CZESŁAW SUCHOCKI MARZENA DAMIĘCKA-SUCHOCKA ĆWICZENIA Z GEODEZJI INŻYNIERYJNEJ

CZĘŚĆ 1

POLITECHNIKA KOSZALIŃSKA

POLITECHNIKA KOSZALIŃSKA

Czesław Suchocki Marzena Damięcka-Suchocka

Ćwiczenia z geodezji inżynieryjnej część 1

KOSZALIN 2014

ISBN 978-83-7365-342-9

Przewodniczący Uczelnianej Rady Wydawniczej Mirosław Maliński

> Recenzja Wiesław Pawłowski

Redakcja Agnieszka Czajkowska

> Projekt okładki Tadeusz Walczak

© Copyright by Wydawnictwo Uczelniane Politechniki Koszalińskiej Koszalin 2014

> Wydawnictwo Uczelniane Politechniki Koszalińskiej 75-620 Koszalin, ul. Racławicka 15-17

Koszalin 2014, wyd. I, ark. wyd. 5,35, nakład 200 egz. Druk: EXPOL, Włocławek

Spis treści

Przedmowa	4
1. Opracowanie wyników geodezyjnej inwentaryzacji jezdni	
podsuwnicowej w płaszczyźnie poziomej	7
1.1. Metoda analityczno-graficzna	9
1.2. Metoda analityczna	15
2. Pomiary odchyleń od pionowości krawędzi budynku	21
2.1. Pomiar metodą obserwacji kierunków poziomych	22
2.2. Pomiar metodą bezpośredniego rzutowania	23
2.3. Określenie wysokości budynku i odległości metodą pośrednią	24
3. Pomiary odchyleń od prostoliniowości ściany budynku	37
4. Pomiary ugięcia dźwigara	47
5. Pomiary strzałki zwisu przewodu napowietrznego	53
5.1. Wyznaczenie strzałki zwisu linii energetycznej	53
5.2. Wyznaczenie strzałki zwisu odciągów masztu	61
6. Pomiary przemieszczeń pionowych obiektu budowlanego	73
7. Geodezyjna inwentaryzacja podziemnego przewodu sieci uzbrojenia	
terenu	85
8. Pomiary odchyleń ściany budynku od płaszczyzny pionowej	95
8.1. Pomiar metodą kątowych wcięć przestrzennych w przód	95
8.2. Pomiar metodą biegunową 3D	. 105
9. Pomiary odchyleń obiektów wysmukłych od pionowości	. 115
Literatura	. 145

Przedmowa

Niniejszy skrypt przeznaczony jest dla studentów III roku kierunku Geodezja i Kartografia Wydziału Inżynierii Lądowej, Środowiska i Geodezji Politechniki Koszalińskiej, jako pomoc dydaktyczna z przedmiotu geodezja inżynieryjna. Jest to pierwsza część skryptu "Ćwiczenia z geodezji inżynieryjnej", której tematyka obejmuje zagadnień realizowanych w semestrze letnim.

Każdy rozdział skryptu dotyczy jednego zadania inżynierskiego, przedstawiając sprzęt potrzebny do jego wykonania, sposób przeprowadzenia pomiaru oraz opracowania danych łącznie z oceną dokładności. Wszystkie zadania wsparto przykładem praktycznym, ułatwiającym przygotowanie sprawozdania w formie operatu pomiarowego. Dobór sprzętu pomiarowego został dostosowany do zasobów Laboratorium Geodezji Politechniki Koszalińskiej.

Skrypt ten może być również przydatny studentom innych kierunków studiów inżynierskich np. budownictwa, inżynierii środowiska, na których realizowane są wybrane zagadnienia z geodezji inżynieryjnej.

Autorzy

1. Opracowanie wyników geodezyjnej inwentaryzacji jezdni podsuwnicowej w płaszczyźnie poziomej

Cel ćwiczenia

Do prawidłowej pracy torów i suwnic niezbędne jest, aby szyny były prostoliniowe i równoległe do siebie, oddalone od siebie w płaszczyźnie poziomej o wielkość ustaloną w projekcie oraz ułożone we właściwych odległościach od elementów konstrukcji nośnej hali lub estakady. Poza tym, szyny powinny być ułożone poziomo na jednej wysokości. Zadaniem ćwiczenia sprawdzenie na podstawie danych pomiarowych iest pozyskanych z geodezyjnej inwentaryzacji jezdni podsuwnicowej w płaszczyźnie poziomej czy określone warunki geometryczne sa spełnione. W przypadku nie spełnienia powyższych warunków należy opracować dane pomiarowe metoda analitycznograficzna i analityczna.

Dane z pomiaru

Pomiar został zrealizowany na jezdni suwnicy pomostowej o rozstawie nominalnym 16,500 m i długości 54 m. Szyny suwnicy o długości 6 m wspierały się na słupach żelbetowych o wysokości 4 m. Pomiar wykonano w taki sposób, aby była możliwość wyznaczenia połączenia poszczególnych szyn w styku w jednolitym układzie współrzędnych. W tym celu założono osnowę kontrolną w postaci prostokąta zaprezentowaną na rys. 1. Następnie przy wykorzystaniu teodolitu THEO 010 i specjalnej łaty realizacyjnej z podziałem milimetrowym wykonano pomiar inwentaryzacyjny jezdni suwnicy metodą stałej prostej. Teoretyczną płaszczyznę pionową wyznaczają odpowiednio punkty I i II oraz III i IV. Następnie przykładając w oznaczonych punktach łatę, wykonano odczyty dla szyny po lewej i prawej stronie. Wyniki pomiaru zestawiono w tabeli 1.

Nr przekroju	1	2	3	4	5	6	7	8	9	10
Odczyt dla szyny lewej	0503	0500	0505	0515	0522	0520	0523	0517	0526	0529
Odczyt dla szyny prawej	0486	0482	0482	0480	0485	0480	0475	0470	0465	0460

Tabela 1. Dane z pomiaru inwentaryzacyjnego jezdni podsuwnicowej

Rys. 1. Szkic z pomiaru jezdni podsuwnicowej

Narzędzia do opracowania

Do opracowania danych potrzebny jest:

- komputer z zainstalowanym arkuszem kalkulacyjnym Ms Excel lub OpenOffice, opcjonalnie kalkulator,
- papier milimetrowy,
- ołówek i linijka.

Opracowanie danych pomiarowych można podzielić na dwa etapy [3]:

• Etap I polega na wyznaczeniu wartości współrzędnych *x, y* wszystkich badanych punktów w jednolitym układzie współrzędnych i sprawdzeniu,

czy dana jezdnia podsuwnicowa spełnia oczekiwane warunki geometryczne. Pod uwagę bierze się następujące wielkości:

- odchyłki rozstawu szyn stanowiące każdorazowo różnicę pomiędzy rozstawem pomierzonym i rozstawem nominalnym w poszczególnych przekrojach poprzecznych toru,
- poziome odchylenie osi szyny lewej i szyny prawej od prostej.

Jeżeli powyższe wielkości przekraczają wartości dopuszczalne określone obowiązującymi normami, to przechodzimy do etapu II.

• Etap II obejmuje aproksymację pozyskanego zbioru punktów określonym modelem funkcji projektowej oraz wyznaczenie różnic pomiędzy pozycją pomierzoną a projektową (teoretyczną). Następnie wielkości te jako poprawki trasowania służą do skorygowania położenia szyn do stanu projektowego. Do tego celu można zastosować metodę przybliżoną analityczno-graficzną lub metodę ścisłą analityczną.

1.1. Metoda analityczno-graficzna

Obliczenia należy wykonać w poszczególnych krokach, a wyniki zestawić w tabeli 2:

- W kolumnie 1 znajdują się ponumerowane przekroje toru jezdni podsuwnicowej.
- W kolumnach 2 i 3 jako dane wyjściowe podajemy odczyty z łaty odpowiednio dla szyny po lewej i prawej stronie.
- W kolumnach 4 i 5 zestawiamy obliczone współrzędne *y* obserwowanych punktów dla szyny po lewej i prawej stronie w przyjętym układzie współrzędnych (w milimetrach).

$$y_i^L = 10000 - O_i^L, \quad y_i^P = 25500 + O_i^P$$
 (1.1)

• W kolumnie 6 umieszczamy pomierzone rozstawy szyn jezdni podsuwnicowej w każdym przekroju.

$$c_i = y_i^P - y_i^L \tag{1.2}$$

Na rys. 2 zaprezentowano w rzucie poziomym stan faktyczny ułożenia szyn jezdni podsuwnicowej. Można zauważyć, że w przekrojach poprzecznych nr 1, 2, 3, 8 i 10 rozpiętość szyn przekracza wartość odchyłki dopuszczalnej ±10 mm. W związku z tym dokonujemy dalszych obliczeń w celu wyznaczenia poprawek trasowania do rektyfikacji rozpatrywanej jezdni podsuwnicowej.

Rys. 2. Graficzna prezentacja pomierzonych rozpiętości szyn jezdni podsuwnicowej

• Kolejnym krokiem jest wyznaczenie środków odcinków pomiędzy punktami wyznaczonymi na szynach w tym samym przekroju (kolumna 7).

$$y_i^0 = \frac{1}{2} (y_i^L + y_i^P)$$
(1.3)

• Obliczamy y_{sr} zgodnie ze wzorem:

$$y_{\acute{s}r} = \frac{\sum_{i=1}^{n} y_i^0}{n} \tag{1.4}$$

• W kolumnie 8 zestawiamy różnicę współrzędnych środków odcinków i ich średnią obliczoną na podstawie wszystkich przekrojów.

$$\Delta y_i^0 = y_i^0 - y_{\dot{s}r} \tag{1.5}$$

- Dysponując współrzędnymi y⁰_i (kolumna 6) i x (kolumna 15) wykonujemy wykres, na którym należy wrysować linię prezentującą y_{sr}, a następnie w stosunku od tej prostej odnieść Δy⁰_i (kolumna 8) dla każdego z przekrojów. W naniesiony zbiór punktów należy wpasować linię prostą spełniając warunek ∑(-V)≈∑(+V) i przyjąć ją za teoretyczną oś toru.
- Następnie należy określić graficznie współrzędne Y⁰ (kolumna 9) punktów leżących na teoretycznej osi toru w poszczególnych przekrojach poprzecznych lub obliczyć je ze wzoru:

$$Y_i^0 = y_{sr} \pm \Delta y_i \quad \text{lub} \quad Y_i^0 = y_i^0 \pm V_i^Y$$
(1.6)

gdzie:

- Δy_i odległość odczytana z wykresu pomiędzy y_{sr} a teoretyczną osią toru w danym przekroju,
- V_i^Y odległość odczytana z wykresu pomiędzy y_i^0 , a teoretyczną osią toru w danym przekroju.
- W kolumnach 10 i 11 zestawiamy obliczone współrzędne punktów leżących na teoretycznych osiach lewej i prawej szyny.

$$Y_i^L = Y_i^0 - \frac{1}{2}s, \qquad Y_i^P = Y_i^0 + \frac{1}{2}s$$
(1.7)

gdzie:

s - projektowany rozstaw osi szyn (16500 mm)

• Wyznaczenie poprawek trasowania dla poszczególnych szyn po lewej i prawej strony (kolumna 12 i 13) sprowadza się do określenia różnicy współrzędnych *y* rzeczywistych i teoretycznych dla punktów osi szyny lewej i prawej.

$$V_{i}^{L} = y_{i}^{L} - Y_{i}^{L}, \quad V_{i}^{P} = y_{i}^{P} - Y_{i}^{P}$$
(1.8)

• Zestawione odchyłki rozstawu osi szyn w poszczególnych przekrojach poprzecznych jezdni zestawiamy w kolumnie 14.

$$V_i^{rozst} = V_i^P - V_i^L \tag{1.9}$$

Nr Mrader	-70	'n	, y ^L	y ^P	y ^P -y ^L	ر م	y ⁰ -y _{sr} []	Υ ⁰	λ	Υ ^μ	Υ _Γ	۲ ^۳	V ^{TOZSI}	×	
	Innul		Innul		inni.	Innul	[mm]	Immi		(mm)	hund	humi	Imm	L'III.	
1	ci	ć	4	5	6	2	%	6	10	11	13	13	14	15	
I	503	486	9497	25986	16489	17742	11,3	17743	9493	25993	4	-7	-11	0	
0	500	482	9500	25982	16482	17741	10.8	17740	9490	25990	10	8-	-18	6	
3	505	482	9495	25982	16487	17739	8,3	17737	9487	25987	8	-5	-13	12	
4	515	480	9485	25980	16495	17733	2,3	17734	9484	25984	1	4	-5	18	
S	522	485	9478	25985	16507	17732	1,3	17732	9482	25982	4	3	7	24	
6	520	480	9480	25980	16500	17730	-0,3	17729	9479	25979	1	9	0	30	
7	523	475	9477	25975	16498	17726	-4,3	17726	9476	25976	I	ŀ	-2	36	
8	517	470	9483	25970	16487	17727	-3,8	17723	9473	25973	10	-3	-13	42	
6	526	465	9474	25965	16491	17720	-10,8	17720	9470	25970	4	-5	6-	48	
10	529	460	9471	25960	16489	17716	-14,8	17718	9468	25968	m	8 -	Ξ	54	
	s	=16500	1.00.0		y _{sr} =	17730,3									

 Tabela 2. Wpasowanie teoretycznych osi szyn jezdni podsuwnicowej metodą analityczno-graficzną

Szkic położenia teoretycznej osi jezdni podsuwnicowej metoda analityczno-graficzna

Rys. 3. Wykres wypośrodkowanej teoretycznej osi jezdni podsuwnicowej w metodzie analityczno-graficznej

1.2. Metoda analityczna

Opracowanie danych metodą analityczną różni się od metody analitycznograficznej tym, że zamiast wypośrodkować na rysunku położenie teoretycznej osi toru, oblicza się współczynniki równania tej osi oraz współrzędne Y_0 przez podstawienie tych współczynników do odpowiednich równań poprawek [6]. Pozostałe obliczenia mają przebieg identyczny jak w metodzie analitycznograficznej. W tabeli 3 zamieszczono wyniki obliczeń przy zastosowaniu analitycznego sposobu wpasowania. W kolumnach 7-9 zestawiono układ równań poprawek według wzoru:

$$a \cdot i + b = y_0 - y_{sr} + v$$

$$v = a \cdot i + b - (y_0 - y_{sr})$$

$$v = a \cdot i + b - l$$

$$i = d_i / d$$
(1.10)

gdzie:

a, b – współczynniki równania osi jezdni,

d_i – odległość rozpatrywanego punktu od początku toru,

d – odległość między przekrojami (jednakowa),

l – wyraz wolny równania,

v – poprawka.

Wyznaczenia współczynników a i b wykonuje się przy wykorzystaniu Metody Najmniejszych Kwadratów.

$$\begin{cases} \mathbf{V} = \mathbf{A} \cdot \mathbf{d}_X - \mathbf{L} \\ \min_{d_X} \left\{ \boldsymbol{\xi}(\mathbf{d}_X) = \mathbf{V}^T \mathbf{V} \right\} = \hat{\mathbf{V}}^T \hat{\mathbf{V}} \implies \hat{\mathbf{d}}_X = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{L} \quad (1.11) \end{cases}$$

Zgodnie z założeniami definicja macierzy jest następująca:

$$\hat{\mathbf{d}}_{X} = \begin{bmatrix} a \\ b \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} d_{1}/d & 1 \\ d_{2}/d & 1 \\ d_{3}/d & 1 \\ d_{4}/d & 1 \\ \dots & \dots \\ d_{i}/d & 1 \end{bmatrix}, \quad \mathbf{L} = \begin{bmatrix} y_{1}^{0} - y_{\hat{s}r} \\ y_{2}^{0} - y_{\hat{s}r} \\ y_{3}^{0} - y_{\hat{s}r} \\ \dots \\ y_{4}^{0} - y_{\hat{s}r} \\ \dots \\ y_{i}^{0} - y_{\hat{s}r} \end{bmatrix}, \quad \mathbf{V} = \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ \dots \\ v_{i} \end{bmatrix}$$
(1.12)

Dla danych zawartych w tabeli 3 kolumny 7 i 8 tworzą macierz A, natomiast kolumna 9 tworzy macierz wyrazów wolnych L.

Obliczenia można wykonywać przy użyciu arkusza kalkulacyjnego np. Ms Excel lub w niektórych programach geodezyjnych. Jako przykład na rys. 5 i 6 zaprezentowano opracowanie wykonane w programie C-Geo.

and	IIII.	ycz	тą				a a		2		a		2		
x	[m]	17	0	6	12	18	24	30	36	42	48	54			
V ^{rozst}	[mm]	16	-11	-18	-13	5	7	0	5	-13	6-	-11			
⁴ >	[mm]	15	L-	-8	-S	-4	3	1	1	ę	-5	°°			
٧L	[mm]	14	4	10	8	I	-4	1	Î	10	4	3			
Υ [₽]	[mm]	13	25993	25990	25987	25984	25982	25979	25976	25973	25970	25968			
$\gamma^{\rm L}$	[mm]	12	9493	9490	9487	9484	9482	9479	9476	9473	9470	9468			
(⁰ =y ⁰ +V	[mm]	ti	17743	17740	17737	17734	17732	17729	17726	17723	17720	17718		1425	
<u>۲</u>	[mm]	10	1,4	-0,9	-1,2	2,0	0,2	-1,2	0,0	-3,3	0,9	2,1	Ą	=A ^T L	
L=y ⁰ -y _{sr}	[mm]	9	11.3	10,8	8.3	2,3	1.3	-0.3	-4.3	-3.8	-10,8	-14,8	= A ¹	-232,75 0,00	
		*	I	1	Ĩ	I	I	I	I	1	I	П	55 10	0.0667 0.4667	-2,821 15,517
A	í	7	I	2	3	4	5	6	7	8	9	10	385 55	0,0121	a ⊨ a
_م	[mm]	6	17742	17741	17739	17733	17732	17730	17726	17727	17720	17716	7730,3	() ⁻¹ =	$\mathbf{A}^{\mathrm{T}}\mathbf{L} =$
۲ ^в	[mm]	N	25986	25982	25982	25980	25985	25980	25975	25970	25965	25960	$y_{sr} = 1$	(A ^T A	$(\mathbf{A}^{\mathrm{T}}\mathbf{A})$
yL	[mm]	4	9497	9500	9495	9485	9478	9480	9477	9483	9474	9471			n Ale
0	[mm]	3	486	482	482	480	485	480	475	470	465	460	16500		
Or	[mm]	5	503	500	505	515	522	520	523	517	526	529	ĥ		
Nr	przekr.	I	I	2	æ	4	5	6	7	8	9	10			

 Tabela 3. Wpasowanie teoretycznych osi szyn jezdni podsuwnicowej metodą

 analityczna

 $v = a \cdot i + b - l$ np,

 $v_2 = -2,821 \cdot 2 + 15,517 - 10,8 = -0.9$

Rys. 4. Wykres odchyleń od prostoliniowości osi szyn jezdni podsuwnicowej w metodzie analitycznej

Su	wnice: dane_suw	nica.swn					
D	e 🛤 🔺 🕻	<u>}</u>	A ?	E			
Lp	Numer	×	Y	Н	Szyna lewa		
1	1	0,0000	9,4970		X		
2	1	0,0000	25,9860			(
3	2	6,0000	9,5000		X	Opcje	
4	2	6,0000	25,9820			Woasowanie osi da :	© D. stationer
5	3	12,0000	9,4950		x	mpasonal lie osi did .	R - ontymalnen R
6	3	12,0000	25,9820			🔲 🖂 Saunu uu jadmai okaas	contraine bourcontainei
7	4	18,0000	9,4850		X	Obserwacie – wsnół	rzędne
8	4	18,0000	25,9800			V Obiezenia tulko w ok	ecociularia poziomaj
9	5	24,0000	9,4780		x	B Obiczenia wiko w pr	diszczychie pozioniej
10	5	24,0000	25,9850			Dane wysokościowe :	Stopień funkcji:
11	6	30,0000	9,4800		X	rzędne terenu	◎ y=ax+b
12	6	30,0000	25,9800			🔘 odczyt z łaty	y=ax 2+bx+c
13	7	36,0000	9,4770		x		
14	7	36,0000	25,9750			O 0.1 mm	Nysunku:
15	8	42,0000	9,4830		X		©
16	8	42,0000	25,9700				🗸 ОК
17	9	48,0000	9,4740		X		
18	9	48,0000	25,9650			C	
19	10	54,0000	9,4710		x		
20	10	54,0000	25,9600				

Rys. 5. Moduł obliczeniowy "suwnice" w programie C-Geo

Rys. 6. Wykres odchyleń od prostoliniowości osi szyn jezdni podsuwnicowej wygenerowany przez program C-Geo

Można zauważyć, że poprawki trasowania na rys. 4 mają przeciwny znak niż na rys. 6. Jest to spowodowane prawdopodobnie tym, że algorytm obliczeniowy suwnice zawarty w programie C-Geo wielkość Δy wyznacza odwrotnie w stosunku do wzoru $\Delta y_i^0 = y_i^0 - y_{sr}$, tzn. $\Delta y_i^0 = y_{sr} - y_i^0$.

