.5. 

The zero sample without pretreatment had an initial reducing sugar content of about 13 g/dm3, and after 
24 hours the reducing sugar content stabilized at about 19 g/dm3. Pretreatment significantly affected CR con-
tent (p = 0.008), particularly in samples containing the enzyme preparation Cellic® CTec2. The native sample, 
after 72 hours of enzymatic hydrolysis, yielded 19.36 g/dm3, while the pretreated sample yielded 45.78 g/dm3, 
and the CR content was not dependent on the concentration of NaOH in the pretreatment. The content of 
monosaccharides at 45.78 g/dm3 implies an efficiency of the enzymatic hydrolysis process equal to 94.69%, 
the highest result among the samples tested. The present study shows that by using pretreatment to increase 
the availability of cellulose for cellulolytic enzymes, an increase in the content of reducing sugars in the sam-
ples by 42.3% was obtained compared to the native sample. 

(Alvira et al. 2010) stated that pretreatment of lignocellulose with alkalis, such as calcium hydroxide, am-
monia or sodium hydroxide, results in the degradation of bonds connecting lignin to other polymers and partial 
liquefaction of the complex, as well as the removal of some lignin, and increases the availability of cellulose 
to hydrolytic enzymes. In samples in which giant miscanthus was pretreated with 5% and 10% NaOH, followed 
by hydrolysis catalyzed by the enzyme preparation Cellic® CTec2 at pH 5.0, a gradual increase in the content 
of monosaccharides can be observed from 8 g/l after pretreatment through 35 g/l and 40 g/l on subsequent days 
of enzymatic hydrolysis, up to a value of 45.8 g/l after 72 h (the contents refer to the 10C preparation). Using 
the same enzyme preparation but after pretreatment with 5% NaOH, the following concentrations of reducing 
sugars were obtained at individual time intervals: 6.52 g/l, 43.89 g/l, 44.21 g/l and 45.79 g/l after 72 h, respec-
tively. The highest increase in reducing sugars is obtained after 24 h of the hydrolysis process. 

The lowest CR was obtained after hydrolysis catalyzed by cellulase from Aspergillus species with pretreat-
ment with 10% NaOH, as only 3.7 g/l was obtained, and this value is more than 12 times lower compared to 
the result obtained with the enzyme preparation Cellic® CTec2. For sample 10A, 3.7 g/l was obtained, and the 
process yield was 7.62%. The sample catalyzed by cellulases from Aspergillus species with pretreatment with 
5% NaOH yielded 4.1 g/dm3 after 72 h, and the maximum yield was 8.49%. 

It is reasonable to assume that the action of the enzymes in this formulation is inhibited by inhibitors that 
are products of the process. (Öhgren et al. 2007) proved that inhibitors in the enzymatic hydrolysis process can 
be cellobiose and glucose. 

For the sample in which giant miscanthus was pretreated with 5% NaOH, followed by hydrolysis catalyzed 
by cellulase from Trichoderma reesei, the following reducing sugars were obtained at pH 5.0: 6 g/l – 0 h; 16.3 g/l 
– 24 h; 17.9 g/l – 48 h; 20.2 g/l – 72 h. The variant with 10% NaOH pretreatment yielded 2.8 g/l – 0 h; 17.6 g/l  
– 24 h; 19.1 g/l – 48 h; 22.1 g/l – 72 h, respectively. The highest efficiency of the cellulose saccharification 
process using cellulases from Trichoderma reesei was 41.80%. 

Han et al. (2011) investigated the enzymatic hydrolysis of corn straw polysaccharides (cellulose content 
43.33%) to produce reducing sugars. They used pretreatment with 2% NaOH at 80°C, pH 4.8 for 1 hour, then 
hydrolyzed the samples with cellulases from Trichoderma reesei. The hydrolysis yield after 48 h was 65.9%. 

In the present study, the contents of reducing sugars in the control sample were as follows: 13 g/l – 0 h; 
18.7 g/l – 24 h; 19.4 g/l – 48 h; 19.4 g/l – 72 h. The maximum yield of the process was 40.05%. 