Operat pomiarowy

Ostateczne opracowanie realizowane w ramach ćwiczenia powinno stanowić operat, w skład którego wchodzi:

- sprawozdanie techniczne z założeniami projektowymi,
- opracowanie danych metodą analityczno-graficzną, zestawione w formie tabelarycznej,
- szkic teoretycznej osi jezdni podsuwnicowej w metodzie analitycznograficznej,
- opracowanie danych metodą analityczną, zestawione w formie tabelarycznej,
- szkic poprawek trasowania osi szyn jezdni podsuwnicowej wyznaczonych metodą analityczną.

2. Pomiary odchyleń od pionowości krawędzi budynku

Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie odchyleń krawędzi budynku od pionowości przy wykorzystaniu metody obserwacji kierunków poziomych i metody bezpośredniego rzutowania. Dodatkowo w ramach ćwiczenia należy wyznaczyć metodą pośrednią odległość pomiędzy stanowiskiem pomiarowym a budynkiem z wykorzystaniem bazy pionowej w postaci łaty niwelacyjnej ustawionej przy krawędzi budynku.

Sprzęt pomiarowy

Do wykonania pomiarów potrzebny jest następujący sprzęt pomiarowy:

- teodolit np. THEO 010 lub THEO 020 ze statywem,
- łata niwelacyjna, dodatkowo specjalna łata z podziałem milimetrowym przystosowana do tego pomiaru,
- ruletka

oraz szkicownik.

Czynności poprzedzające pomiar

Przed przystąpieniem do pomiaru należy wykonać następujące czynności:

1. Wybór stanowisk pomiarowych.

Pomiar należy wykonać w dwóch wzajemnie prostopadłych kierunkach. W tym celu na przedłużeniu ścian budynku, z minimalnym odchyleniem, aby badana krawędź była dobrze widoczna na tle nieba, wybiera się stanowiska instrumentu. Odległość stanowiska od budynku powinna wynosić co najmniej 1,5 wysokości budynku, co pozwoli na dogodną obserwację punktów na najwyższej kondygnacji.

2. Wybór punktów obserwowanych na krawędzi budynku.

Punkty podlegające pomiarowi powinny być tak obrane, aby były jednoznacznie identyfikowane z dwóch stanowisk pomiarowych i jednocześnie były stosunkowo równomiernie rozłożone na całej krawędzi budynku. Takimi punktami zazwyczaj są poziomy każdej kondygnacji, górna linia skrajnych okien, widoczne łączenia wierzchniej warstwy elewacji itp.

3. Sporządzenie szkicu sytuacyjnego lokalizacji stanowisk pomiarowych.

2.1. Pomiar metodą obserwacji kierunków poziomych

Metoda obserwacji kierunków poziomych polega na wyznaczeniu kątowych różnic $\Delta \alpha$ poszczególnych punktów obserwowanych na krawędzi budynku, względem tzw. punktu zerowego, zlokalizowanego na najniższym poziomie. W wyniku obliczeń powyższe różnice wyrażone w mierze kątowej przeliczane są na odchylenia liniowe.

Rys. 7. Schemat pomiaru odchyleń od pionowości krawędzi budynku metodą obserwacji kierunków poziomych

$$w_{y_i} = d \cdot tg \Delta \alpha_i \approx d \cdot \frac{\Delta \alpha_i}{\rho}$$
(2.1)

gdzie:

- $\Delta \alpha_i$ różnica kierunków pomiędzy punktem na i-tym poziomie a punktem na poziomie zerowym, $\Delta \alpha_i = k_i k_0$,
- *d* odległość pomiędzy stanowiskiem a krawędzią budynku,
- w_{v_i} odchylenie punktu na i-tym poziomie względem poziomu zerowego.

Przebieg prac pomiarowych w tej metodzie jest następujący:

- 1. Centrowanie i poziomowanie instrumentu na stanowisku pomiarowym.
- 2. Pomiar odległości pomiędzy stanowiskiem a krawędzią budynku.
- 3. Obserwacja punktów na krawędzi budynku.

Zaczynając od poziomu zerowego celujemy na kolejne punkty w taki sposób, aby kreska pionowa krzyża kresek pokrywała się z krawędzią budynku. Wykonujemy odczyty kierunków z koła pionowego i poziomego. Pomiar wykonujemy w dwóch położeniach lunety, a wyniki zapisujemy w dzienniku.

2.2. Pomiar metodą bezpośredniego rzutowania

Metoda bezpośredniego rzutowania polega na wyznaczeniu odchylenia krawędzi budynku przez rzutowanie teodolitem kolejnych punktów budynku na łatę umieszczoną poziomo pod budynkiem. W ten sposób składową odchylenia od pionowości punktów obserwowanych otrzymuje się bezpośrednio z odczy-tów na łacie.

Przebieg prac pomiarowych w tej metodzie jest następujący:

- 1. Centrowanie i poziomowanie instrumentu na stanowisku pomiarowym.
- 2. Pomiar odległości pomiędzy stanowiskiem a krawędzią budynku.
- 3. Ułożenie poziomo i prostopadle do celowych, na poziomie zerowym budynku łaty niwelacyjnej lub specjalnej łaty z podziałem milimetrowym.
- 4. Obserwacja punktów na krawędzi budynku.

Zaczynając od poziomu zerowego celujemy na kolejne punkty w taki sposób, aby kreska pionowa krzyża kresek pokrywała się z krawędzią budynku. Wykonujemy odczyt z koła pionowego, a następnie przy zablokowanej alidadzie opuszczamy lunetę teodolitu na łatę i wykonujemy odczyt z łaty. Pomiary wykonujemy w dwóch położeniach lunety, a wyniki zapisujemy w dzienniku.

Rys. 8. Schemat pomiaru odchyleń od pionowości krawędzi budynku metodą bezpośredniego rzutowania

Uśredniona różnica odczytów z łaty z dwóch położeń lunety pomiędzy poziomem i–tym (O_i) , a poziomem zerowym (O_0) stanowi odchylenie (w_{y_i}) krawędzi budynku w i–tym punkcie obserwowanym:

$$W_{y_i} = O_i - O_0$$
 (2.2)

2.3. Określenie wysokości budynku i odległości metodą pośrednią

W celu określenia wysokości budynku niezbędny jest pomiar kątów pionowych do punktu na górze obiektu (*i*) i punktu na dole obiektu (θ) oraz odległości (*d*) pomiędzy stanowiskiem a krawędzią budynku.

Rys. 9. Schemat pomiaru wysokości budynku i określenia odległości metodą pośrednią

Wysokość budynku obliczamy z poniższych wzorów, korzystając odpowiednio z kątów zenitalnych (z) lub horyzontalnych (α):

$$H = h_i + h_0$$

$$H = d \cdot tg\alpha_i + d \cdot tg\alpha_0 = d(tg\alpha_i + tg\alpha_0)$$
(2.3)

$$H = d(ctgz_i - ctgz_0)$$
(2.4)

Należy pamiętać o tym, że gdy punkt na dole obiektu znajduje się nad horyzontem instrumentu, to wówczas we wzorze 2.3 pojawi się znak minus.

W przypadku, gdy nie ma możliwości wykonania bezpośredniego pomiaru odległości pomiędzy stanowiskiem a budynkiem, wielkość tą można wyznaczyć pośrednio z wykorzystaniem bazy pionowej. Ustawiamy w tym celu łatę pionowo przy budynku (rys. 9), a następnie wykonujemy pomiar kąta pionowego na górę łaty (α_L) i stopę łaty (α_0). Ponieważ długość łaty ma wpływ na dokładność wyznaczenia odległości, powinniśmy stosować jak najdłuższy przymiar. Znając długość łaty (l_L) istnieje możliwość wyznaczenia odległości (d) z zależności:

$$l_{L} = d \cdot (tg\alpha_{L} + tg\alpha_{0})$$

$$d = \frac{l_{L}}{(tg\alpha_{L} + tg\alpha_{0})}$$
(2.5)

W sytuacji, gdy podczas pomiaru z drugiego stanowiska punkty na poszczególnych poziomach nie są jednoznacznie identyfikowalne, ich położenie można określić analitycznie poprzez wyznaczenie kąta pionowego. W tym celu z danych pomiarowych ze stanowiska pierwszego należy obliczyć różnicę wysokości pomiędzy poziomem zerowym, a poziomem i-tym (Δh_{0-i}) oraz na stanowisku drugim należy pomierzyć kąt horyzontalny do poziomu zerowego (α_0) i odległość pomiędzy stanowiskiem pomiarowym a budynkiem (d). Wówczas po przekształceniach można wyznaczyć kąt horyzontalny (α_i):

$$\Delta h_{0-i} = d \cdot tg\alpha_i + d \cdot tg\alpha_0$$

$$tg\alpha_i = \frac{\Delta h_{0-i} - d \cdot tg\alpha_0}{d}$$

$$\alpha_i = \operatorname{arctg}\left(\frac{\Delta h_{0-i} - d \cdot tg\alpha_0}{d}\right)$$
(2.7)

Przykład

Do pomiaru odchyleń od pionowości krawędzi wybrano dziesięciokondygnacyjny budynek mieszkalny, wybudowany z tzw. wielkiej płyty i ocieplony styropianem. Jedna krawędź tego budynku została pomierzona metodą obserwacji kierunków poziomych, natomiast odchylenie od pionowości drugiej krawędzi sprawdzono metoda bezpośredniego rzutowania. Rozmieszczenie stanowisk pomiarowych zaprezentowano na szkicu terenowym (rys. 10).

Rys. 10. Szkic pomiaru odchyleń krawędzi budynku od pionowości

Jako punkty obserwowane obrano na krawędziach budynku zmiany w kolorze elewacji, które występowały co drugą kondygnację. Wyniki pomiaru metodą obserwacji kierunków poziomych zestawiono w tabeli 4, a metody bezpośredniego rzutowania w tabeli 5. Odległość pomiędzy stanowiskiem pomiarowym nr 1, a budynkiem wyznaczono drogą pośrednią przy wykorzystaniu trzymetrowej łaty niwelacyjnej i teodolitu, natomiast odległości pozostałych stanowisk od budynku pomierzono ruletką.

Rys. 11. Szkic wyznaczenia odległości pomiędzy stanowiskiem pomiarowym a budynkiem

$$d = \frac{l_L}{(tg\alpha_L + tg\alpha_0)} = \frac{3,000}{tg(100 - 97,0060) + tg(101,1003 - 100)} = 46,62m$$

2.2							Kc	do po	ziome										Kolo pion	owe			
I położer	ożer	hie lu Hz	unety	/-KL	1 II b	ołoż	enie lu Hzn	mety	-KP				War	tość ka	atowa	I po lun	ložen stv - 1	ie Z		Śre	ednia w 1.f	artość	kąta
Odczyty:	đy:	ч н	₹ S	rednia	Ode	zyty:	B	Śrei	Inia	Kierui	nek śro	edni	w. Aa	ychyle r=Hz₁-	nia -Hza	II pc	łożen sty - P	" "	Kontrola $400^{8} - (V_1 + V_L)$	$\frac{z}{h} = \frac{z}{h}$	$\frac{1}{2}\left(V_{II}-\frac{1}{2}\right)$	$V_{II} + 4$	00 ⁸)
8	0	20	0	cc	00		3	5	cc.	ac	0	8	50	0	cc	a	0	2	<u></u> с (1)			0	8
3	3			4		5					2			∞			6		10		-	-	Π
6 6		0 10	P	=	210	9 9	12	9	12	10	10	12	0	8	00	101 298	89	84	8		101	10 10	03 03
₽		10 30	₽ 	30	20(6 6	35	10	30	9	10	30	0	8	18	94 305	31 68	90	õ	4	94 5	68 31	08 92
10		09 24	8	27	200	818	22	60	26	10	60	27	0-	00	85	86	F	8 8	5	8	86	11	89
	_	09 30	_		_	5	R									515	77	Z0			p	27	F
ŧ		08 44	2	87	JUC	8	45	au	S	ę	8U	07	U I	5	C	79	23	96	5		79	23	91
2		08 52	3	₽ P	107	8	55	8	R	₽	8	ŧ	2	5	5	320	76	14		2	20	76	60
ţ		07 22	5	L6 1	200	6	27	50	UE	ę	50	90	C I	60	58	72	19	78			72	19	88
₽		07 32	5	17	10.7	6	33	'n	R	2	ñ	<i>C7</i>	2	70	5	327	80	02			27	80	12
ę		06 56	2	C	200	8	50	76	Ľ	ę	yu V	2	9	c	00	65	84	44	1	2	65	84	38
2		06 50	8	6	107	8	60	8	6	2	8	÷.	9	6	00	334	15	68		7	34	15	62
27		55 6	5	00	22	22	8	55	17	27	55	10	U	UU	UU	100	05	90			100	05	13
1		55 10	1		1	55	5 16	3	2	t	ì	2	5	3	8	299	46	80	11	t	-	05	9
50		55 84	5	70		5	76	H	uo	66	ä	c	c	00	ţ	93	90	8			93	90	08
77		55 88	ł	3	5	5	84	R	8	7	R	5	5	3	2	306	60	84	16	~	6	60	92
27		56 40	2	70	22	35	#	ςκ	77	22	ξŔ	67	C	11	65	86	32	20			86	32	25
77		56 40	ŝ	₽	;	5	#	R	ŧ	3	R	¥	5	5	71	313	67	20	Ħ		13	67	75
22		57 52	5	26	20,	15	48	5	5	66	5	C	c	60	57	79	02	94			79	02	84
t		57 60	ì	?	1	5	52	5	3	ť	ĩ	3	5	3	2	320	79	26	-2	0	20	76	16
22	_	57 70	5	66	22	12	56	5	60	"	5	Ę	c	60	G	72	28	30			72	28	32
77		57 62	5	3	3	5	64	'n	3	7	ñ	3		70	2	327	11	66	6	4	27	71	68
22	_	56 80		ž	20,	25	72	ςκ	UB	66	ΣŔ	58	c	10	61	66	Ħ	94			66	11	86
77	and the second division of the second divisio	56 90	1	3	777	5	5 88	2	3	77	2	3	2	5	14	333	88	22	7	9	33	88	14

 Tabela
 4. Dziennik pomiaru odchyleń od pionowości krawędzi budynku metodą obserwacji kierunków poziomych

Wartość liniowa	wychylenia 00a	- 1A	uuu	10	0	9-	-2	6	8	16	0	4	13	15	22	11
Średni odczyt	z laty	$O = \frac{1}{2}(O_I + O_{II})$	mm	6	1120	1114	1118	1129	1128	1136	1006	1010	1019	1021	1028	1023
Średnia wartość kąta	$z = \frac{1}{2} \left(V_I - V_{II} + 400^{\mathcal{R}} \right)$	$\alpha = \frac{1}{2} \left(V_{II} - V_J - 200^{\text{s}} \right)$	g c cc	8	98 60 72 1 39 28	91 99 30 8 00 70	83 95 53 16 04 47	76 <u>37</u> 57 23 62 43	69 42 14 30 57 86	63 19 90 36 80 10	98 76 12 1 23 88	92 45 72 7 54 28	84 84 77 15 15 23	77 57 21 22 42 79	70 85 88 29 14 12	64 78 85 35 21 15
	Kontrola 400°-(V,+V,i)	m I . 1	g c cc	7	24	-20	-25	42	-16	-20	-16	-16	06	71	04	-10
nety - KP	Odczyt z łaty	O_{II}	uuu	9	1120	1113	1118	1130	1128	1136	1006	1010	1019	1022	1028	1024
nie lu	ديد		3	Π	16	80	60	22	76	20	96	36	20	72	9	20
olože	crune	V_{II}	УЦ 8 с	s	39	8	04	62	57	80	23	54	ŧ	42	14	21
II po	Kić	i.			301	308	316	323	330	336	301	307	315	322	329	335
iety - KL	Odczyt z łatv	0'	un	4	1120	1115	1118	1128	1128	1135	1006	1010	1019	1020	1028	1022
ie lun			cc	Π	60	40	65	36	22	8	20	80	74	14	86	90
ožen	runek	V1	0	9	60	66	95	37	42	20	76	45	84	57	85	78
I pol	Kie pio		8		96	91	68	76	69	63	98	92	84	77	70	99
njə	o oinoz	zəbriz	20	2	•	7	2	m	4	5	0	÷	2	m	4	5
	r: siska	onul	s N	1			r t	יר ה					54 54	st. 4		

 Tabela 5. Dziennik pomiaru odchyleń od pionowości krawędzi budynku metodą bezpośredniego rzutowania

Na podstawie wyników pomiarów, zestawionych w dziennikach, obliczono odchylenia krawędzi budynku w każdym punkcie obserwowanym zgodnie ze wzorami 2.1 i 2.2. Wielkości tych odchyleń w odniesieniu do osi OX i OY oznaczano odpowiednio wektorami w_x i w_y . Ostatecznie wektor odchylenia (w) w płaszczyźnie poziomej w każdym punkcie obserwowanym obliczono ze wzoru:

$$w_i = \sqrt{w_{x_i}^2 + w_{y_i}^2}$$
(2.8)

Dodatkowo wyznaczono różnice wysokości pomiędzy poziomem zerowym a poziomem i-tym.

Nr	<u> </u>	Stanowisko	1	<u>s</u>	Stanowisko 2	2	H zred.
nlrt	kąt α	Н	H _{zred}	kąt α	Н	Hzred	średnie
ркі.	[g]	[m]	[m]	[g]	[m]	[m]	[m]
0	-1,1003	-0,81	0,00	-0,0513	-0,04	0,00	0,00
1	5,3192	3,90	4,71	6,0992	4,65	4,69	4,70
2	13,2211	9,82	10,63	13,6775	10,56	10,60	10,61
3	20,7609	15,77	16,57	20,9716	16,55	16,59	16,58
4	27,8012	21,76	22,57	27,7168	22,51	22,55	22,56
5	34,1562	27,73	28,53	33,8814	28,50	28,54	28,54
		d = 46,62 m	1		d = 48,40 m		

Tabela 6. Zestawienie obliczonych wysokości poszczególnych punktów - krawędź A

Tabela 7. Zestawienie obliczonych wysokości poszczególnych punktów – krawędź B

Nr	S.	Stanowisko (3	S	Stanowisko 4	4	H zred.
nlrt	kąt α	Н	Hzred	kąt α	Н	H _{zred}	średnie
ркі.	[^g]	[m]	[m]	[g]	[m]	[m]	[m]
0	1,3928	0,99	0,00	1,2388	0,93	0,00	0,00
1	8,0070	5,72	4,73	7,5428	5,67	4,74	4,74
2	16,0447	11,64	10,65	15,1523	11,56	10,63	10,64
3	23,6243	17,59	16,60	22,4279	17,52	16,59	16,59
4	30,5786	23,55	22,56	29,1412	23,47	22,55	22,55
5	36,8010	29,49	28,50	35,2115	29,42	28,49	28,50
		d = 45,20 m	l		d = 47,65 m	l	

Nr pkt.	w _x [mm]	w _y [mm]	w [mm]	$H_{zred}[m]$
]	Krawędź A - meto	da obserwacji kier	unków poziomycł	1
0	-	-	-	0,00
1	1	6	6	4,70
2	-6	10	12	10,62
3	-12	18	22	16,58
4	-21	19	28	22,56
5	-26	13	29	28,54
	Krawędź B - m	etoda bezpośredni	ego rzutowania	
0	-	-	-	0,00
1	-6	4	7	4,74
2	-2	13	13	10,64
3	9	15	17	16,60
4	8	22	23	22,56
5	16	17	23	28,50

Tabela 8. Zestawienie odchyleń krawędzi budynku od pionowości

Prezentacja graficzna

Dysponując wielkościami zestawionymi w tabelach 6-8 sporządza się wykres odchylenia od pionowości każdej krawędzi budynku w rzucie pionowym na płaszczyzny OXZ i OYZ oraz w rzucie poziomym na płaszczyznę OXY. Skalę dobiera się w zależności od wielkości uzyskanych odchyleń.

Wykres odchylenia krawędzi budynku od pionowości

Rys. 12. Wykres odchylenia od pionowości krawędzi A w rzucie pionowym na płaszczyznę OXZ i OYZ

Wykres odchylenia krawędzi budynku od pionowości

Rys. 13. Wykres odchylenia od pionowości krawędzi B w rzucie pionowym na płaszczyzne OXZ i OYZ

Rys. 14. Wykres odchylenia od pionowości krawędzi budynku w rzucie poziomym na płaszczyznę OXY

Ocena dokładności

Wykonanie oceny dokładności dla danej metody pomiarowej jest niezbędnym elementem pozwalającym na właściwą interpretację uzyskanych wyników.

metoda obserwacji kierunków poziomych

Dane:

 $d = 48,40 \text{ m} \pm 0,05 \text{ m}$ $\Delta \alpha = 0,0172^{\text{g}} \pm 2^{\text{cc}}$

$$w_{y} = d \cdot \frac{\Delta \alpha}{\rho}$$

$$m_{w_{y}}^{2} = \left(\frac{\partial w_{y}}{\partial d}\right)^{2} m_{d}^{2} + \left(\frac{\partial w_{y}}{\partial \Delta \alpha}\right)^{2} m_{\Delta \alpha}^{2}$$

$$m_{w_{y}}^{2} = \left(\frac{\Delta \alpha}{\rho}\right)^{2} m_{d}^{2} + d^{2} m_{\Delta \alpha}^{2}$$

$$m_{w_{y}}^{2} = \left(\frac{0,0172}{63,6620}\right)^{2} 0,05^{2} + 48,40^{2} \left(\frac{0,0002}{63,6620}\right)^{2}$$

$$m_{w_{y}}^{2} = \pm 0,0002m$$

$$(2.9)$$

• metoda bezpośredniego rzutowania

$$w_{y} = O_{i} - O_{0}$$

$$m_{w_{y}}^{2} = \left(\frac{\partial w_{y}}{\partial O_{i}}\right)^{2} m_{O_{i}}^{2} + \left(\frac{w_{y}}{\partial O_{0}}\right)^{2} m_{O_{0}}^{2}$$

$$m_{w_{y}} = \pm \sqrt{m_{O_{i}}^{2} + m_{O_{0}}^{2}}$$
(2.10)

Przyjmując, że błąd odczytu z łaty za każdym razem jest taki sam otrzymujemy:

$$m_{w_y} = \pm \sqrt{2m_O^2} = \pm m_O \sqrt{2}$$

Z powyższego wzoru wynika, że na dokładność wyznaczenia odchylenia krawędzi budynku od pionowości ma wpływ błąd odczytu z łaty m_0 . Wielkość tego błędu zależna jest głównie od odległości instrumentu od łaty i powiększenia lunety. W praktyce zazwyczaj przyjmuje się, że błąd m_0 wynosi od 2 do 3 mm.

$$m_{w_y} = \pm 2\sqrt{2} = \pm 3mm$$

• wysokość budynku

Dane:

 $\alpha_i = 34,1562^{\text{g}} \pm 2^{\text{cc}}$ $\alpha_0 = 1,1003^{\text{g}} \pm 2^{\text{cc}}$ $d = 46,62 \text{ m} \pm 5 \text{ cm}$

$$H = d \cdot tg \alpha_{i} + d \cdot tg \alpha_{0} = d \cdot (tg \alpha_{i} + tg \alpha_{0})$$

$$m_{H}^{2} = \left(\frac{\partial H}{\partial d}\right)^{2} m_{d}^{2} + \left(\frac{\partial H}{\partial \alpha_{i}}\right)^{2} m_{\alpha_{i}}^{2} + \left(\frac{\partial H}{\partial \alpha_{0}}\right)^{2} m_{\alpha_{0}}^{2}$$

$$m_{H}^{2} = \left(tg \alpha_{i} + tg \alpha_{0}\right)^{2} m_{d}^{2} + \left(\frac{d}{\cos^{2} \alpha_{i}}\right)^{2} m_{\alpha_{i}}^{2} + \left(\frac{d}{\cos^{2} \alpha_{0}}\right)^{2} m_{\alpha_{0}}^{2}$$

$$m_{H}^{2} = \left(tg 34,1562 + tg 1,1003\right)^{2} 0,05^{2} + \left(\frac{46,62}{\cos^{2} 34,1562}\right)^{2} \left(\frac{0,0002}{63,6620}\right)^{2} + \left(\frac{46,62}{\cos^{2} 1,1003}\right)^{2} \left(\frac{0,0002}{63,6620}\right)^{2}$$

$$m_{H} = \pm 0,031 \text{m}$$

• odległość wyznaczona metodą pośrednią

Dane:

 $\alpha_L = 2,9940^{\text{g}} \pm 2^{\text{cc}}$ $\alpha_0 = 1,1003^{\text{g}} \pm 2^{\text{cc}}$ $l_L = 3,000 \text{ m} \pm 2\sqrt{2} \text{ mm}$

$$d = \frac{l_L}{tg\alpha_L + tg\alpha_0}$$
$$m_d^2 = \left(\frac{\partial d}{\partial l_L}\right)^2 m_{l_L}^2 + \left(\frac{\partial d}{\partial \alpha_L}\right)^2 m_{\alpha_L}^2 + \left(\frac{\partial d}{\partial \alpha_0}\right)^2 m_{\alpha_0}^2$$

$$m_d^2 = \left(\frac{1}{tg\alpha_L + tg\alpha_0}\right)^2 m_{l_L}^2 + \left(\frac{-l_L^2}{\cos^4 \alpha_L (tg\alpha_L + tg\alpha_0)^4}\right) m_{\alpha_L}^2 + \left(\frac{-l_L^2}{\cos^4 \alpha_0 (tg\alpha_L + tg\alpha_0)^4}\right) m_{\alpha_0}^2$$

$$(2.12)$$

$$m_d^2 = \left(\frac{1}{tg\,2,9940 + tg\,1,1003}\right)^2 \left(2\sqrt{2}\right)^2 + \left(\frac{-3,000^2}{\cos^4 2,9940 \left(tg\,2,9940 + tg\,1,1003\right)^4}\right) \cdot \left(\frac{0,0002}{63,6620}\right)^2 + \left(\frac{-3,000^2}{\cos^4 1,1003 \left(tg\,2,9940 + tg\,1,1003\right)^4}\right) \left(\frac{0,0002}{63,6620}\right)^2$$

$$m_d = \pm 0,047m$$

Operat pomiarowy

Ostateczne opracowanie realizowane w ramach ćwiczenia powinno stanowić operat pomiarowy, w skład którego wchodzi:

- sprawozdanie techniczne,
- szkic lokalizacji badanego budynku z rozmieszczeniem stanowisk pomiarowych,
- dzienniki pomiarowe obserwacji kierunków poziomych i bezpośredniego rzutowania,
- obliczenia i zestawienie wyników,
- wykresy odchyleń krawędzi budynku od pionowości,
- ocena dokładności,
- wnioski.
3. Pomiary odchyleń od prostoliniowości ściany budynku

Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie odchyleń od prostoliniowości ściany budynku przy wykorzystaniu metody stałej prostej. Metoda ta pozwala na zlokalizowanie wklęsłości i wypukłości obiektów wydłużonych wzdłuż prostej odniesienia, realizowanej przez oś celową teodolitu. W pomiarach można wykorzystać dwa podejścia do tej metody, z których w jednym prosta odniesienia jest skośna w stosunku do budynku, natomiast w drugim podejściu prosta odniesienia jest równoległa do budynku.

Rys. 15. Schemat pomiaru odchyleń od prostoliniowości ściany budynku metodą stałej prostej

Sprzęt pomiarowy

Do wykonania pomiarów niezbędny jest następujący sprzęt pomiarowy:

- teodolit np. THEO 010 lub THEO 020 ze statywem,
- tarcza celownicza ze statywem,
- łata niwelacyjna lub specjalna łata realizacyjna przystosowana do tego typu pomiaru,

• ruletka

oraz szkicownik.

Pomiar

1. Wybór stanowiska pomiarowego i celu.

Stanowisko pomiarowe i cel stanowią prostą odniesienia, która powinna przebiegać w odległości około 0,5 m od budynku. Odległość tę zmieniamy, w zależności od warunków atmosferycznych w jakich wykonujemy pomiary (wpływ refrakcji bocznej). Stanowisko pomiarowe lokalizujemy co najmniej kilka metrów przed budynkiem.

- 2. Centrowanie i poziomowanie instrumentu na stanowisku pomiarowym.
- 3. Sygnalizacja celu tarczą celowniczą.
- 4. Wyznaczenie prostej odniesienia.

Celujemy na tarczę celowniczą. Prostą odniesienia doprowadzamy do poziomu ustawiając, przy zablokowanym kole poziomym, na kole pionowym wartość 100^g lub 300^g odpowiednio w I lub II położeniu lunety (dla podziału zenitalnego koła pionowego).

5. Wybór punktów obserwowanych na ścianie budynku.

Punkty powinny być stosunkowo równomiernie rozłożone na całej długości budynku, można zaznaczyć ich lokalizację na budynku np. kredą.

- Pomiar w punktach obserwowanych.
 W każdym punkcie (*P*, ..., *K*) przykładamy łatę pod kątem prostym do budynku i dokonujemy odczytu (*O_P*, ..., *O_K*), zapisując wynik w dzienniku.
- 7. Pomiar w II położeniu lunety analogicznie według punktów 4, 6.
- 8. Pomiar po obrysie budynku odległości pomiędzy punktami obserwowanymi $(d_1, d_2, ..., d_K)$ oraz pomiędzy budynkiem a stanowiskiem pomiarowym (D_P) .
- 9. Sporządzenie szkicu sytuacyjnego.

Rys. 16. Graficzna interpretacja odchyleń od prostoliniowości ściany budynku

Opracowanie danych

Zgodnie z oznaczeniami zawartymi na rys. 16 odczyt z łaty O_i w dowolnym punkcie obserwowanym jest równy:

$$O_i = y_i + O_P + x_i \tag{3.1}$$

W celu wyznaczenia odchylenia od prostoliniowości y_i należy dokonać przekształcenia:

$$y_i = O_i - O_P - x_i$$
 (3.2)

Wartością nieznaną w powyższym wzorze jest wielkość x_i , którą można wyliczyć korzystając z twierdzenia Talesa:

$$\frac{x_i}{d_i} = \frac{x_K}{d_K} \Longrightarrow x_i = \frac{d_i}{d_K} x_K \Longrightarrow x_i = \frac{d_i}{d_K} (O_K - O_P)$$
(3.3)

Po podstawieniach uzyskujemy:

$$y_i = O_i - O_P - d_i \frac{(O_K - O_P)}{d_K}$$
$$y_i = O_i - O_P - d_i K$$
(3.4)

gdzie $K = \frac{O_K - O_P}{d_K}$ jest wartością stałą dla danej konstrukcji pomiarowej. Jeżeli w terenie podczas pomiaru ustawimy oś celową tak, aby $O_P = O_K$, to wówczas będzie ona równoległa do prostej *PK* (do budynku). Wtedy:

$$y_i = O_i - O_P \tag{3.5}$$

Wielkość O_x , która pozwala ustawić oś celową równolegle do danego obiektu budowlanego można wyznaczyć w następujący sposób:

$$\frac{O_K - O_x}{D_K} = \frac{O_P - O_x}{D_P}$$

$$O_x = \frac{O_P D_K - O_K D_P}{D_K - D_P}$$
(3.6)

Po tych obliczeniach naprowadzamy oś celową na odczyt O_x na łacie przyłożonej w punkcie końcowym K, a następnie bez zmiany położenia osi celowej dokonujemy odczyt z łaty w punkcie początkowym P. Różnica tych odczytów powinna spełniać nierówność:

$$|O_K - O_P| \le 2 mm$$

Przykład

Zasady opracowania danych przedstawiono na przykładzie pomiaru dwóch ścian budynku mieszkalnego (ten sam budynek co w rozdziale 2 niniejszego skryptu). Lewa ściana budynku została pomierzona przy zastosowaniu podejścia, w którym prostą odniesienia doprowadza się do położenia równoległego do ściany budynku. Natomiast przy pomiarze prawej ściany budynku, prosta odniesienia była skośna w stosunku do ściany budynku. Schemat pomiaru zaprezentowano na szkicu terenowym (rys. 17).

Rys. 17. Szkic pomiaru odchyleń od prostoliniowości ścian budynku

Nr	Odległość [m]	Odczyt z łaty I [mm]	Odczyt z łaty II [mm]	Odczyt średni [mm]	y _i [mm]					
0	0,00	0358	0358	0358	0					
1	4,00	0416	0414	0415	-5					
2	8,00	0474	0476	0475	-6					
3	12,00	0542	0542	0542	-1					
4	16,00	0606	0608	0607	3					
5	20,00	0674	0674	0674	8					
6	24,00	0739	0739	0739	12					
7	28,00	0810	0808	0809	20					
8	32,00	0870	0870	0870	20					
9	36,00	0926	0926	0926	14					
10	40,00	0986	0986	0986	12					
11	44,00	1042	1042	1042	7					
12	47,70	1092	1091	1092	0					
	$y_i = 0_i - 0_p - d_i K$ gdzie: $K = (0_K - 0_p) / d_K = 0,015388$									

Tabela 9. Dziennik pomiaru odchyleń od prostoliniowości ściany budynku metodąstałej prostej – ściana prawa

 Tabela 10. Dziennik pomiaru odchyleń od prostoliniowości ściany budynku metodą

 stałej prostej – ściana lewa

Nr	Odległość [m]	Odczyt z łaty I [mm]	Odczyt z łaty II [mm]	Odczyt średni [mm]	y _i [mm]
0	0,00	0396	0396	0396	0
1	4,00	0399	0399	0399	3
2	6,00	0402	0402	0402	6
3	10,00	0406	0406	0406	10
4	14,00	0409	0409	0409	13
5	18,00	0411	0411	0411	15
6	22,00	0410	0412	0411	15
7	26,00	0408	0408	0408	12
8	30,00	0406	0406	0406	10
9	34,00	0406	0407	0406	10
10	38,00	0402	0402	0402	6
11	42,00	0400	0400	0400	4
12	47,70	0396	0396	0396	0
	$O_P = 0450$ $O_K = 1160$	D _P = 3,65 m D _K = 51,35 m	$0_{x} = (0_{P}D_{K}-0_{P})$	$(D_{\rm P})/(D_{\rm K}-D_{\rm P})=0,39$	96 m

Rys. 18. Wykres odchyleń ściany budynku od prostoliniowości

Ocena dokładności

W metodzie stałej prostej na dokładność wyznaczenia odchylenia od prostoliniowości największy wpływ ma błąd odczytu z łaty m_0 . Na wartość tego błędu, poza zdolnościami obserwatora, ma głównie wpływ odległość instrumentu od łaty i powiększenie lunety. Poza tym należy zaznaczyć, że umiejętne przykładanie łaty pod kątem prostym do budynku ma również znaczenie w ostatecznej ocenie dokładności. W praktyce zazwyczaj przyjmuje się, że błąd m_0 wynosi około od 1 do 3 mm.

Dane:

 $O_i = 1,042 \text{ m} \pm 0,002 \text{ m}$ $O_P = 0,358 \text{ m} \pm 0,002 \text{ m}$ $O_K = 1,092 \text{ m} \pm 0,002 \text{ m}$ $d_i = 44,00 \text{ m} \pm 0,05 \text{ m}$ $d_K = 47,70 \text{ m} \pm 0,05 \text{ m}$

$$y_{i} = O_{i} - O_{P} - d_{i} \frac{(O_{K} - O_{P})}{d_{K}}$$

$$m_{y_{i}}^{2} = \left(\frac{\partial y_{i}}{\partial O_{i}}\right)^{2} m_{O_{i}}^{2} + \left(\frac{\partial y_{i}}{\partial O_{P}}\right)^{2} m_{O_{P}}^{2} + \left(\frac{\partial y_{i}}{\partial O_{K}}\right)^{2} m_{O_{K}}^{2} + \left(\frac{\partial y_{i}}{\partial d_{i}}\right)^{2} m_{d_{i}}^{2} + \left(\frac{\partial y_{i}}{\partial d_{K}}\right)^{2} m_{d_{K}}^{2}$$

$$m_{y_{i}}^{2} = m_{O_{i}}^{2} + \left(-1 + \frac{d_{i}}{d_{K}}\right)^{2} m_{O_{P}}^{2} + \left(-\frac{d_{i}}{d_{K}}\right)^{2} m_{O_{K}}^{2} + \left(-\frac{O_{K} - O_{P}}{d_{K}}\right)^{2} m_{d_{i}}^{2} + \left(\frac{d_{i}(O_{K} - O_{P})}{d_{K}^{2}}\right)^{2} m_{d_{K}}^{2}$$
(3.7)

$$m_{y_i}^2 = 0,002^2 + \left(1 - \frac{44,00}{47,70}\right)^2 0,002^2 + \left(\frac{44,00}{47,70}\right)^2 0,002^2 + \left(-\frac{1,092 - 0.358}{47,70}\right)^2 0,05^2 + \left(\frac{44,00(1,092 - 0.358)}{47,70^2}\right)^2 0,05^2$$
$$m_{y_i} = \pm 0,003 m$$

$$y_{i} = O_{i} - O_{p}$$

$$m_{y_{i}}^{2} = \left(\frac{\partial y_{i}}{\partial O_{i}}\right)^{2} m_{O_{i}}^{2} + \left(\frac{\partial y_{i}}{\partial O_{p}}\right)^{2} m_{O_{p}}^{2}$$

$$m_{y_{i}}^{2} = m_{O_{i}}^{2} + m_{O_{p}}^{2}$$
(3.8)

Gdy przyjmiemy, że $m_{0_i} = m_{0_P} = m_0$ wówczas:

$$m_{y_i}^2 = 2m_O^2$$

$$m_{y_i} = \pm \sqrt{2}m_O$$

$$m_{y_i} = \pm \sqrt{2} \cdot 2 = \pm 3 mm$$
(3.9)

Operat pomiarowy

Ostateczne opracowanie realizowane w ramach ćwiczenia powinno stanowić operat pomiarowy, w skład którego wchodzi:

- sprawozdanie techniczne,
- szkic lokalizacji badanego budynku,
- dziennik z pomiaru,
- obliczenia i zestawienie wyników,
- wykres odchyleń ściany budynku od prostoliniowości,
- ocena dokładności,
- ocena uzyskanych wyników (wnioski).

4. Pomiary ugięcia dźwigara

Cel ćwiczenia

Zadaniem ćwiczenia jest wskazanie metodyki wykonywania pomiarów ugięcia dźwigara. W pomiarach należy zastosować metodę niwelacji geometrycznej, w której łata niwelacyjna przystawiana jest bezpośrednio do dolnego pasa dźwigara co powoduje, że może być w praktyce stosowana dla dźwigarów usytuowanych na wysokości do około 5 m [15].

Sprzęt pomiarowy

Do wykonania pomiaru niezbędny jest następujący sprzęt pomiarowy:

- automatyczny niwelator techniczny ze statywem lub niwelator laserowy,
- łata niwelacyjna z libelą lub łata z detektorem dla niwelatora laserowego,
- ruletka

oraz szkicownik.

Pomiar i opracowanie danych

- 1. Wybór punktów kontrolowanych na dźwigarze.
- 2. Określenie odległości pomiędzy punktami obserwowanymi.

3. Lokalizacja stanowiska i poziomowanie niwelatora.

Zgodnie z zasadami niwelacji geometrycznej ze środka należy dążyć do tego, aby odległość pomiędzy niwelatorem a reperem była zbliżona do odległości pomiędzy niwelatorem a punktami kontrolowanymi.

- 4. Wyznaczenie przewyższeń pomiędzy reperem roboczym a każdym punktem kontrolowanym poprzez:
 - a) ustawienie w pionie łaty niwelacyjnej na reperze roboczym, wykonanie odczytu z łaty wstecz t_{Rp} i zapisanie wyniku w dzienniku,
 - b) przyłożenie do każdego punktu kontrolowanego w pionie łaty niwelacyjnej (stopką łaty do dźwigara), wykonanie odczytu w przód p_i i zapisanie wyniku w dzienniku,
 - c) obliczenie różnic wysokości

$$\Delta h_i = t_{Rp} + p_i \tag{4.1}$$

- 5. Zmiana wysokości niwelatora, wykonanie pomiarów powtórnie według pkt. 4.
- 6. Obliczenie średnich przewyższeń $\Delta h_i^{\pm r}$ pomiędzy reperem roboczym a punktami kontrolowanymi.
- 7. Obliczenie wysokości punktów kontrolowanych w przyjętym układzie wysokościowym:

$$H_i = H_{Rp} + \Delta h_i^{\text{sr}} \tag{4.2}$$

8. Obliczenie strzałki ugięcia w punktach kontrolowanych [7]:

$$f_{i} = q \cdot H_{n} + (1 - q) \cdot H_{1} - H_{i}$$

$$q = \frac{d_{1 - i}}{d_{1 - n}}$$
(4.3)

gdzie:

- *q* parametr wyrażający stosunek odległości punktu i-tego względem punktu 1 i n.
- 9. Sporządzenie szkicu pomiarowego.
- 10. Wykonanie graficznej prezentacji uzyskanych wyników pomiaru.