In samples 10T, 10C, 5T, 5C, and 0, the largest increase in glucose content was recorded after 24 hours of the 
enzymatic hydrolysis reaction. After that, there was a slight increase in concentrations ranging from 0.8-12.81% 
during the next 24 hours and from 0.0-16.3% in the last time interval. In the case of sample 10A, the largest 
increase in reducing sugars occurred after the second day of enzymatic hydrolysis, while in sample 5A it oc-
curred on the third day of hydrolysis. The individual samples differed in their initial content of monosaccha-
rides compared to their final value after 72 hours of enzymatic hydrolysis. 
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(Dąbkowska & Pilarek 2013) performing enzymatic hydrolysis of lignocellulosic raw material from energy 
willow (Salix viminalis L.) containing 39.03% cellulose, pretreated by steam explosion method, using the en-
zyme preparation Cellic® CTec2 obtained 9.95 g/l of monosaccharides after 72 h of hydrolysis, which is much 
less than in the case of described studies on hydrolysis of biomass from giant miscanthus. The result obtained 
is 4.6 times lower than the present study's. Thus, it should be concluded that the type of lignocellulosic biomass 
significantly affects the efficiency of enzymatic hydrolysis and bioethanol production. 

(Swiatek et al. 2011) state that the efficiency of enzymatic hydrolysis of lignocellulosic raw materials de-
pends on their type, maturity, chemical composition and pretreatment. The authors also studied the suitability 
of cellulolytic enzyme preparations, composed in different combinations, for the hydrolysis of rapeseed straw 
polysaccharides. They chemically treated rapeseed straw under the following conditions: temperature 121°C, 
time 1 h, addition of NaOH 0.1 g·g–1 s.s. Enzymatic hydrolysis was performed for 72 h, at 50°C, pH 5.0. Their 
study showed that the most effective enzyme complex was a set of cellulases and hemicellulases from T. longi-
brachiatum and cellobiose (Novozym 188). This enzyme complex allowed the release of reducing sugars at 
48.82 g/l. In this paper's study, a maximum of 45.8 g/l of monosaccharides was obtained, and this result is 
comparable. (Kordala et al. 2013) conducted a study to determine the effect of pretreatment of giant miscanthus 
and rapeseed straw with a 15% ammonia solution on the hydrolysis process of the polysaccharides they con-
tain. The study was conducted in two variants of the process: I – 20ºC/24 h or II – 80ºC/6 h. The authors found 
that in both variants of the chemical treatment there was a partial delignification of the lignocellulosic raw 
material, the percentage of polysaccharides in the biomass increased and their susceptibility to enzymatic hy-
drolysis increased. The enzymatic hydrolysis process was carried out using a shaking method at 40ºC and pH 
5.0. Three enzyme preparations were used: cellulase from Trichoderma longibrachiatum, xylanase from 
T. longibrachiatum and cellobiose. After 72 h of hydrolysis of samples from giant miscanthus, the concentration 
of released sugars was 45.73 g/l, and from rapeseed straw, it was 26.82 g/l (variant II). The result of reducing 
sugars concentrations achieved by the publication's authors is similar to the results of the present study. 

3.1. Alcoholic fermentation of giant miscanthus (Miscanthus × giganteus) 

After enzymatic hydrolysis, samples of giant miscanthus were subjected to alcoholic fermentation using 
the yeast Saccharomyces cerevisiae type II. (Sigma Aldrich). Alcoholic fermentation was carried out in fer-
mentation flasks under anaerobic conditions at 37°C for 96 h. After this time, the ethanol content of the distil-
lates was determined using the pycnometric method. Measurements were made at 20°C in triplicate. The re-
sults of the ethanol concentrations obtained in the tested samples are shown in Figure 4. 