Należy nadmienić, że w przypadku gdy pomiar jest wykonywany tylko z jednego stanowiska to nawiązywanie do reperu roboczego nie jest konieczne. Wówczas pomiar jest realizowany w dowolnym lokalnym układzie wysokościowym. Natomiast, gdy chcemy dokonywać obserwacji okresowych, to wówczas nawiązywanie do reperu roboczego jest niezbędne.

Przykład

Do wyznaczenia strzałki ugięcia dźwigara wybrano łącznik pomiędzy budynkami Politechniki Koszalińskiej zlokalizowanymi przy ul. Śniadeckich 2 (między blokiem A i D). Lokalizację obiektu zaprezentowano na szkicu (rys. 20), a dane pomiarowe umieszczono w tabeli 11.

Rys. 20. Szkic pomiaru strzałki ugięcia łącznika

Nr	Nr		I pomiar			II pomiar		٨b ^{śr}	н
st.	pkt.	wstecz t	w przód <i>p</i>	$\Delta h^{\mathrm{I}} \ t+p$	wstecz t	w przód <i>p</i>	$\Delta h^{ m II} \ t+p$	[mm]	[m]
Α	Rp2024	1033			1042				58,658
	1		0718	1751		0708	1750	1750	60,408
	2		0714	1747		0705	1747	1747	60,405
	3		0712	1745		0702	1744	1744	60,402
	4		0716	1749		0708	1750	1750	60,408
	5		0727	1760		0717	1759	1760	60,418
	6		0715	1748		0706	1748	1748	60,406
	7		0713	1746		0703	1745	1746	60,404
	8		0711	1744		0700	1742	1743	60,401
	9		0719	1752		0710	1752	1752	60,410
	10		0725	1758		0717	1759	1758	60,416

Tabela 11. Dziennik pon	niaru strzałk	i ugięcia	łącznika
-------------------------	---------------	-----------	----------

Wyniki obliczeń strzałki ugięcia łącznika zgodnie ze wzorem 4.3 zestawiono w tabeli 12.

Nr	Odległość	Н	q	f
pkt.	[m]	[m]	-	[m]
1	0,00	60,408		
2	5,80	60,405	0,240664	0,005
3	11,85	60,402	0,491701	0,011
4	17,90	60,408	0,742739	0,007
5	24,10	60,418		
6	0,00	60,406		
7	5,80	60,404	0,240664	0,006
8	11,85	60,401	0,491701	0,012
9	17,90	60,410	0,742739	0,005
10	24,10	60,416		

Tabela 12. Wyniki obliczeń strzałki ugięcia łącznika

Na podstawie danych zawartych w tabeli 12 sporządzono wykresy, na których zaprezentowano graficznie wielkości ugięcia łącznika. Wykresy wykonano w dwóch skalach tj. 1:1 dla wysokości punktów kontrolowanych i 1:200 dla odległości między nimi.

Rys. 21. Wykres strzałek ugięcia dźwigara łącznika w punktach kontrolowanych – pkt. 1-5

Rys. 22. Wykres strzałek ugięcia dźwigara łącznika w punktach kontrolowanych – pkt. 6-10

Dokonując analizy wielkości ugięcia dźwigarów łącznika należy wziąć pod uwagę to, z jaką dokładnością wykonujemy pomiar. Ze względu na to, że pomiar był realizowany niwelatorem technicznym, to należy przyjąć dokładność 2-3 mm wynikającą z dokładności wyznaczenia przewyższenia w niwelacji technicznej. Uzyskane wartości ugięcia należy porównać z ugięciem dopuszczalnym zgodnie z Polską Normą [18], które dla tego typu konstrukcji wynosi L/350 (L – rozpiętość elementu w mm).

$$f_{max} = \frac{24100}{350} = 69 \ mm$$

Wyznaczone wartości ugięcia nie przekraczają zatem wielkości maksymalnej.

Operat pomiarowy

Ostateczne opracowanie realizowane w ramach ćwiczenia powinno stanowić operat pomiarowy, w skład którego wchodzi:

- sprawozdanie techniczne,
- szkic lokalizacji dźwigara,
- dziennik pomiarowy,
- obliczenia strzałki ugięcia w punktach kontrolowanych,
- prezentacja graficzna strzałek ugięcia,
- ocena uzyskanych wyników.

5. Pomiary strzałki zwisu przewodu napowietrznego

Cel ćwiczenia

Celem ćwiczenia jest pomiar strzałki zwisu linii energetycznej lub odciągu masztu przy wykorzystaniu metody niwelacji trygonometrycznej. Wyznaczenie strzałki zwisu w dowolnym punkcie liny polega na określeniu odległości tego punktu w kierunku działania siły ciężkości od linii prostej łączącej punkty zawieszenia liny [1].

Sprzęt pomiarowy

Do wykonania pomiaru niezbędny jest następujący sprzęt pomiarowy:

- tachimetr ze statywem,
- tyczka z reflektorem,
- niwelator techniczny z kompletem łat (opcjonalnie),
- ruletka

oraz paliki i szkicownik.

5.1. Wyznaczenie strzałki zwisu linii energetycznej

Znajomość wielkości strzałki zwisu przewodu i prześwitu pod nim jest w praktyce inżynierskiej potrzebna przede wszystkim tam, gdzie przewody napowietrzne krzyżują się z liniami komunikacji drogowej, kolejowej, wodnej itp. [9].

Przebieg prac pomiarowych przy wyznaczeniu strzałki zwisu linii energetycznej jest następujący:

- 1. Zrzutowanie na powierzchnię terenu punktów *A* i *B*, stanowiących zaczepy liny energetycznej (otrzymujemy punkty *A'*, *B'*).
- 2. Lokalizacja punktu *P'* znajdującego się na prostej *A'B'* oraz w przekroju liny w miejscu wyznaczania strzałki zwisu.
- 3. Wybór stanowisk pomiarowych i ich stabilizacja.

Każde stanowisko instrumentu należy zlokalizować w przybliżeniu na prostej prostopadłej do kierunku przebiegu linii energetycznej. Odległość stanowiska pomiarowego od linii energetycznej powinna wynosić co najmniej 1,5 odległości przewodu od terenu.

- 4. Określenie wysokości stanowisk pomiarowych w przyjętym układzie odniesienia, przy wykorzystaniu niwelacji trygonometrycznej lub geometrycznej.
- 5. Wykonanie na kolejnych stanowiskach pomiarowych następujących czynności:
 - a) centrowanie i poziomowanie instrumentu,
 - b) określenie wysokości instrumentu (i),
 - c) określenie wysokości reflektora na tyczce (s),
 - d) pomiar kąta pionowego (z) i odległości (d) do reflektora ustawionego odpowiednio w punkcie A', P' lub B',
 - e) przy zablokowanym kole poziomym wycelowanie na punkt zlokalizowany na linie energetycznej A, P lub B i pomiar kąta pionowego (z'),
 - f) pomiar w drugim położeniu lunety wg pkt. d i e.
- 6. Pomiar odległości między punktami A', P', B' (a i b).
- 7. Sporządzenie szkicu pomiarowego.

Rys. 23. Schemat pomiaru strzałki zwisu linii energetycznej

Rys. 24. Interpretacja geometryczna strzałki zwisu linii energetycznej

Opracowanie danych pomiarowych

1. Wyznaczenie wysokości obserwowanych punktów A', P', B' oraz A, P, B:

$$H_{P'} = H_{st,2} + i + d \cdot ctg \, z - s$$

$$H_{P} = H_{st,2} + i + d \cdot ctg \, z'$$

$$(5.1)$$

analogicznie obliczamy H_A , $H_{A'}$, H_B , $H_{B'}$

- 2. Wyznaczenie strzałki zwisu w punkcie P:
 - jeżeli $H_A = H_B$:

$$f = H_A - H_P = H_B - H_P \tag{5.2}$$

• jeżeli $H_A \neq H_B$:

$$f = H_{P'} - H_{P}$$

$$H_{P'} = H_{A} + a \cdot i_{\%}$$

$$i_{\%} = \frac{H_{B} - H_{A}}{a + b}$$
(5.3)

3. Wyznaczenie prześwitu pomiędzy terenem a linią energetyczną:

$$\Delta h_{P'P} = H_P - H_{P'} \tag{5.4}$$

Przykład

Do pomiaru strzałki zwisu wybrano linię energetyczną wysokiego napięcia zlokalizowaną na obrzeżach miasta Koszalin. Podczas prac terenowych zdecydowano, że stanowiska pomiarowe będą wyznaczone w jednolitym lokalnym układzie współrzędnych przestrzennym (x, y, h). W tym celu, na każdym stanowisku pomiarowym poza obserwacją punktów zlokalizowanych na linii energetycznej, dokonano również pomiaru odległości oraz kątów poziomych i pionowych pomiędzy punktami osnowy pomiarowej. Dzięki takiemu podejściu uzyskano współrzędne punktów 1d, 2d, 3d, na podstawie których wyznaczono odległości pomiędzy tymi punktami. Uzyskane wyniki pomiaru prezentuje tabela 13.

Rys. 25. Szkic pomiaru strzałki zwisu linii energetycznej

Stano-	H _{inst.}	Dilvioto	Hz	D	V	H _{cel}
wisko	[m]	Pikieta	[^g]	[m]	[g]	[m]
st.1	1,44	st.3	0,0000	369,720	99,7430	2,40
		st.3	200,0020	369,720	300,2540	2,40
		st.2	200,0180	172,020	300,4260	1,50
		st.2	0,0170	172,020	99,5750	1,50
		1d	297,4680	63,640	99,8090	1,50
		1g	297,4680	63,640	79,1370	-
		1d	97,4700	63,640	300,1870	1,50
		1g	97,4700	63,640	320,8690	-
st.2	1,42	st.1	199,9990	172,020	299,6330	1,50
		st.1	0,0000	172,010	100,3650	1,50
		st.3	199,9750	197,710	100,1450	1,50
		st.3	399,9740	197,710	299,8520	1,50
		2d	111,1310	68,570	100,0600	1,50
		2g	111,1310	68,570	92,5400	-
		2d	311,1300	68,570	299,9330	1,50
		2g	311,1300	68,570	307,3590	-
st.3	1,45	st.2	399,9990	197,700	99,8030	1,50
		st.2	199,9990	197,710	300,1920	1,50
		st.1	0,0130	369,710	99,9310	2,40
		st.1	200,0170	369,730	300,0710	2,40
		3d	97,9440	71,200	100,3830	1,50
		3g	97,9440	71,200	84,7000	-
		3d	297,9440	71,200	299,6100	1,50
		3g	297,9440	71,200	315,2990	-

Tabela 13. Dziennik pomiarów tachimetrycznych - raport

Stanowisko	Pikieta	Hz [^g]	D [m]	V [^g]	H _{cel} [m]
st.1	st.3	0,0010	369,720	99,7445	2,40
i =1,44	st.2	0,0175	172,020	99,5745	1,50
	1d	297,4690	63,640	99,8110	1,50
	1g	297,4690	63,640	79,1340	-
st.2	st.1	399,9995	172,015	100,3660	1,50
i =1,42	st.3	199,9745	197,710	100,1465	1,50
	2d	111,1305	68,570	100,0635	1,50
	2g	111,1305	68,570	92,5905	-
st.3	st.2	199,9990	197,705	99,8055	1,50
i =1,45	st.1	0,0150	369,720	99,9300	2,40
	3d	97,9440	71,200	100,3865	1,50
	3g	97,9440	71,200	84,7005	-

Tabela 14. Zredukowane wartości wielkości mierzonych

Zredukowane wielkości danych pomiarowych zostały wprowadzone do programu C-Geo, gdzie w module "tachimetria" wykonano obliczenia współrzędnych przestrzennych. W celu zdefiniowania układu lokalnego przyjęto współrzędne stanowiska nr 2 (X = 1000,000 m; Y = 1000,000 m; H = 10,000 m) oraz azymut linii między stanowiskami 2 i 1 ($A_{st.2-st.1} = 300^{g}$).

Tabela 15. Raport z tachimetrii dla stanowiska 2

Stanowisko : Nr = st.2; X = 1000,000; Y = 1000,000; H = 10,000 Punkty nawiązania : st.1 Hst = 10,000, i = 1,420, fk = 0,0000

Nr celu	D zred.	Kier.	Kąt zenit H cel		Х	Y	Н	mp	mh
st.1	172,015	399,9950	100,3660	1,500	1000,000	827,985	8,931		
st.3	197,710	199,9745	100,1465	1,500	1000,064	1197,710	9,465	0,021	0,015
2d	68,570	111,1305	100,0635	1,500	1067,524	1011,933	9,852	0,020	0,014
2g	68,570	111,1305	92,5905	0,000	1067,524	1011,933	19,437	0,020	0,014

Tabela 16. Raport z tachimetrii dla stanowiska 1

 $\begin{array}{ll} Stanowisko: Nr = st.1; & X = 1000,000; & Y = 827,985; & H = 8,931 \\ Punkty nawiązania: st.3, st.2 \\ Hst = 8,931, & i = 1,440, & fk = -0,0055 \end{array}$

Nr celu	D zred.	Kier.	Kąt zenit H		Х	Y	Н	mp	mh
st.3	369,720	0,0010	99,7445	2,400	1000,064	1197,710	9,465		
st.2	172,020	0,0175	99,5745	1,500	1000,000	1000,000	10,000		
1d	63,640	297,4690	99,8110	1,500	1063,589	825,441	9,060	0,020	0,014
1g	63,640	297,4690	79,1340	0,000	1063,589	825,441	32,010	0,020	0,016

Tabela 17. Raport z tachimetrii dla stanowiska 3

Stanowisko: Nr = st.3; X = 1000,064; Y = 1197,710; H = 9,465 Punkty nawiązania : st.1, st.2 Hst = 9,465, i = 1,450, fk = 0,0064

Nr celu	D zred.	Kier.	Kąt zenit	H cel	Х	Y	Н	mp	mh
st.1	369,720	0,0150	99,9300	2,400	1000,000	827,985	8,931		
st.2	197,705	199,9990	99,8055	1,500	1000,000	1000,000	10,000		
3d	71,200	97,9440	100,3865	1,500	1071,226	1195,385	8,983	0,020	0,014
3g	71,200	97,9440	84,7005	0,000	1071,226	1195,385	28,363	0,020	0,015

 Tabela 18. Odległości między obserwowanymi punktami wyznaczone ze współrzędnych

Od pkt.	Do pkt.	Długość [m]
1d	2d	186,534
1d	3d	370,023
2d	3d	183,489

Na podstawie danych zawartych w tabelach 15-18 wyznaczono strzałkę zwisu w następujący sposób:

 $i_{\%_{1g-3g}} = \frac{28,363 - 32,010}{370,023} \cdot 100\% = -0,9856\%$ $f = 32,010 - 186,534 \cdot 0,9856\% - 19,437 = 10,734 m$

Natomiast wielkość prześwitu pomiędzy linią energetyczną a terenem obliczono z zależności:

$$\Delta h_{2d-2g} = 19,437 - 9,852 = 9,585 m$$

Wyznaczoną strzałkę zwisu linii energetycznej przedstawiono graficznie na poniższym rysunku.

Rys. 26. Wykres strzałki zwisu linii energetycznej

Ocena dokładności

Ocenę dokładności wyznaczenia strzałki zwisu najlepiej jest wykonać w dwóch etapach:

1. Ocena dokładności położenia obserwowanych punktów w płaszczyźnie pionowej.

Dane:

 $H_{st.l} = 8,931 \text{ m} \pm 0,015 \text{ m}$ $i = 1,42 \text{ m} \pm 0,01 \text{ m}$

- $z' = 79,1340^{\text{g}} \pm 20^{\text{cc}}$
- $d = 63,64 \text{ m} \pm 0,02 \text{ m}$

$$H_{1g} = H_{st,1} + i + d \cdot ctg \, z'$$

$$m_{H_{1g}}^2 = \left(\frac{\partial H_{1g}}{\partial H_{st,1}}\right)^2 m_{H_{st,1}}^2 + \left(\frac{\partial H_{1g}}{\partial i}\right)^2 m_i^2 + \left(\frac{\partial H_{1g}}{\partial d}\right)^2 m_d^2 + \left(\frac{\partial H_{1g}}{\partial z'}\right)^2 m_{z'}^2$$

$$m_{H_{1g}}^{2} = m_{H_{st,1}}^{2} + m_{i}^{2} + ctg^{2}z' \cdot m_{d}^{2} + \left(-\frac{d}{\sin^{2}z'}\right)^{2} m_{z'}^{2}$$
(5.5)
$$m_{H_{1g}}^{2} = 0.015^{2} + 0.01^{2} + ctg^{2}79.1370 \cdot 0.02^{2} + \left(-\frac{63.64}{\sin^{2}79.1370}\right)^{2} \left(\frac{0.0020}{63.6620}\right)^{2}$$

$$m_{H_{1a}} = \pm 0,019m$$

W dalszej części obliczeń przyjęto, że $m_{H_{lg}} = m_{H_{2g}} = m_{H_{3g}} = m_H$.

2. Ocena dokładności wyznaczonej strzałki zwisu.

Dane:

 $H_{lg} = 32,010 \text{ m} \pm 0,019 \text{ m}$ $H_{2g} = 19,437 \text{ m} \pm 0,019 \text{ m}$ $H_{3g} = 28,363 \text{ m} \pm 0,019 \text{ m}$ $d_{lg-2g} = d_{ld-2d} = 186,53 \text{ m} \pm 0,03 \text{ m}$ $d_{lg-3g} = d_{ld-3d} = 370,02 \text{ m} \pm 0,03 \text{ m}$

$$f = H_{1g} + d_{1g-2g} \cdot \frac{\Delta h_{1g-3g}}{d_{1g-3g}} - H_{2g}$$

$$m_f^2 = \left(\frac{\partial f}{\partial H_{1g}}\right)^2 m_{H_{1g}}^2 + \left(\frac{\partial f}{\partial d_{1g-2g}}\right)^2 m_{d_{1g-2g}}^2 + \left(\frac{\partial f}{\partial \Delta h_{1g-3g}}\right)^2 m_{\Delta h_{1g-3g}}^2 + \left(\frac{\partial f}{\partial d_{1g-3g}}\right)^2 m_{d_{1g-3g}}^2 + \left(\frac{\partial f}{\partial H_{2g}}\right)^2 m_{H_{2g}}^2$$

$$m_{\Delta h_{1g-3g}}^2 = m_{H_{1g}}^2 + m_{H_{3g}}^2 = 2m_{H}^2$$

$$m_f^2 = m_H^2 + \left(\frac{\Delta h_{1g-3g}}{d_{1g-3g}}\right)^2 m_{d_{1g-2g}}^2 + 2\left(\frac{d_{1g-2g}}{d_{1g-3g}}\right)^2 m_{H}^2 + \left(-\frac{d_{1g-2g}}{d_{1g-3g}}\right)^2 m_{d_{1g-3g}}^2 + m_{H}^2$$
(5.6)

$$m_f^2 = 0,019^2 + \left(\frac{-3,647}{370,02}\right)^2 0,03^2 + 2\left(\frac{186,53}{370,02}\right)^2 0,019^2 + \left(\frac{186,53\cdot3,647}{370,02^2}\right)^2 0,03^2 + 0,019^2$$
$$m_f = \pm 0,030 \, m$$

5.2. Wyznaczenie strzałki zwisu odciągów masztu

Zadaniem lin odciągowych jest zapewnienie stateczności masztów. Do wyznaczania strzałek zwisu odciągów masztów wykorzystuje się zazwyczaj metodę niwelacji trygonometrycznej z bazą pomiarową zaprezentowaną na rys. 27.

Rys. 27. Schemat pomiaru strzałki zwisu odciągu masztu

Przebieg prac terenowych przy wyznaczeniu strzałki zwisu odciągu masztu jest następujący:

- 1. Zrzutowanie na powierzchnię terenu punktów A i B, stanowiących zaczepy odciągu (otrzymujemy punkty A', B').
- 2. Zlokalizowanie punktu O na linii A'B' i jego stabilizacja palikiem.

- 3. Wytyczenie bazy b z punktu O pod kątem γ , na końcu której otrzymujemy punkt S (stanowisko pomiarowe). Należy pamiętać o tym, aby odległość punktu S od odciągu była taka dobrana, aby umożliwiała dogodny pomiar obserwowanych punktów.
- 4. Wykonanie ze stanowiska pomiarowego obserwacji zaczepów *A* i *B* oraz kolejnych punktów *P* na odciągu.