 

 

Fig. 4. Ethanol concentration in samples of giant miscanthus before and after pretreatment with different concentrations 
of NaOH 
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from Trichoderma reesei were used for enzymatic hydrolysis was slightly higher than in the native sample 
(0.215 g/l). It was 0.224 g/l in the sample of miscanthus pretreated with 5% NaOH and 0.245 g/l in the sample 
of miscanthus using 10% NaOH for pretreatment. Analyzing the obtained ethanol concentrations after alco-
holic fermentation, it can be concluded that the concentration of sodium hydroxide used for pretreatment does 
not affect the ethanol content. When using the enzyme preparation Cellic® CTec2 to hydrolyze the biomass of 
giant miscanthus, the efficiency of the fermentation process was the highest. In contrast, using a preparation 
with cellulases from Trichoderma reesei allowed the ethanol content to be more than half lower. Analysis of 
the results showed that the content of reducing sugars obtained after enzymatic hydrolysis significantly affects 
the ethanol concentration after alcoholic fermentation (p = 0.002).  

(Han et al. 2011) studied the suitability of giant miscanthus biomass for bioethanol production. Optimizing 
the conditions of each step, the miscanthus biomass was pretreated with 1.49 M NaOH at 145.29°C with a reac-
tion time of 28.97 min. A complex of cellulases and β-glucosidases was used for enzymatic hydrolysis, and the 
process was carried out at 50°C for 72 h. Fermentation was carried out for 48 h with S. cerevisiae yeast at 32°C. 
A yield of 84.69% was obtained using this technology. (Lee & Kuan 2015) studied four species of the Miscanthus 
genus: Miscanthus floridulus, Miscanthus sinensis, Miscanthus sacchariflorus, and Miscanthus × giganteus. 
They treated the biomass of these species with various types of pretreatments, including NaOH solution, obtain-
ing an ethanol yield of 84.69% after 72 h of fermentation. 

4. Summary 

Based on the study, it can be concluded that there is a technology to produce bioethanol from giant miscan-
thus. Of the analyzed technologies for bioethanol production from giant miscanthus (Miscanthus × giganteus), 
the most efficient method was 5% NaOH for pretreatment of the material and Cellic® CTec2 for enzymatic 
hydrolysis. Using pretreatment with NaOH results in a 136% increase in bioethanol production efficiency 
compared to untreated miscanthus. Using 5% NaOH for pretreatment more than doubled the efficiency of the 
enzymatic hydrolysis process. Still, the higher concentration of sodium hydroxide (10%) did not affect the 
increase in reducing sugars in the examined material. The reducing sugars content obtained from giant mis-
canthus depends on the enzyme preparation. The highest yield (94.7%) was obtained in a sample of giant 
miscanthus purified with 5% and 10% NaOH and subjected to enzymatic hydrolysis using Cellic® CTec2. The 
ethanol concentration after alcoholic fermentation depends on the content of simple sugars in the mash. The 
highest bioethanol concentration of 0.509 g/l was obtained from giant miscanthus, pretreated with 5% NaOH 
and subjected to enzymatic hydrolysis using Cellic® Tec2. 

Hydrolysis of cellulose to sugars, which then are subjected to alcoholic fermentation due to the complexity 
of the structure of the lignocellulosic complex, is the most difficult step in the production of ethanol from 
lignocellulosic raw materials. Achieving high yields in the bioconversion of lignocellulosic substrate to ethanol 
determines the profitability of second-generation bioethanol production (Leja et al. 2007). Optimization of 
technological parameters of bioethanol production increases its efficiency (Wawro et al. 2013). When choosing 
a bioethanol production method, its efficiency and production cost analysis should be considered. Energy bal-
ance and environmental issues are also important aspects. As the biomass-to-energy conversion process's com-
plexity increases, the final product's energy efficiency decreases (Martyniak et al. 2017). In the process of 
second-generation bioethanol production, it is possible to obtain several by-products, and their more efficient 
use increases the profitability of production (Balat & Balat 2009). The main technological problem in bioeth-
anol production is properly selecting enzymes for biomass hydrolysis achieving simultaneous fermentation of 
glucose and xylose using the right yeast strain (Biernat 2007). 
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