Wyznaczamy kąty poziome α względem bazy *b* oraz kąty pionowe φ względem poziomej płaszczyzny przechodzącej przez oś obrotu lunety tachimetru, stanowiącej wysokościowy poziom odniesienia. Pomiar wykonujemy w dwóch położeniach lunety. Ze względu na to, że obserwowane punkty na odciągu nie są jednoznacznie identyfikowalne, to ich lokalizację w płaszczyźnie poziomej uzyskujemy poprzez dodanie 200^g do odczytu z I położenia. Po ustawieniu wyznaczonej wartości blokujemy koło poziome i celujemy na odciąg, rejestrując wartość z koła pionowego.

5. Sporządzenie szkicu z pomiaru.

Opracowanie danych pomiarowych

- 1. Wyznaczenie wielkości x.
 - z lewej strony:

$$\frac{x}{\sin \alpha} = \frac{b}{\sin(200^g - (\alpha + \gamma))}$$
$$x \cdot \sin(\alpha + \gamma) = b \cdot \sin \alpha$$
$$x = \frac{b \cdot \sin \alpha}{\sin(\alpha + \gamma)}$$
(5.7)

• z prawej strony:

$$\frac{x}{\sin \alpha} = \frac{b}{\sin(200^g - ((200^g - \gamma) + \alpha))}$$
$$x \cdot \sin(\gamma - \alpha) = b \cdot \sin \alpha$$
$$x = \frac{b \cdot \sin \alpha}{\sin(\gamma - \alpha)}$$
(5.8)

- 2. Wyznaczenie odległości d.
 - z lewej strony:

$$\frac{d}{\sin \gamma} = \frac{b}{\sin(200^g - (\alpha + \gamma))}$$
$$d \cdot \sin(\alpha + \gamma) = b \cdot \sin \gamma$$

$$d = \frac{b \cdot \sin \gamma}{\sin(\alpha + \gamma)} \tag{5.9}$$

• z prawej strony:

$$\frac{d}{\sin(200^g - \gamma)} = \frac{b}{\sin(200^g - ((200^g - \gamma) + \alpha))}$$
$$d \cdot \sin(\gamma - \alpha) = b \cdot \sin \gamma$$
$$d = \frac{b \cdot \sin \gamma}{\sin(\gamma - \alpha)}$$
(5.10)

W przypadku, gdy $\gamma = 100^{\text{g}}$ wielkość x i odległość d można wyznaczyć w prostszy sposób:

$$tg\alpha = \frac{x}{b} \implies x = b \cdot tg\alpha$$
 (5.11)

$$\cos\alpha = \frac{b}{d} \implies d = \frac{b}{\cos\alpha}$$
(5.12)

W związku z tym, jeżeli jest taka możliwość, warto podczas pomiaru wytyczyć bazę pod kątem prostym.

3. Wyznaczenie wysokości H:

$$H = d \cdot tg\varphi \tag{5.13}$$

4. Wyznaczenie strzałki zwisu w każdym punkcie obserwowanym P:

$$f = H_{P'} - H_{P}$$
(5.14)
$$H_{P'} = H_{A} + (x_{A} \pm x_{P}) \cdot i_{\%}$$
$$i_{\%} = \frac{H_{B} - H_{A}}{x_{A} + x_{B}}$$

Przykład

Do wyznaczenia strzałki zwisu wybrano odciągi masztu wykorzystywanego do pomiaru parametrów wiatru. Maszt ten zlokalizowany jest w miejscowości Kotłowo położonej 10 km od Koszalina.

Rys. 28. Szkic pomiaru odciągów masztu w Kotłowie

а	lu		K	oło p	oziom	e		Koło pionowe											
r stanowisk:	maczenie ce	I po lu	łożei inety <i>Hz_i</i>	nie	II po h	II położenie lunety <i>Hz_{II}</i>		I po lı	I położenie lunety V _I		II pc lu	II położenie lunety V _{II}		Kontrola 400 ^g –(V _I +V _{II})		ola +VII)	Średnia wartość kąta $z = \frac{1}{2} \left(V_I - V_{II} + 400^g \right)$ $\alpha = \frac{1}{2} \left(V_{II} - V_I - 200^g \right)$		
Z	Oz	g	с	сс	g	с	сс	g	с	сс	g	с	сс	g	с	сс	g	с	сс
1	2		3			4			5			6			7			8	
st S	0	0	00	00	± 200			99	60	60	300	39	50			-10	99	60	28
01. 0	_																0	39	72
	A1	391	97	70	± 200			75	11	47	324	88	12			41	75	11	46
																	24	88	54
	B1							78	61	68	321	37	72			60	/8	51	b/ دد
																	82	11	- 22
	C1							82	11	50	317	88	14			36	17	88	54
																	79	51	94
	A2	394	38	34	± 200			79	52	26	320	48	15			-41	20	48	6
	DO								14		747	F /				<i>(</i> 0	82	45	87
	BZ							82	46	38	317	54	30			-68	17	54	13
	C 2							0E	27	БŌ	21/	62	70			-20	85	37	18
	ιz							ده	וכ	00	514	υz	10			20	14	62	82
	Δ٦	398	32	74	+ 200			86	26	2⊾	313	73	64			12	86	26	19
	7.5	570	52	<i>.</i> .	- 200				20		515	,,,	• •				13	73	81
	B3							88	35	08	311	64	24			68	88	35	38
																	11	64	62
	С3							90	28	34	309	71	50			16	90	28 71	21 72
																	9	17	15
	Α4	2	07	98	± 200			93	17	02	306	82	68			30	6	82	8/
																	94	25	63
	Β4							94	25	50	305	73	78			72	5	74	37
	<i>c</i> /							05	~		201					5.0	95	21	71
	L4							95	21	82	304	11	66			52	4	78	29
	۸5	1	22	02	+ 200			07	36	1.6	302	62	76			78	97	36	64
	AJ	4		72	1 200			21	0	40	202	02	10			70	2	63	36
	B5							97	80	44	302	19	16			40	97	80	44
																	2	19	56
	C5							98	19	52	301	79	68			80	98	19	69 21
																	1	80	51
	A6	5	16	68	± 200			98	89	12	301	09	96			92	7 0 - 1	10	
																	99	0	58
	B6							99	09	18	300	89	86			96	0	90	42
	<i>c.</i>				1		1		07		200						99	27	91
	L6							99	27	88	300	/1	26			86	0	72	09
	17	E	72	12	± 200			00	02	10	200	04	10			12	99	93	32
	A /	2	21	IZ	± 200			77	כל	40	200	00	40			IZ	0	06	68
	B7							gq	97	nn	300	02	06			94	99	97	47
	51							<i>"</i>	~	00	500	52				, ,	0	02	53
	С7							100	02	24	299	97	48			28	100	02	27
																	-0	02	27

Tabela 19. Dziennik pomiaru strzałki zwisu odciągów masztu

Na podstawie wyników pomiaru, zamieszczonych w tabeli 19, wyznaczono wielkości x, d, H zgodnie ze wzorami 5.11, 5.12 i 5.13. Podczas pomiaru punkt C7 znajdował się minimalnie poniżej horyzontu instrumentu, dlatego przyjęto lokalny układ wysokości, wyznaczony przez poziomą płaszczyznę przechodzącą przez osi obrotu lunety tachimetru, na poziomie 1,000 m.

Nr celu	Kąt poziomy ^{[g}]	Kąt pionowy [^g]	x [m]	d [m]	H [m]					
Lewa strona										
A1	8,0230	24,8854	19,850	157,924	66,082					
B1		21,3833			56,134					
C1		17,8855			46,573					
A2	5,6166	20,4806	13,858 157,284		53,421					
B2		17,5413			45,469					
C2		14,6282			37,790					
A3	1,6726	13,7381	4,117	156,726	35,356					
B3		11,6462			29,995					
C3		9,7173			25,110					
Prawa strona										
A4	2,0798	6,8284	5,120	156,756	17,878					
B4		5,7437			15,181					
C4		4,7829			12,799					
A5	4,3392	2,6336	10,695	157,037	7,500					
B5		2,1956			6,418					
C5		1,8031			5,449					
A6	5,1668	1,1047	12,744	157,189	3,728					
B6		0,9042			3,233					
C6		0,7209			2,780					
A7	5,7312	0,0668	14,143	157,309	1,165					
B7		0,0253			1,063					
C7		-0,0227			0,944					

Tabela 20. Zestawienie obliczonych wielkości

Następnie dokonano niezbędnych obliczeń wyznaczając strzałkę zwisu w punktach obserwowanych. Uzyskane wyniki zestawiono w tabeli 21.

Nr	Х	Bieżąca	Н	1	H cięciwy	f				
przekroju	[m]	[m]	[m]	1%	[m]	[m]				
odciąg A										
1	19,850	0,000	66,082	-1,90970	66,082	0,000				
2	13,858	5,992	53,421		54,639	1,218				
3	4,117	15,733	35,356		36,036	0,680				
4	5,120	24,970	17,878		18,396	0,518				
5	10,695	30,545	7,500		7,750	0,250				
6	12,743	32,594	3,728		3,839	0,111				
7	14,143	33,993	1,165		1,165	0,000				
odciąg B										
1	19,850	0,000	56,134	-1,62008	56,134	0,000				
2	13,858	5,992	45,469		46,426	0,958				
3	4,117	15,733	29,995		30,645	0,650				
4	5,120	24,970	15,181		15,681	0,499				
5	10,695	30,545	6,418		6,649	0,231				
6	12,743	32,594	3,233		3,331	0,098				
7	14,143	33,993	1,063		1,063	0,000				
odciąg C										
1	19,850	0,000	46,573	-1,34232	46,573	0,000				
2	13,858	5,992	37,790		38,530	0,740				
3	4,117	15,733	25,110		25,455	0,344				
4	5,120	24,970	12,799		13,056	0,256				
5	10,695	30,545	5,449		5,572	0,123				
6	12,743	32,594	2,780		2,823	0,043				
7	14,143	33,993	0,944		0,944	0,000				

Tabela 21. Zestawienie obliczonych strzałek zwisu odciągów masztu

Na końcu sporządzono wykres prezentujący graficznie wielkości strzałek zwisu (rys. 29).

Wykres strzałek zwisu odciągów masztu w Kotłowie

Rys. 29. Wykres prezentujący strzałki zwisu odciągów masztu

Ocena dokładności

Ocenę dokładności przeprowadzono tylko dla jednej maksymalnej strzałki zwisu (odciąg A, przekrój 2). Aby wyznaczyć błąd średni strzałki zwisu najlepiej wykonać obliczenia w kolejnych etapach:

1. Ocena dokładności wielkości x.

Dane:

 $b = 156,672 \text{ m} \pm 0,020 \text{ m}$

 $\alpha = 5,6166^{\text{g}} \pm 20^{\text{cc}}$

$$x = b \cdot tg\alpha$$

$$m_x^2 = \left(\frac{\partial x}{\partial b}\right)^2 m_b^2 + \left(\frac{\partial x}{\partial \alpha}\right)^2 m_\alpha^2$$

$$m_x^2 = tg^2 \alpha \cdot m_b^2 + \left(\frac{b}{\cos^2 \alpha}\right)^2 m_\alpha^2$$

$$m_x^2 = tg^2 5,6166 \cdot 0,020^2 + \left(\frac{156,672}{\cos^2 5,6166}\right)^2 \left(\frac{0,0020}{63,6620}\right)^2$$

$$m_x = \pm 0,005 m$$
(5.9)

2. Ocena dokładności wielkości H.

Dane:

$$\varphi = 20,4806^{\text{g}} \pm 20^{\text{cc}}$$

$$b = 156,672 \text{ m} \pm 0,020 \text{ m}$$

$$\alpha = 5,6166^{\text{g}} \pm 20^{\text{cc}}$$

$$H = d \cdot tg \varphi = \frac{b}{\cos \alpha} tg \varphi$$

$$m_{H}^{2} = \left(\frac{\partial H}{\partial b}\right)^{2} m_{b}^{2} + \left(\frac{\partial H}{\partial \alpha}\right)^{2} m_{\alpha}^{2} + \left(\frac{\partial H}{\partial \varphi}\right)^{2} m_{\varphi}^{2}$$

$$m_{H}^{2} = \left(\frac{tg\varphi}{\cos\alpha}\right)^{2} m_{b}^{2} + \left(-\frac{b \cdot tg\varphi \cdot \sin\alpha}{\cos^{2}\alpha}\right)^{2} m_{\alpha}^{2} + \left(\frac{b}{\cos\alpha \cdot \cos^{2}\varphi}\right)^{2} m_{\varphi}^{2} \quad (5.10)$$

$$m_{H}^{2} = \left(\frac{tg20,4806}{\cos 5,6166}\right)^{2} 0,020^{2} + \left(-\frac{156,67 \cdot tg20,4806 \cdot \sin 5,6166}{\cos^{2} 5,6166}\right)^{2} \left(\frac{0,0020}{63,6620}\right)^{2} + \left(\frac{156,67}{\cos 5,6166 \cdot \cos^{2} 20,4806}\right)^{2} \left(\frac{0,0020}{63,6620}\right)^{2} \\ m_{H} = \pm 0,009 \ m$$

W dalszej części obliczeń przyjęto, że w punkcie A1 i A7 występują takie same wielkości błędów jak w punkcie A2 czyli $m_{H_2} = m_{H_1} = m_{H_7} = m_H$, $m_{x_2} = m_{x_1} = m_{x_7} = m_x$.

3. Ocena dokładności wyznaczenia strzałki zwisuf w punkcie obserwowanym. Dane:

 $H_{1} = 66,082 \text{ m} \pm 0,009 \text{ m}$ $H_{2} = 53,421 \text{ m} \pm 0,009 \text{ m}$ $H_{7} = 1,165 \text{ m} \pm 0,009 \text{ m}$ $d_{1-2} = x_{1} - x_{2} = 5,992 \text{ m}$ $d_{1-7} = x_{1} + x_{7} = 33,993 \text{ m}$ $f = H_{2^{*}} - H_{2}$ $f = H_{1} + d_{1-2} \cdot \frac{\Delta h_{1-7}}{d_{1-7}} - H_{2}$

$$m_{f}^{2} = \left(\frac{\partial f}{\partial H_{1}}\right)^{2} m_{H_{1}}^{2} + \left(\frac{\partial f}{\partial d_{1-2}}\right)^{2} m_{d_{1-2}}^{2} + \left(\frac{\partial f}{\partial \Delta h_{1-7}}\right)^{2} m_{\Delta h_{1-7}}^{2} + \left(\frac{\partial f}{\partial d_{1-7}}\right)^{2} m_{d_{1-7}}^{2} + \left(\frac{\partial f}{\partial H_{2}}\right)^{2} m_{H_{2}}^{2}$$
$$m_{\Delta h_{1-7}}^{2} = m_{H_{1}}^{2} + m_{H_{7}}^{2} = 2m_{H}^{2}$$
$$m_{d}^{2} = m_{x}^{2} + m_{x}^{2} = 2m_{x}^{2}$$

$$m_f^2 = m_H^2 + 2\left(\frac{\Delta h_{1-7}}{d_{1-7}}\right)^2 m_x^2 + 2\left(\frac{d_{1-2}}{d_{1-7}}\right)^2 m_H^2 + 2\left(-\frac{d_{1-2}\cdot\Delta h_{1-7}}{d_{1-7}^2}\right)^2 m_x^2 + m_H^2$$
(5.11)

$$m_f^2 = 0,009^2 + 2\left(\frac{-64,917}{33,993}\right)^2 0,005^2 + 2\left(\frac{5,992}{33,993}\right)^2 0,009^2 + 2\left(\frac{5,992 \cdot 64,917}{33,993^2}\right)^2 0,005^2 + 0,009^2$$
$$m_f = \pm 0,019 \ m$$

Operat pomiarowy

Ostateczne opracowanie realizowane w ramach ćwiczenia powinno stanowić operat pomiarowy, w skład którego wchodzi:

- sprawozdanie techniczne,
- szkic pomiaru,
- dzienniki pomiarowe,
- obliczenia i zestawienie wyników,
- wykres prezentujący wielkość strzałki zwisu,
- ocena dokładności,
- wnioski.
6. Pomiary przemieszczeń pionowych obiektu budowlanego

Cel ćwiczenia

Zadaniem ćwiczenia jest pomiar przemieszczeń pionowych obiektu budowlanego przy wykorzystaniu niwelacji precyzyjnej. Przemieszczenia pionowe wyznacza się poprzez porównanie wyników niwelacji uzyskanych z pomiarów okresowych z wynikami pomiaru wyjściowego (zerowego), na sieci pomiarowej złożonej z reperów odniesienia i reperów kontrolowanych.

Sprzęt pomiarowy

Do wykonania pomiaru niezbędny jest następujący sprzęt pomiarowy:

- optyczny niwelator precyzyjny np. Ni007, Ni004 lub precyzyjny niwelator kodowy,
- statyw ze sztywnymi nogami,
- para trzymetrowych łat precyzyjnych wraz z podpórkami (odpowiednich do danego instrumentu),
- dwie ciężkie żabki do niwelacji precyzyjnej (opcjonalnie kliny stalowe),
- ruletka

oraz szkicownik.

Pomiar

Podczas pomiaru należy przestrzegać zasad właściwych dla niwelacji precyzyjnej [14]:

- używamy instrumentów uprzednio zrektyfikowanych,
- przed rozpoczęciem pomiaru sprzęt powinien być poddany aklimatyzacji,
- obserwacje latem należy prowadzić wcześnie rano i przed wieczorem unikając wschodu i zachodu Słońca (uniknięcie wibracji powietrza), w pochmurne dni oraz wiosną i jesienią – cały dzień,
- pomiar wykonujemy metodą niwelacji ze środka, przy celowych długości 8-35 m (w zależności od użytego instrumentu i warunków atmosferycznych),
- długości celowych powinny być jednakowe z dokładnością do ±0,5 m,
- celowe powinny przebiegać około 1,5 m nad powierzchnią terenu,

- celowe do obu łat powinny przebiegać w jednakowych środowiskach (temperatura, wilgotność i oświetlenie),
- statyw niwelatora ustawiamy na twardym gruncie (nigdy nie na asfalcie, betonie), nogi statywu mocno wbijamy w grunt,
- łaty niwelacyjne ustawiamy na ciężkich żabkach lub na stalowych klinach, mocując je w odpowiednich podpórkach,
- na każdym stanowisku przewyższenie wyznaczamy dwukrotnie, przy wykorzystaniu obu podziałów łat,
- każdy odcinek mierzymy dwukrotnie: w kierunku głównym i powrotnym ("tam i z powrotem"),
- na początku i na końcu pomiaru notujemy datę, godzinę i temperaturę.

Opracowanie danych

Opracowanie wyników pomiaru przemieszczeń można podzielić na dwa zasadnicze etapy [3]:

- etap I identyfikacja układu odniesienia,
- etap II obliczenie przemieszczeń reperów kontrolowanych i ocena ich istotności.

Układ odniesienia definiowany jest przez repery uznane za stałe w procesie identyfikacji. Przyjmuje się zazwyczaj, że dwa repery spełniają kryteria stałości, jeżeli zmiana różnic wysokości ($\Delta h' - \Delta h$) pomiędzy dwoma pomiarami nie przekracza wartości dopuszczalnej. Za wartość dopuszczalną można przyjąć maksymalny błąd wyznaczenia przewyższenia między tymi punktami, wyliczany z tzw. kryterium Hermanowskiego [10]:

$$\left(\Delta h' - \Delta h\right)_{\max} \le 1.5 \cdot \mu_0 \sqrt{n+n'} \tag{6.1}$$

gdzie:

- Δh , $\Delta h'$ różnice wysokości pomiędzy reperami z pomiaru wyjściowego i okresowego,
- n, n' ilość stanowisk niwelatora podczas pomiaru wyjściowego i okresowego,
- μ_0 średni błąd typowego spostrzeżenia z pomiaru wyjściowego i aktualnego.

Dla sieci niwelacyjnej składającej się z kilku ciągów wielkość μ_0 może być obliczona przed wyrównaniem sieci na podstawie materiału obserwacyjnego wyjściowego i aktualnego potraktowanego jako całość. W zależności od konstrukcji geometrycznej sieci wartość średniego błędu typowego

spostrzeżenia μ_0 można obliczyć na podstawie ciągów (6.2) lub obwodów (6.3) [10]:

$$\mu_0 = \pm \frac{1}{2} \sqrt{\frac{1}{r} \left[\frac{dd}{n} \right]} \tag{6.2}$$

$$\mu_0 = \pm \sqrt{\frac{1}{M} \left[\frac{\omega\omega}{n}\right]} \tag{6.3}$$

gdzie:

- d różnica między wynikami pomiaru w kierunku głównym i powrotnym,
- n liczba stanowisk niwelatora, liczona tylko w jednym kierunku,
- r liczba ciągów, a zarazem liczba różnic d,
- ω zamknięcie oczek,
- M liczba oczek.

Dopuszcza się również przyjęcie wartości błędu średniego μ_0 jako wielkości z pomiaru różnicy wysokości pomiędzy reperami z jednego stanowiska niwelatora przyjmowanego "a priori" zazwyczaj w przedziale od ±0,1 mm do ±0,2 mm w zależności od warunków w jakich wykonuje się pomiar [16].

Obliczenie przemieszczeń reperów kontrolowanych sprowadza się do opracowania metodą ścisłą danych pomiarowych, w celu wyznaczenia ich wysokości w przyjętym układzie wysokościowym definiowanym przez punkty odniesienia, które zostały uznane za stałe. Następnie obliczamy wartości przemieszczeń pionowych poszczególnych reperów kontrolowanych na podstawie porównania ich wysokości z dwóch okresów pomiarowych. Kolejnym etapem jest ustalenie istotności wyznaczonych przemieszczeń do dalszych analiz. Do tego celu można zastosować kryterium [12]:

$$P = [p \ge t_{\alpha,h} \times m_p] = \alpha \tag{6.4}$$

gdzie:

- *p* przemieszczenie pionowe,
- m_p błąd średni przemieszczenia,
- $t_{\alpha,h}$ graniczna wartość rozkładu t-Studenta dla poziomu istotności α i liczby stopni swobody h.

Dla wartości $\alpha = 95\%$ otrzymujemy $t_{\alpha,h} \approx 2$, co oznacza, że za istotne przyjmuje się przemieszczenie, którego wartość jest co najmniej dwukrotnie większa od jego błędu.

Elementem końcowym opracowania jest przejrzysta prezentacja danych w postaci tabelarycznej i na wykresie.

Przykład

Przykładowym obiektem badań przemieszczeń pionowych jest blok E, który wchodzi w skład kampusu obiektów laboratoryjnych Politechniki Koszalińskiej przy ul. Śniadeckich. Obiekt ten jest trzykondygnacyjną konstrukcją monolityczną, oddaną do użytku w 2008 roku. Zdecydowano się wykonywać obserwacje okresowe tego obiektu, ponieważ w bliskim sąsiedztwie (14 metrów) miała rozpocząć się budowa nowego bloku F. Prowadzone prace ziemne oraz czynności budowlane mogły przyczynić się do obniżenia stateczności gruntu, co w konsekwencji spowodować osiadanie bloku E.

Pomiary kontrolne realizowane były w latach 2009-2012 w ramach dyplomowych prac inżynierskich [2, 11, 13]. Rozmieszczenie reperów odniesienia i reperów kontrolowanych oraz przebieg ciągów niwelacyjnych podczas okresowych pomiarów prezentuje rys. 30.

Rys. 30. Szkic sieci kontrolnej

Zaprezentowana powyżej sieć niwelacyjna obejmuje trzy repery odniesienia (Rp A, Rp C i Rp AY643) oraz cztery repery kontrolowane (Rp 1 – Rp 4), które

zostały osadzone w fundamencie na narożach monitorowanego budynku. Podczas pomiaru wyjściowego, jak i każdego pomiaru kontrolnego przebieg ciągów niwelacyjnych był zawsze taki sam, realizowany w dwóch kierunkach. Należy zaznaczyć, że zaprezentowany układ sieci nie jest najkorzystniejszy. Podczas projektowania sieci kontrolnej należy starać się, aby była ona dowiązana do kilku punktów odniesienia, tworząc otwarte ciągi dwustronnie nawiązane. W prezentowanym przypadku mamy do czynienia z ciągiem zamkniętym.

Przedostatni pomiar kontrolny został wykonywany w sierpniu 2011 r. [11]. Prace zostały zrealizowane w następujących etapach:

- Badanie stałości układu odniesienia poprzez pomiar ciągu niwelacyjnego, w dwóch kierunkach, pomiędzy reperami odniesienia Rp AY643 i Rp C oraz Rp C i Rp A. Z pomiarów wyznaczono maksymalną odchyłkę teoretyczną:
 - dla ciągu Rp AY643- Rp C: $(\Delta h' \Delta h)_{max} = 1,5 \cdot 0,1\sqrt{22+22} = 1,0 \ mm$
 - dla ciągu Rp C- Rp A: $(\Delta h' \Delta h)_{max} = 1,5 \cdot 0, 1\sqrt{3+3} = 0,4 mm$

Następnie obliczono odchyłkę praktyczną, która wyniosła:

- dla ciągu Rp AY643- Rp C: $(\Delta h' \Delta h) = \pm 0.4$ mm
- dla ciągu Rp C- Rp A: $(\Delta h' \Delta h) = \pm 0,1$ mm.

Na podstawie uzyskanych wyników można wnioskować o stałości układu odniesienia.

- 2. Założenie i pomiar ciągu niwelacyjnego pomiędzy reperami kontrolowanymi w nawiązaniu do Rp C. Wybrany dziennik pomiarowy ciągu niwelacyjnego prezentuje tabela 22.
- Wyznaczenie przewyższeń pomiędzy reperami w ciągu niwelacyjnym w kierunku głównym i powrotnym. Średnie wartości przewyższeń wykorzystano do obliczenia wysokości reperów kontrolowanych metodą ścisłą. Przykładowy raport takiego wyrównania w programie C-Geo przedstawia tabela 23.
- 4. Zestawienie wielkości przemieszczeń w postaci tabelarycznej (tabela 24) i ich prezentacja na wykresach (rys. 31-35).
- 5. Ocena istotności uzyskanych wyników i ich interpretacja.

Pozostałe pomiary okresowe przebiegały wg tego samego schematu.

					Р	odzi	ał I					Рс	odzi	ał I	I			Ko	nt	rol	۵								
ska '		۳. ۲			ws	tec	z (w	'ı)				ws	tec	z (w	2)		(w ₂ -	-W1-	-60	650)0)<	25	:	Śre	edni	аг	`óżг	nicy	/
ovi	Oznaczenie	So Er			WC	orzó	id (p))				w p	rzć	id (p) ₂)		(p ₂ -	Р 1	-60	650)<	25		W	yso dai)ko	ŚCİ	Z ; II	
tan L	reperów	Dtu		гóż	Znic	a (1	rı=w	'ι- Ρ ι)		гóż	nic	a (r	• ₂ =w	2-P	2)			Γ2-	Γ1				μu	ιστι (Γ1 ⁴	uιr +Γ2)/2		
S				ła	ta		mik	rom	etr		ła	ta		mik	rom	etr										-			
1	2	3				4							5						6	;						7			
Z prz	eniesienia																												
	Rp C	17,1		2	2	4	6	8	9		8	3	1	1	8	3					I	6							
	Ż	17,1		2	3	1	8	3	8		8	3	8	3	2	8				-	1	0		_					
					-	7	1	4	9			-	7	1	4	5						4			-	7	1	4	7
	Ż	25,0		1	3	5	2	1	3		7	4	1	7	0	1				-	1	2							
2	Ż	25,0		1	8	6	0	0	1		7	9	2	4	9	3		_			-	8		_	-	_	T_	_	
				-	5	0	7	8	8		-	5	0	7	9	2		_			-	4	Ш	-	5	0	7	9	0
_	Ź	11,3		3	5	1	1	8	7		9	4	3	6	9	1		_				4							
3	Rp 4	11,3		2	ð	D	3	8	0		0	9	2	8	8	1		_			_	7	-	2	г	0	0	0	1
				2	5	U	8	0	1		2	ے د	1	8	0	4		-			_	3		2	С	U	8	U	D
,	Rp 4	17,4		2	2	כ ו	4	4	4		8 0	D 7	1	9	4	9		+	-			5							
4	Кр З	17,3		2	-	4	4	4	2	-	0	-	U Q	, 0	0	2	\vdash	-	_			2			-	٥	Ιn	n	2
	D	00.0		٦	7	, 1	8	n	2		٩	7	9	о З	2	2 0		-			4	U 7	-			,	U	U	2
E	крэ	20,8		2	'n	8	5	5	7	┢	8	1	5	n	7	1					1	1							
2	2	20,8		1	6	3	2	6	6		1	6	ر ۲	2	4	q			-			4		1	6	٦	2	4	8
	Ż	16 1	-	2	2	4	8	8	2		8	3	1	3	8	9						7		<u> </u>	Ŭ			<u> </u>	Ľ
6		10,1	-	3	8	5	2	9	1		9	9	1	7	9	4						י ר							
Ŭ	κμ z	10,0	-	1	6	0	4	0	9	-	1	6	0	4	0	5						4	-	1	6	0	4	0	7
	Rn 2	1 <u>4</u> N		2	3	7	9	9	9		8	4	4	5	0	3						4							
7	Rn 1	14.0		2	3	5	5	3	7		8	4	2	0	4	5						8							
	itp i	11,0				2	4	6	2				2	4	5	8					-	4				2	4	6	0
	Rp 1	15,1			2	3	3	0	0		6	2	9	8	0	1						1			•				
8	ż	15,1		2	3	2	9	6	4		8	3	9	4	6	3					I	1							
			-	2	0	9	6	6	4	-	2	0	9	6	6	2						2	-	2	0	9	6	6	3
	Ż	17,8		2	6	1	3	5	9		8	6	7	8	6	9					1	0							
9	Rp C	7,8		2	4	0	8	7	1		8	4	7	3	8	0	Ц					9			_				
					2	0	4	8	8			2	0	4	8	9						1			2	0	4	8	8
			L	_	_		L	<u> </u>	<u> </u>	1	<u> </u>		_	<u> </u>	<u> </u>	<u> </u>	\square	+					L_	_	1	-	—	—	1
			_							L	L						Ш						Щ	-			╞	L	
	suma																		SUI	na			Ш	L			L	L-	8
	51.1		n	n	7	1	p	7	6	7	E	2	n	1	n	6	,			1.			-						
	∠w Σn		2	n	7	1	8	8	5	7	5	ر ۲	n	4	1	2	SLE	edn	۵	lΣW	-Σ	W)							
	2μ Σw-Σw		4	0	<i>'</i>	-	0	-	9	'			0	+	<u> </u>	6				0									
1	27 28		1	1	1	1	1	1	11	1	1	1	1	1	1		1		-	ŏ			1						

Tabela 22. Dziennik pomiaru niwelacji precyzyjnej – sierpień 2011

Numer	Н	mH	popr.	H wyr.	mH
Rp C	54,99050	0,00000	0,00000	54,9905	0,00000
Rp 4				55,9549	0,00015
Rp 3				55,9100	0,00015
Rp 2				55,9241	0,00013
Rp 1				55,9364	0,00012

Tabela 23. Raport z wyrównani sieci niwelacyjnej - sierpień 2011

m0 = 0,68825; Układ: Brak (metodą najmniejszych kwadratów)

Przewyższenia

Numer P	Numer K	Dh	mDh	popr.	Dh wyr.	mDh w	pop/mDhw
Rp C	Rp 4	0,9643	0,0003	0,00014	0,96444	0,00015	0,94868
Rp 4	Rp 3	-0,0450	0,0001	0,00002	-0,04498	0,00007	0,23570
Rp 3	Rp 2	0,0141	0,0002	0,00006	0,01416	0,00012	0,51640
Rp 2	Rp 1	0,0123	0,0001	0,00002	0,01232	0,00007	0,23570
Rp 1	Rp C	-0,9460	0,0002	0,00006	-0,94594	0,00012	0,51640

 Tabela 24. Zestawienie wielkości przemieszczeń reperów kontrolowanych pomiądzy pomiarem wyjściowym, a danym pomiarem okresowym

Nr	Pomiar			Р	omiary	okresowe			
reperu	wyjściowy 04.2009	04.2010	Δh_1 [mm]	01.2011	Δh_2 [mm]	08.2011	Δh_3 [mm]	12.2011	Δh_4 [mm]
Rp 1	55,9494	55,9391	10,3	55,9382	11,2	55,9364	13,0	55,9363	13,1
Rp 2	55,9399	55,9293	10,6	55,9252	14,7	55,9241	15,8	55,9241	15,8
Rp 3	55,9223	55,9207	1,6	55,9152	7,1	55,9100	12,3	55,9098	12,5
Rp 4	55,9664	55,9600	6,4	55,9586	7,8	55,9549	11,5	55,9549	11,5

Średni błąd położenia reperu kontrolowanego wyniósł 0,14 mm, więc za istotne należy przyjąć tylko te przemieszczenia których wartość przekracza 0,3 mm (podwójna wartość błędu określenia wysokości reperu kontrolowanego).

Rys. 31. Wykres przemieszczeń Rp 1

Rys. 32. Wykres przemieszczeń Rp 2

Rys. 34. Wykres przemieszczeń Rp 4

Rys. 35. Wykres izolinii osiadania bloku E w okresie od kwietnia 2009 r. do grudnia 2011 r.

Na podstawie uzyskanych wyników pomiarów z poszczególnych lat można zauważyć, że cały budynek w okresie od kwietnia 2009 r. do stycznia 2011 r. osiadł lecz jego zachodnia część w większym tempie (Rp 1, Rp 2). Na początku 2011 r. po części wschodniej monitorowanego budynku rozpoczęły się prace ziemne, a następnie budowa nowego obiektu budowlanego (bloku F). Wykonane w sierpniu 2011 r. pomiary wykazały, że cały budynek ciągle osiada, lecz teraz wschodnia część w większym tempie (Rp 3, Rp 4), prawdopodobnie ze względu na prowadzone prace budowlane.

Natomiast pomiary wykonane w grudniu 2011 roku wykazały, że obiekt już nie osiada, ponieważ wyznaczone wielkości przemieszczeń w odniesieniu do wyników z sierpnia 2011 roku są nieistotne (Rp 1 - 0,1 mm, Rp 3 - 0,2 mm), tzn. w granicach błędu pomiaru.

Skład operatu

Ostateczne opracowanie realizowane w ramach ćwiczenia powinno stanowić operat pomiarowy, w skład którego wchodzi:

- sprawozdanie techniczne,
- szkic sieci pomiarowej,
- dzienniki niwelacji precyzyjnej,
- identyfikacja układu odniesienia,

- obliczenia przewyższeń pomiędzy punktami,
- obliczenie wysokości reperów kontrolowanych metodą ścisłą,
- tabelaryczne zestawienie wielkości przemieszczeń reperów kontrolowanych,
- prezentacja graficzna wielkości przemieszczeń reperów kontrolowanych,
- ocena istotności przemieszczeń.

7. Geodezyjna inwentaryzacja podziemnego przewodu sieci uzbrojenia terenu

Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie położenia odcinka przewodu telekomunikacyjnego lub energetycznego metodą indukcyjną przy wykorzystaniu lokalizatora elektronicznego oraz inwentaryzacja wykrytego przewodu w celu aktualizacji treści mapy zasadniczej.

Sprzęt pomiarowy

Do wykonania pomiaru niezbędny jest następujący sprzęt pomiarowy:

- lokalizator elektroniczny np. GEOPILOT X,
- tachimetr ze statywem,
- tyczka z reflektorem,
- ruletka

oraz specjalny hak do otwarcia studzienki, komplet szpilek i kreda do pisania na betonie.

Pomiar

Przebieg prac terenowych jest następujący:

1. Przygotowanie lokalizatora GEOPILOT X do pracy.

Z walizki wyjmujemy słuchawki (1), odbiornik (2), antenę (sondę odbiorczą) (3), ramię łamane (łącznik) (4) oraz podstawkę przeciwwywrotną (5) (rys. 36).

Rys. 36. Skład zestawu GEOPILOT X

Do anteny wkręcamy ramię łamane, a do tego przykręcamy drążek z zamontowanym odbiornikiem. Do gniazd w odbiorniku wkładamy wtyczką "chinch" przewodu anteny oraz wtyczkę "mały jack" przewodu słuchawek. Wygląd lokalizatora po złożeniu przedstawia rys. 37.

Rys. 37. Lokalizator GEOPILOT [20]

Na panelu sterowniczym dokonujemy odpowiednich ustawień. Ustawiamy rodzaj sygnału – fala ciągła, metodę pomiaru – indukcyjna i włączamy zasilanie. Potencjometr, który służy do określenia mocy sygnału ustawiamy na wartość około 50%. Jest to zazwyczaj optymalna wielkość dla lokalizacji przewodów w odległości do 100 metrów od nadajnika. Zwiększenie mocy dla większych odległości realizowane jest zgodnie z ruchem wskazówek zegara.

Rys. 38. Panel sterowniczy nadajnika GEOPILOT X

2. Wyznaczenie kierunku przewodu.

Ustawiamy włączony nadajnik nad przewodem podziemnym (na powierzchni terenu) tak, aby dłuższy bok walizki znajdował się w przybliżeniu w pionowej płaszczyźnie osi przewodu. Jako podpórkę walizki można zastosować dołączoną do zestawu specjalną podstawkę przeciw-wywrotną. Należy pamiętać, aby nie ustawiać nadajnika bezpośrednio na elementach sieci uzbrojenia terenu (np. studzienkach), tylko obok uzbrojenia po tej stronie, gdzie będzie wykrywany kierunek przewodu. Po uruchomieniu nadajnika należy odejść od niego na dystans co najmniej 10 m i załączyć odbiornik oraz ustawić potencjometrem na odbiorniku odpowiednią głośność. Następnie dokonujemy lokalizacji przewodu oddalając się od nadajnika. Lokalizacja trasy przewodu polega na tzw. "zamiataniu", czyli przesuwaniu w lewo i prawo ustawionej pionowo anteny odbiorczej w płaszczyźnie prostopadłej do osi przewodu i słuchanie odbieranego sygnału (rys. 39). W przypadku, gdy zbliżamy antenę do osi przewodu sygnał w słuchawkach wyraźnie wzrasta, aby nad samym przewodem zmniejszyć się do minimum (rys. 40). Oddalając antenę od osi przewodu zauważamy zanik tego sygnału, jednak zanik ten będzie płynny, bez wyraźnego minimum.

Rys. 39. Lokalizowanie przewodu metodą pośrednią

Rys. 40. Wykres natężenia sygnału podczas określania trasy przewodu

3. Określenie głębokości ułożenia przewodu.

Ustawiamy się prostopadle do osi przewodu z anteną pochyloną w stosunku do pionu pod kątem 45°. Kąt ten występuje wtedy, gdy trzymamy pionowo drążek z odbiornikiem, ponieważ antena w stosunku do drążka jest również skręcona o kąt 45° [17]. Następnie przesuwamy antenę tuż nad ziemią w kierunku prawym od osi przewodu do momentu, gdy natężenie sygnału spadnie do minimum. Oznacza to, że oś anteny odbiorczej przecięła się z osią szukanego przewodu (punkt B). To samo wykonujemy w kierunku lewym od osi przewodu wyznaczając punkt C. Zasadę określenia głębokości ułożenia przewodów lokalizatorami elektronicznymi zaprezentowano na rys. 41.

Rys. 41. Zasada określenia głębokości ułożenia przewodu: wykres natężenia sygnału, kolejne położenie anteny nadajnika (Źródło: Opracowanie własne na podstawie G-4.4)

Zgodnie z oznaczeniami przyjętymi na rys. 41 głębokość lokalizowanego przewodu (dla $\alpha = 45^{\circ}$) można wyznaczyć, jako średnią arytmetyczną z głębokości wyznaczonych po obu stronach przewodu:

$$\Delta h = \frac{m_1 + m_2}{2} - \frac{a_1 + a_2}{2} \tag{7.1}$$

Wielkości a_1 i a_2 występujące w powyższym wzorze są to odległości anteny od terenu. W przypadku, gdy antenę prowadzimy tuż nad terenem (2-3 cm), to wielkości te możemy zaniechać i wzór 7.1 można uprościć do postaci:

$$\Delta h = \frac{|AB| + |AC|}{2} \approx \frac{m_1 + m_2}{2}$$
(7.2)

W praktyce geodezyjnej podczas inwentaryzacji antenę prowadzi się zazwyczaj tuż nad terenem i głębokość określa się jako połowę odcinka *BC*. Odległość *AB* powinna być równa odległości *AC* w granicach podwójnego błędu określenia głębokości dla danego lokalizatora. Poza tym należy pamiętać, że przedstawiony przebieg prac jest właściwy przy określeniu głębokości przewodu w terenie płaskim.

- 4. Określenie położenia (x,y,h) zlokalizowanych punktów przewodu za pomocą pomiaru tachimetrycznego.
- 5. Wykonanie szkicu terenowego.

Przykład

Materiałem wyjściowym do prac był fragment mapy zasadniczej przedstawionej na rys. 42, na której zaznaczono dwie studzienki sieci telekomunikacyjnej. Między tymi studzienkami należało określić przebieg podziemnego przewodu telekomunikacyjnego za pomocą lokalizatora Geopilot X.

W celu zlokalizowania kierunku położenia przewodu, odkryto właz studzienki A przy użyciu specjalnego haka i ustalono wstępny kierunek przewodu. Ustawiono nadajnik w pobliżu studzienki A i rozpoczęto prace w odległości około 10 m od nadajnika. Trasę przewodu sygnalizowano na gruncie szpilkami, a na terenie utwardzonym kredą. Dla określenia położenia przewodu w pobliżu studzienki A, przestawiono nadajnik na uprzednio zlokalizowany już punkt. Zasygnalizowane punkty przebiegu przewodu zamierzono tachimetrem GTS-226 firmy Topcon na osnowę pomiarową. W każdym z punktów określono głębokość położenia przewodu. Obliczenia współrzędnych pomierzonych punktów wykonano w programie C-Geo (tabela 25).

Rys. 42. Fragment mapy zasadniczej ze wskazaniem studzienek lokalizowanego przewodu telekomunikacyjnego

Rys. 43. Szkic lokalizacji przewodu telekomunikacyjnego

Hst = 56,	643, 1=	1,540, fk	= -0,0002				
Nr	D zred.	Kier.	Kąt zenit	H cel	Х	Y	Н
celu	[m]	[^g]	[^g]	[m]	[m]	[m]	[m]
3003	91,160	10,0550	102,4230	1,700	9654,835	7909,875	53,012
2012	66,510	86,7455	101,4298	1,700	9657,843	8001,432	54,989
1	69,425	83,2631	101,4058	1,700	9661,776	7998,815	54,950
2	66,128	80,5010	101,1871	1,700	9659,381	7995,103	55,250
3	59,986	73,6569	101,2025	1,700	9654,671	7987,272	55,350
4	54,436	63,5870	101,3017	1,700	9649,701	7977,910	55,370
5	50,690	52,5112	101,5236	1,700	9645,034	7969,217	55,270
6	49,153	44,9701	101,8304	1,700	9642,079	7963,874	55,069
7	48,180	34,1029	101,8144	1,700	9637,987	7956,591	55,110
8	48,800	22,4442	102,1307	1,700	9633,702	7948,803	54,849
9	51,296	10,0614	101,8656	1,700	9628,794	7940,053	54,979
10	55,618	399,7265	103,1868	1,700	9624,336	7931,461	53,696
11	57,564	396,2371	103,4112	1,700	9622,619	7928,227	53,396
12	75,713	87,5873	100,8686	1,700	9666,157	8005,492	55,450
13	77,050	88,4012	100,8122	1,700	9667,056	8006,882	55,500

Tabela 25. Raport z tachimetrii

Stanowisko : Nr = 2006; X = 9595,274; Y = 7978,882; H = 56,643 Punkty nawiązania : 3003, 2012 Hst = 56,643, i = 1,540, fk = -0,0002

Tabela 26. Wyznaczenie rzędnej lokalizowanego przewodu

Nr pkt.	H terenu [m]	Głębokość przewodu [m]	H przewodu [m]
1	54,950	-0,35	54,60
2	55,250	-0,40	54,85
3	55,350	-0,60	54,75
4	55,370	-1,10	54,27
5	55,270	-1,10	54,17
6	55,069	-0,90	54,17
7	55,110	-1,00	54,11
8	54,849	-0,75	54,10
9	54,979	-0,90	54,08
10	53,696	-1,20	52,50
11	53,396	-	53,40
12	55,450	-0,75	54,70
13	55,500	_	55,50

Rys. 44. Zaktualizowany fragment mapy zasadniczej

Operat pomiarowy

Ostateczne opracowanie realizowane w ramach ćwiczenia powinno stanowić operat pomiarowy, w skład którego wchodzi:

- sprawozdanie techniczne,
- szkic polowy,
- dziennik pomiaru tachimetrycznego,
- zestawienie obliczonych rzędnych zlokalizowanego przewodu,
- zaktualizowana mapa zasadnicza,
- wnioski.

8. Pomiary odchyleń ściany budynku od płaszczyzny pionowej

Cel ćwiczenia

Celem ćwiczenia jest pomiar odchyleń ściany budynku od płaszczyzny pionowej metodą kątowych wcięć przestrzennych w przód lub metodą biegunową 3D. W wyniku takich pomiarów uzyskuje się współrzędne przestrzenne punktów obserwowanych na budynku, które informują o jego geometrii.

Sprzęt pomiarowy

Do wykonania pomiaru niezbędny jest następujący sprzęt pomiarowy:

- tachimetr ze statywem,
- tyczka z reflektorem

oraz paliki i szkicownik.

8.1. Pomiar metodą kątowych wcięć przestrzennych w przód

Przebieg prac pomiarowych w tej metodzie jest następujący:

- 1. Wybór stanowisk pomiarowych A i B tworzących bazę pomiarową.
 - Baza pomiarowa powinna być zlokalizowana w przybliżeniu równolegle do budynku, w odległości co najmniej 1,5 jego wysokości, co pozwoli na dogodną obserwację punktów zlokalizowanych na najwyższej kondygnacji.
 Stanowiska A i B należy obrać co najmniej kilka metrów poza zewnętrzne krawędzie budynku, tak aby wcięcia kątowe miały właściwą geometrię tzn. nie posiadały kątów rozwartych.
- 2. Definiowanie lokalnego układu współrzędnych bazy (x,y,z). Wyznaczenie odległości pomiędzy punktami A i B (d_{AB}) i przewyższenia Δz_{AB} wykorzystując niwelację trygonometryczną lub niwelację geometryczną.
- 3. Wybór punktów obserwowanych na ścianie budynku.

Punkty te powinny być jednoznacznie identyfikowalne z dwóch stanowisk pomiarowych. Takimi punktami zazwyczaj są narożniki okien, punkty na pęknięciach, zarysowaniach itp. Można również dokonać sygnalizacji punktów wiązką lasera i wykonywać pomiar jednocześnie z dwóch stanowisk pomiarowych.

- 4. Czynności wykonane na każdym stanowisku obejmują:
 - centrowanie i poziomowanie instrumentu,
 - określenie wysokości instrumentu,
 - nawiązanie na sąsiednie stanowisko,
 - pomiar w dwóch położeniach lunety kierunków do punktów obserwowanych z rejestracją odczytów koła poziomego i pionowego.
- 5. Sporządzenie szkicu pomiarowego.

Rys. 45. Schemat pomiaru odchyleń od płaszczyznowości ściany budynku metodą kątowych wcięć przestrzennych w przód

Opracowanie danych

- 1. Wyznaczenie zredukowanych wielkości kątów poziomych (α_A , α_B) i pionowych (β_A , β_B).
- 2. Obliczenie współrzędnych *X*, *Y* punktów obserwowanych w układzie bazy zgodnie z formułami wcięcia kątowego w przód:

$$X_P = X_A + L_A \cdot \cos A_{AP}$$

$$Y_P = Y_A + L_A \cdot \sin A_{AP}$$
(8.1)

lub

$$X_P = X_B + L_B \cdot \cos A_{BP}$$

$$Y_P = Y_B + L_B \cdot \sin A_{BP}$$
(8.2)

gdzie:

$$L_{A} = \frac{d_{AB} \cdot \sin \alpha_{B}}{\sin(\alpha_{A} + \alpha_{B})} \qquad \qquad L_{B} = \frac{d_{AB} \cdot \sin \alpha_{A}}{\sin(\alpha_{A} + \alpha_{B})}$$

3. Obliczenie współrzędnej Z punktów obserwowanych zgodnie z zasadami niwelacji trygonometrycznej:

$$Z'_{P} = Z_{A} + L_{A} \cdot tg\beta_{A}$$

$$Z''_{P} = Z_{B} + L_{B} \cdot tg\beta_{B}$$

$$Z_{P} = \frac{Z'_{P} + Z''_{P}}{2}$$
(8.3)

4. Transformacja współrzędnych punktów obserwowanych wyrażonych w układzie bazy (X, Y) do układu współrzędnych obiektu (X', Y') z wykorzystaniem transformacji Helmerta.

Jako punkty dostosowania przyjmuje się zazwyczaj dwa punkty najniżej zlokalizowane, po przeciwległych stronach ściany budynku (oznaczone *l* i *2* na rys. 45). Współrzędne punktów dostosowania w układzie obiektu można określić np. I(0,000; 10,000), $2(0,000; 10,000+d_{1-2})$, gdzie d_{1-2} jest odległością wyznaczoną ze współrzędnych w układzie bazy.

Następnie wykonuje się transformację według schematu [16],

wyznaczenie współczynników transformacji:

$$u = \frac{\Delta X \cdot \Delta Y' - \Delta X' \cdot \Delta Y}{\Delta X^2 + \Delta Y^2} \qquad v = \frac{\Delta X \cdot \Delta X' + \Delta Y \cdot \Delta Y'}{\Delta X^2 + \Delta Y^2}$$
(8.4)

gdzie:

 $\Delta X, \Delta Y$ – przyrosty współrzędnych między punktami dostosowania w układzie bazy,

 $\Delta X'_{\Delta} Y'$ – przyrosty współrzędnych między punktami dostosowania w układzie obiektu.

• Wyznaczenie przyrostów współrzędnych w układzie obiektu:

$$\Delta X' = \Delta X \cdot v - \Delta Y \cdot u , \qquad \Delta Y' = \Delta X \cdot u + \Delta Y \cdot v \qquad (8.5)$$

5. Sporządzenie wykresu wyznaczonych odchyleń (*X'*) od pionowej płaszczyzny odniesienia w rzucie aksonometrycznym.

Przykład

Jako przykład posłużyły pomiary ściany 5-kondygnacyjnego budynku mieszkalnego położonego w Koszalinie przy ul. Na Skarpie, które były realizowane w ramach pracy dyplomowej [15].

Obserwacje zostały wykonane z bazy pomiarowej założonej w przybliżeniu równolegle do ściany budynku, w odległości około 40 metrów. Baza pomiarowa składała się z dwóch zastabilizowanych punktów A i B, których wzajemne odległości pomierzono tachimetrem elektronicznym GTS-226 firmy Topcon. Przewyższenia między punktami bazy zostały określone metodą niwelacji trygonometrycznej. Układ pomiarowy został zdefiniowany przez przyjęcie współrzędnych punktu A (100,000; 100,000; 50,000) i osi 0Y równoległej do prostej przechodzącej przez punkty A, B.

Pomiar metodą wcięcia przestrzennego w przód wykonywano równocześnie z punktów A i B dwoma tachimetrami GTS-226 firmy Topcon. Do pomiaru wybrano charakterystyczne punkty w górnych narożnikach otworów okiennych, które utworzyły równomiernie rozłożoną siatkę składającą się z 80 węzłów (rys. 46). Obserwacje wykonano w dwóch położeniach lunety przy dwukrotnym nacelowaniu krzyża kresek na cel (tabela 27 i 28), a następnie obliczono uśrednione wartości kierunków poziomych i pionowych.

Obserwacje uzyskane z pomiaru metodą wcięć przestrzennych poddano analitycznemu opracowaniu przy wykorzystaniu oprogramowania C-Geo. Przy wykorzystaniu modułu przestrzenne wcięcie w przód wyznaczono przestrzenne współrzędne wszystkich punktów obserwowanych ściany budynku w układzie pomiarowym (rys. 47). Następnie współrzędne X i Y punktów pomiarowych przetransformowano na układ lokalny ściany. Jako punkty dostosowania przyjęto punkty o numerach 1 (0,000; 0,000) i 2 (0,000; 36,990), które podczas obserwacji były sygnalizowane specjalnymi tarczkami. Zestawienie punktów obserwowanych w układzie współrzędnych ściany prezentuje tabela 29.

Rys. 46. Szkic pomiaru odchyleń ściany budynku od płaszczyzny pionowej metodą wcięć przestrzennych w przód

Rys. 47. Przykład obliczeń współrzędnych punktu obserwowanego w programie C-Geo

	ŝć .	(200	00)	è		84	16	65	35	36	64	18	82	98	02	92	80			21	79	16	84	64	36	
	wartoo la	H = -44	V1 - 21	e		DL	29	34	65	14	85	32	67	39	60	38	61			16	83	48	51	60	06	
	Srednia , , ka	(-1/4) = -3	$h = \frac{1}{2} \left[V_H - \right]$	**	30	66	-	86	-	66	0	95	4	95	4	95	4			83	16	63	16	84	15	
DWOIL	0 1		t TEA	сс СС	Π	-08	3	а г	ł	с с	71	97-	₽	- 4	3	- 21	++			C.B	70	-E3	ž	-12	76	
to pio		mtrola	+ 1 4	u	10																	2				
Ko	;	Ko WOS		00																						
	dic V,	,	nic /r	В		88	20	84	54	72	00	42	9	28	32	04	20			62	20	42	10	80	52	
	dožer ctv -		ołożer cty - l	•	6	R	29	34	65	14	86	32	68	9	60	39	61			16	84	87	52	60	06	
	I pc lun		II pr	5 5		66	DOE	98	301	66	DOE	95	304	95	304	95	304			83	316	83	316	84	315	
	cata		876	35		UU	;	JE.	R	0E	C.	u	8	ло Ц	5	F	11			'n	2	G	2	Ę	٥	
	tość k	-11-		2	3	UU	3	F	R	2	6	53	7	Dt	13	26	50			10	1	ç	7	35	5	
	War	100	70	N (G	,	LUE	Ā	3/6	D+1	cue	Inc	LUE	100	and	Enc				Ŧ	5/2	7+7	315	0+0	
			= 200	32		UU	3	ž	3	ų	2	5	3	y	3	F	2			10	ñ	8	7	Ŕ	٥	B
		soma	$\frac{+Hz_{R}}{2}$	÷	2	UU	3	۶	2	5	3	5	ž	ę	-	36	n7			10	F	ç	7	ų	0	8
25	٢	20	$Hz = \frac{Hz_t}{t}$	æ		U	2	IUL		775	P +	cut	701	cut	Inr	put	500			717	F.	5/5	7 ±7	315	£	D
anoizo	- KP		lnia	æ		m		22	44	μu	20	22	B	70	74	03	74]		CE.	72	16	¥	90	20	04
oto po	mety		Śrec	u		U	3	5	٢	F0	ò	2	77	ŧ	<u>></u>	36	70			6	2	C7	,	36	G	8
K	enic It Hzn	A	В	: 00		00 0	0 02	0 22	0 22	92	88 1	2 66	2 66	92	96	5 94	5 90			1 32	1 32	544	84 8	5 15	5 15	04
	położ		czyły		8	8		1	H .	د 8'	80	ъ 2	<u>ب</u>	¥	4	0 3(21		- 53	6	5	9 1	9 1	r 21	21	
	₽,	2	PO	502	-	30	3	1	-	11	-	ę	2	E.	2	6	2	2	- 14	1	5	14	-	11	-	20
	4 - KI		redniz	č	•†	00	5	2	<	2	5	2		4	4	8	2		- (1	ň	⊀	20	4	5	70	6
	hunct 21	V	B.S.	•	_	5	5	5 00	2	a o	5	- ŭ		4	8	2 2	2 4		-	0	0	8	5 4	2 21	2 4	-26 -26 -00
	ženie H		¥:	c c	2	8	00	30 4	30 5	88 [88	52 9	52 9	19 7	19 7	26 6	26 6	\dashv	-	91 J	91 J B	£3 -	43 2	25 0	25 0	99 99 9
	I poło:	2	Odczyl	8	5		,	۲,	R	315	 }	CUC	702	- LUE	2	OUC	śnc			110	Ŧ	. c/c	ł	3/6	 24	56E
ļ	ıləp əi	insz	zoruz()		5	œ	2	*	-	c	7		m	1	t?	U	-			ua	2	ð	5	87	70	в
e	ysiwo	נופיזי	s Jəuin	N	1	st. A	00 1-1	1.20	s=1,50																	

 Tabela 27. Dziennik pomiaru punktów obserwowanych ściany budynku metodą wcięć

 przestrzennych w przód – stanowisko A

B	81	_							Koł	o poz	iome										K	do pic	OMOLIC				
asiwo	uləə əl	I pol	ložcni	ie hun Hzi	icty -	KI.	про	loženi	c lun 4 <i>c</i> n	icty -	КР	С			Wai	rtość k	ગ્રાક્ષ	I p Iur	ołoże iety -	nie V;	4			Śrcdni 1./_}	a wart cela	ość	
nata n	uəzər	Odez	NIV:	×	Śred	nia	Odezn	VIV:	×	Śwd.	, Ma	<i>Н</i> .,	скиша <i>– Н</i> 2,,	±200	\overline{A}	-Hzi	H_{ZA}	Πp	ołoże	nic	4007-	+iA	a + <i>V_E)</i>	$-\frac{1}{2}$	+ "A-	400	
əumj	uzO			В					в		7	1-1	F 1					lur	ncty -	V_{II}	20		-	$h = \frac{1}{2}W_H$	-44-	200%	
N		SC.	v	se.	•	u.	50	c	3	c	8	°C,	u	8	°c	U	ы	°¢	U	S	ы	e.	cr.	s	e	σc	
Ţ	c)		3		<u>.</u> т			5	Η	\$			3			6 5			6			91	Π		3		
st B		c	8	8	E	2	100	66	38	00	00	c	ų	E	e	6	2	66	61	66			JUK -	66	61	63	
	z	•	8	10	3	70	221	66	98	~~	2	5	3	A.	-	3	8	300	38	40		2	3	0	38	137	1.0
F1,08		97	86	80	Jo O	0	010	86	60	30	6.2	97	70	F	01	20	F	66	02	12			037	66	5	87	1.2
s=1,50	73	7 7	86	80	8	20	647	86	64	8	70	ç	8	5	<u>}</u>	8	5	300	98	38			nc_	0	98	13	
	¢	70	39	68	50	02	100	6E	64	00	07	10	90	9	07	UC.	93	66	Ħ	36			60-	66	9	95	
	4	ŧ	39	72	6	2	+27	6E	72	5	9	*	5	6	* C	5	6	300	68	46			70	D	68	05	e
	ş	С Ц	50	62	ç	55	9E.0	50	46	0	2	ç	CO.	2	01	C L	2	96	85	68		0	100	96	85	43	12
	m	2	50	70	2	8	NC7	20	46	2	₽	2	2	R	2	2	2	303	14	82				m	14	57	Co. 11
		C	07	30	50	01	253	07	94	50	20	ĉ	r.	01	8	LO	20	96	76	88			24	36	76	75	
	*	R	10	50	3	R	67	10	68	5	8	R	ì	R	8	'n	R	303	23	38			8	m	23	25	
	u	ŭ	28	80	00	00	36.4	28	64	00	00	2	00	ĥ	5	90	ħ	96	69	52			11	96	69	30	
	2	ŧ	28	84	9	70	101	28	72	3	9	4		2	ŧ	70	2	303	œ	92			ţ	m	R	R	
	i						_				-														_	_	1.00
		1	80	86				80	82		1			1		3	13	9f	71	94			. 3	62	Ч	20	
	20	8	80	86	2	8	597	80	8	2	8	8	8	8	8	B	8	320	28	32			9	20	28	19	
	5	00	28	8	00	5	000	28	9	00	5	00	00	5	00	90	Ę	61	57	98			40	62	53	89	
	0	8	28	8	9	3	7 00	28	10	87	70	8	07	5	00	07	5	320	42	20		0	5	20	42	Ħ	St. 1.1
	6.8	60	16	18	¥	20	293	16	42	4	67	60	4	ħ	50	16	۶	79	41	10			70-	79	41	88	
	3	2	16	22	2			16	42	2	¥	R	2	ĩ	7	2	-	320	58	94		8	5	20	58	92	
	ų	6	8	8	E	٤	UUC.	8	8	e c	5	c	٤	Ę												_	
	5	-	8	8	3	3	7007	00	02	3	5	•	3	3									2			10000	1

 Tabela 28. Dziennik pomiaru punktów obserwowanych ściany budynku metodą wcięć

 przestrzennych – stanowisko B

27.1.	X′	Y'	Ζ	1	37.1.	X′	Y'	Ζ
Nr pkt.	[m]	[m]	[m]		Nr pkt.	[m]	[m]	[m]
3	0,001	0,780	54,263		43	-0,011	18,543	59,863
4	0,007	3,785	54,238		44	-0,023	21,806	59,862
5	0,006	5,134	54,259		45	-0,029	23,305	59,867
6	0,011	7,445	54,250		46	-0,021	27,232	59,852
7	0,002	8,908	54,259		47	-0,021	28,888	59,846
8	-0,012	12,793	54,250		48	-0,023	31,226	59,853
9	-0,012	14,458	54,256		49	-0,034	32,906	59,865
10	-0,006	16,838	54,254		50	-0,041	36,148	59,851
11	-0,017	18,511	54,261		51	-0,034	0,844	62,663
12	-0,017	21,768	54,256		52	-0,038	3,842	62,687
13	-0,019	23,276	54,263		53	-0,026	5,177	62,669
14	-0,004	27,180	54,253		54	-0,007	7,421	62,677
15	-0,018	28,851	54,260		55	-0,009	8,921	62,672
16	-0,033	31,203	54,267		56	-0,003	12,801	62,690
17	-0,040	32,897	54,243		57	-0,014	14,513	62,683
18	-0,039	36,126	54,238		58	-0,006	16,868	62,680
19	-0,028	0,860	57,040		59	-0,024	18,586	62672
20	-0,016	3,866	57,054		60	-0,015	21,818	62,673
21	-0,022	5,157	57,049		61	-0,022	23,322	62,674
22	-0,025	7,454	57,055		62	-0,020	27,218	62,669
23	-0,015	8,917	57,037		63	-0,018	28,905	62,674
24	-0,021	12,798	57,036		64	-0,026	31,268	62,676
25	-0,024	14,472	57,046		65	-0,025	32,929	62,660
26	-0,021	16,837	57,034		66	-0,015	36,160	62,679
27	-0,033	18,519	57,037		67	-0,028	0,864	65,483
28	-0,017	21,770	57,052		68	-0,030	3,822	65,492
29	-0,020	23,293	57,060		69	-0,023	5,212	65,502
30	-0,010	27,154	57,056		70	-0,032	7,428	65,497
31	-0,023	28,849	57,054		71	-0,034	8,897	65,511
32	-0,022	31,214	57,063		72	-0,012	12,828	65,505
33	-0,034	32,898	57,060		73	-0,018	14,528	65,497
34	-0,022	36,149	57,062		74	-0,015	16,869	65,489
35	-0,051	0,832	59,853		75	-0,021	18,571	65,490
36	-0,036	3,840	59,857		76	-0,022	21,841	65,492
37	-0,062	5,147	59,863		77	-0,030	23,297	65,492
38	-0,039	7,453	59,859]	78	-0,035	27,211	65,484
39	-0,053	8,903	59,863	1	79	-0,03	28,901	65,485
40	-0,046	12,807	59,852]	80	-0,038	31,263	65,477
41	-0,045	14,524	59,851]	81	-0,027	32,932	65,487
42	-0,027	16,865	59,851	1	82	-0,046	36,18	65,485

Tabela 29. Wykaz współrzędnych punktów obserwowanych w układzie obiektu

Geometrię badanej ściany przedstawiono w formie graficznej, wykorzystując w tym celu rzut aksometryczny. Wyznaczone z pomiaru wartości odchyleń obserwowanych punktów od płaszczyzny pionowej przedstawiono na rys. 48.

Rys. 48. Odchylenia od pionowej płaszczyzny odniesienia wyznaczone metodą wcięcia przestrzennego w przód

Ocena dokładności

W badaniach odchyleń ściany budynku od płaszczyzny pionowej, decydujące znaczenie posiada współrzędna X punktów obserwowanych na ścianie. Natomiast współrzędne Y i Z wskazują tylko lokalizację punktów w lokalnym układzie odniesienia.

Do oceny dokładności współrzędnej X wybrano punkt o najmniej korzystnej lokalizacji (nr 82). Stanowisko pomiarowe i punkty nawiązania przyjęto jako bezbłędne.

Dane:

 $\begin{aligned} \alpha_A &= 53,7485^g \pm 25^{cc} \\ \alpha_B &= 93,1631^g \pm 25^{cc} \\ L_A &= 55,68 \text{ m} - \text{wyznaczona z tw. sinusów} \\ L_B &= 41,86 \text{ m} - \text{wyznaczona z tw. sinusów} \end{aligned}$

$$X_{P} = X_{A} + L_{A} \cdot \cos(A_{AB} - \alpha_{A})$$

$$X_{P} = X_{A} + d_{AB} \cdot \sin \alpha_{B} \frac{\cos(A_{AB} - \alpha_{A})}{\sin(\alpha_{A} + \alpha_{B})}$$

$$m_{X_{P}}^{2} = \left(\frac{\partial X_{P}}{\partial \alpha_{A}}\right)^{2} m_{\alpha_{A}}^{2} + \left(\frac{\partial X_{P}}{\partial \alpha_{B}}\right)^{2} m_{\alpha_{B}}^{2}$$

$$\left(\frac{\partial X_{P}}{\partial \alpha_{A}}\right) =$$

$$= d_{AB} \sin \alpha_{B} \frac{\sin(A_{AB} - \alpha_{A}) \cdot \sin(\alpha_{A} + \alpha_{B}) - \cos(\alpha_{A} + \alpha_{B})\cos(A_{AB} - \alpha_{A})}{\sin^{2}(\alpha_{A} + \alpha_{B})} =$$

$$= -d_{AB} \sin \alpha_{B} \frac{\cos(A_{AB} - \alpha_{A})\cos(\alpha_{A} + \alpha_{B}) - \sin(A_{AB} - \alpha_{A}) \cdot \sin(\alpha_{A} + \alpha_{B})}{\sin^{2}(\alpha_{A} + \alpha_{B})} =$$

$$= -d_{AB} \sin \alpha_{B} \frac{\cos[(A_{AB} - \alpha_{A}) + (\alpha_{A} + \alpha_{B})]}{\sin^{2}(\alpha_{A} + \alpha_{B})} = -d_{AB} \sin \alpha_{B} \frac{\cos(A_{AB} + \alpha_{B})}{\sin^{2}(\alpha_{A} + \alpha_{B})} =$$

$$= -d_{AB} \cos(A_{AB} - \alpha_{A}) \frac{\cos \alpha_{B} \sin(\alpha_{A} + \alpha_{B}) - \cos(\alpha_{A} + \alpha_{B})\sin(\alpha_{B})}{\sin^{2}(\alpha_{A} + \alpha_{B})} =$$

$$= d_{AB} \cos(A_{AB} - \alpha_{A}) \frac{\sin(\alpha_{A} + \alpha_{B})\cos\alpha_{B} - \cos(\alpha_{A} + \alpha_{B})\sin(\alpha_{B})}{\sin^{2}(\alpha_{A} + \alpha_{B})} =$$

$$= d_{AB} \cos(A_{AB} - \alpha_{A}) \frac{\sin(\alpha_{A} + \alpha_{B})\cos\alpha_{B} - \cos(\alpha_{A} + \alpha_{B})\sin(\alpha_{B})}{\sin^{2}(\alpha_{A} + \alpha_{B})} =$$

$$= d_{AB} \cos(A_{AB} - \alpha_{A}) \frac{\sin[(\alpha_{A} + \alpha_{B}) - \cos(\alpha_{A} + \alpha_{B})\sin(\alpha_{B})]}{\sin^{2}(\alpha_{A} + \alpha_{B})} = d_{AB} \sin \alpha_{A} \frac{\cos(A_{AB} - \alpha_{A})}{\sin^{2}(\alpha_{A} + \alpha_{B})}$$

Wzory pomocnicze wykorzystane w powyższych obliczeniach:

 $\sin(\alpha \mp \beta) = \sin \alpha \cdot \cos \beta \mp \sin \beta \cdot \cos \alpha$ $\cos(\alpha \mp \beta) = \cos \alpha \cdot \cos \beta \pm \sin \beta \cdot \sin \alpha$

$$m_{X_P}^2 = \left(-d_{AB}\sin\alpha_B \frac{\cos(A_{AB} + \alpha_B)}{\sin^2(\alpha_A + \alpha_B)}\right)^2 m_{\alpha_A}^2 + \left(d_{AB}\sin\alpha_A \frac{\cos(A_{AB} - \alpha_A)}{\sin^2(\alpha_A + \alpha_B)}\right)^2 m_{\alpha_B}^2 \quad (8.6)$$

$$m_{X_{P}}^{2} = \frac{d_{AB}^{2}}{\sin^{4}(\alpha_{A} + \alpha_{B})} \left[\sin^{2} \alpha_{B} \cos^{2}(A_{AB} + \alpha_{B})m_{\alpha_{A}}^{2} + \sin^{2} \alpha_{A} \cos^{2}(A_{AB} - \alpha_{A})m_{\alpha_{B}}^{2} \right]$$

$$m_{X_{P}}^{2} = \frac{41,477^{2}}{\sin^{4}(53,7485 + 93,1631)} \cdot \left[\sin^{2} 93,1631 \cos^{2}(100 + 93,1631) \left(\frac{25}{636620} \right)^{2} + \sin^{2} 53,7485 \cos^{2}(100 - 53,7485) \left(\frac{25}{636620} \right)^{2} \right]$$

$$m_{X_{P}}^{2} = \pm 0,003 m$$

Operat pomiarowy

Ostateczne opracowanie realizowane w ramach ćwiczenia powinno stanowić operat pomiarowy, w skład którego wchodzi:

- sprawozdanie techniczne,
- szkic lokalizacji badanego budynku z rozmieszczeniem stanowisk pomiarowych i punktów obserwowanych,
- dzienniki pomiarowe,
- raport z obliczeń współrzędnych punktów obserwowanych w układzie bazy metodą wcięcia przestrzennego w przód,
- raport z transformacji współrzędnych punktów obserwowanych z układu bazy do układu obiektu,
- wykres prezentujący odchylenia punktów obserwowanych od pionowej płaszczyzny odniesienia,
- ocena dokładności,
- wnioski.

8.2. Pomiar metodą biegunową 3D

Rozwój technologii wprowadził do geodezji możliwość bezreflektorowego pomiaru odległości, co spowodowało powstanie takich instrumentów jak naziemne skanery laserowe, czy też tachimetry skanujące. Przy zastosowaniu takich urządzeń, geodeta może określić przestrzenne położenie nie tylko charakterystycznych punktów ściany budynku, lecz również całej jej powierzchni. Dzięki tym urządzeniom uzyskujemy duży zbiór danych przestrzennych w formie chmury punktów, które umożliwiają tworzenie trójwymiarowych modeli badanego obiektu budowlanego [4]. Określenie przestrzennego położenia punktów metodą biegunową 3D sprowadza się do wyznaczenia współrzędnych płaskich *X,Y* klasyczną metodą biegunową oraz współrzędnej Z poprzez zastosowanie niwelacji trygonometrycznej. Połączenie tych dwóch metod nazywane jest zazwyczaj metodą biegunową 3D.

Poniżej przedstawiono procedurę pomiarową zazwyczaj stosowaną podczas pomiaru naziemnym skanerem laserowym lub tachimetrem skanującym. Ze względu na typ i markę użytego instrumentu może się ona nieznacznie różnić.

1. Wybór stanowiska pomiarowego.

Stanowisko pomiarowe należy zlokalizować w takiej odległości od budynku, aby wiązka lasera podczas pomiaru nie tworzyła ze ścianą obiektu zbyt ostrych kątów. Ma to wpływ na dokładność pomiaru odległości, a tym samym na dokładność wyznaczenia współrzędnych punktów pomiarowych. Poza tym zbyt ostre kąty mogą spowodować w niektórych przypadkach niemożliwość wykonania samego pomiaru.

2. Orientacja instrumentu w przyjętym układzie odniesienia w nawiązaniu do uprzednio przygotowanej osnowy pomiarowej.

W przypadku, gdy chcemy dokonać pomiaru w dowolnym układzie lokalnym, etap orientacji instrumentu możemy pominąć. Pomiar zostanie wówczas wykonany w układzie współrzędnych, którego początek znajduje się w centrum geometrycznym instrumentu (dotyczy to większości skanerów laserowych).

- 3. Definicja płaszczyzny odniesienia poprzez pomiar co najmniej dwóch punktów (dla płaszczyzny pionowej lub poziomej) lub trzech (dla dowolnej płaszczyzny) na ścianie budynku (w niektórych instrumentach etap ten jest pomijany).
- 4. Zdefiniowanie obszaru skanowania.

Definicja obszaru skanowania zależy od danego instrumentu. Może się odbywać poprzez wskazanie dwóch skrajnych narożników na przekątnej prostokąta stanowiącego obszar skanowania lub poprzez wprowadzenie skrajnych kierunków poziomych i pionowy albo wskazanie rysikiem obszaru na wyświetlaczu LCD uprzednio wykonanego zdjęcia cyfrowego obserwowanego obiektu.

5. Ustawienie rozdzielczości skanowania.

Odbywa się to poprzez wskazanie wielkości liniowej (Δx , Δy) dla danej płaszczyzny odniesienia lub interwał kątowy $\Delta \alpha$ na kole poziomym i pionowym. Rozdzielczość skanowania należy dobierać w taki sposób, aby pozyskane punkty pomiarowe wiarygodnie odzwierciedliły kształt obserwowanego obiektu oraz były wolne od redundancji danych. Zbyt duże zbiory danych często utrudniają ich opracowanie.

6. Ewentualne zdefiniowanie filtrów, które dokonują wstępnej selekcji danych.

Przykładem może być np. ustawienie maksymalnej i minimalnej odległość pomiędzy instrumentem a mierzonym obiektem, co spowoduje odrzucenie wszystkich obserwacji nie spełniających zadane kryterium.

7. Zainicjowanie procedury pomiaru.

Opracowanie danych

W wyniku pomiaru naziemnym skanerem laserowym lub tachimetrem skanującym uzyskuje się zbiór danych, zapisany w postaci wykazu współrzędnych *X*, *Y*, *Z* zarejestrowanych punktów. Dodatkowo naziemne skanery laserowe poza współrzędnymi przestrzennymi rejestrują jeszcze tzw. wielkość *intensity* (intensywność).

Sposób opracowania danych jest w znacznej mierze uzależniony od oprogramowania jakim dysponujemy. Ogólnie opracowanie to możemy podzielić na następujące etapy:

- 1. Import danych do oprogramowania.
- 2. Selekcja danych w celu wyeliminowania obserwacji nieistotnych tzn. obserwacji punktów nie należących do ściany budynku np. obserwacje dachu, okna, parapetów itp.
- Transformacja współrzędnych płaskich z układu współrzędnych osnowy do układu współrzędnych obiektu przy wykorzystaniu transformacji Helmerta. Zadanie to jest realizowane w identyczny sposób jak w przypadku metody wcięć przestrzennych w przód.
- 4. Wizualizacja danych.

Wyniki pomiaru przedstawia się najczęściej w postaci trójwymiarowego modelu ściany typu TIN lub GRID. Do tego celu należy wykorzystać oprogramowanie mające możliwość trójwymiarowej prezentacji danych. Dane do takiego oprogramowania należy zaimportować w taki sposób, aby nastąpiła zamiana miejscami osi OX z osią OZ. Dzięki temu podejściu odchyłki od pionowej płaszczyzny odniesienia będą w oprogramowaniu interpretowane jako wysokości.

5. Interpretacja modeli, tworzenie profili itp.
Przykład

Wykonano pomiar odchyleń ściany 5-kondygnacyjnego budynku od płaszczyzny pionowej (ten sam blok mieszkalny którego wykonano pomiar metodą wcięć przestrzennych w przód) [15].

Pomiar został wykonany przy pomocy tachimetru zrobotyzowanego TPS 1201 firmy Leica. Zdecydowano się wykonać pomiar w tym samym układzie lokalnym realizowanym przez punkty A i B jak w przypadku metody wcięć przestrzennych w przód. Stanowisko pomiarowe zostało obrane w odległości około 40 metrów od budynku. Przed pomiarem dokonano orientacji instrumentu wybierając stanowisko swobodne w nawiązaniu do punktów osnowy A i B przy wykorzystaniu wcięcia przestrzennego wstecz. Następnie wykonano obserwacje pięciu punktów zlokalizowanych na ścianie budynku, które posłużyły do zdefiniowania płaszczyzny odniesienia. Kolejnym krokiem było określenie zakresu skanowania poprzez wskazanie lewego-górnego i prawego-dolnego narożnika prostokąta będącego obszarem skanowania. Poza tym zdefiniowano filtr w postaci maksymalnego prostopadłego odchylenia punktu od płaszczyzny odniesienia w wielkości $\Delta d=\pm 0,20$ m. W ostatnim etapie zdefiniowano rozdzielczość skanowania na 0.7×0.7 m w pionie i poziomie. W procesie skanowania urządzenie zarejestrowało około 1500 obserwacji, jednak część z nich została odrzucona ze wzgledu na zbyt duże odsuniecie od zdefiniowanej płaszczyzny odniesienia.

Dane pomiarowe zapisane na karcie pamięci CF zostały zaimportowane do dedykowanego oprogramowania Leica GeoOffice, w którym dokonano ich wstępnej oceny (rys. 49).

Rys. 49. Zrzut ekranu z programu LGO – prezentacja danych pomiarowych

Zbiór punktów z programu LGO wyeksportowano do pliku testowego (nr,X,Y,Z), a następnie zaimportowano do programu C-Geo. W programie tym dokonano transformacji całego zbioru z układu bazy do układu obiektu przy wykorzystaniu tych samych punktów dostosowania (*I* i *2*) co w metodzie wcięć przestrzennych. Podczas skanowania ściany punkty te dodatkowo zostały zaobserwowane w dwóch położeniach lunety. Następnie cały zbiór został wyeksportowane z programu C-Geo, w celu przygotowania plików wsadowych do programu ArcGIS.

Dane do ArcGis należało zaimportować w taki sposób, aby współrzędna X' punktów obserwowanych, która przekazuje informację o odchyleniach od płaszczyzny pionowej była interpretowana przez oprogramowania jako współrzędna Z. Poza tym należy zaznaczyć, iż wartość ujemna tej współrzędnej informuje nas, że punkt znajduje się nad płaszczyzną odniesienia, a dodatnia pod płaszczyzną. W celu właściwej prezentacji wkłęsłości i wypukłości ściany budynku, należało zamienić znaki tej współrzędnej. Ponadto należy pamiętać o tym, że oprogramowanie ArcGis wykorzystuje matematyczny układ

współrzędnych, co powoduje, że należy odpowiednio zamienić poszczególne osie układu współrzędnych.

Dla ustalenia lokalizacji punktów pomierzonych metodą biegunową 3D, wykonano zdjęcie ściany budynku kamerą niemetryczną – aparatem cyfrowym. Do przekształcenia obrazu z rzutu środkowego na rzut ortogonalny wykorzystano transformację afiniczną 3-go stopnia. Taka metoda opracowania zapewnia wystarczającą dokładność dla celów wizualizacji obiektu. Jako punkty dostosowania wykorzystano narożniki okien, które są jednoznacznie identyfikowalne na zdjęciu, a ich położenie uprzednio określono metodą wcięć przestrzennych (rys. 50). Wyniki wpasowania zdjęcia przedstawia raport zaprezentowany na rys. 51, natomiast rozmieszczenie punktów obserwowanych na ścianie budynku prezentuje rys. 52.

Rys. 50. Identyfikacja punktów dostosowania wykorzystanych do transformacji zdjęcia

Łącznik	XŹródłowy	YŹródłowy	X na Mapie	Y na Mapie	Odchyłka 🔺
44	3746,644813	-1456,637248	36,141365	57,077570	0,00252
45	3459,090358	-1735,689100	32,896895	54,243063	0,00862
46	3277,719236	-1452,084068	31,204731	57,061556	0,03210
47	3292,893670	-1731,835178	31,199393	54,264415	0,02855
48	3441,373808	-1453,238447	32,886219	57,056218	0,01616
49	3062,890612	-1734,367449	28,839323	54,269753	0,01909
50	2893,800537	-1734,034046	27,179188	54,248401	0,01009
51	2882,111112	-1448,282102	27,147159	57,077570	0,02486
52	2494,645375	-1732,382298	23,271731	54,264415	0,00960
53	2337,277433	-1442,330566	21,777075	57,050880	0,01657
54	2338,314051	-1731,350844	21,771737	54,264415	0,00538
55	2001,402649	-1441,353230	18,513388	57,034866	0,01646
56	1826,755308	-1440,275754	16,842577	57,040204	0,01145
57	1821,729525	-1728,027043	16,837238	54,253739	0,01387
58	1997,927811	-1729,563432	18,513388	54,269753	0,01453 🚬
4					•

Rys. 51. Tabela punktów dostosowania w transformacji afinicznej 3-go stopnia fotografii ściany budynku

Rys. 52. Lokalizacja punktów obserwowanych na ścianie budynku metodą biegunową 3D i metodą wcięć przestrzennych w przód

Przed budową trójwymiarowych modeli badanego obiektu, dane pomiarowe poddano szczegółowej analizie, w celu usunięcia punktów pomiarowych nie należących do ściany budynku. Do tego celu wykorzystano zrektyfikowane zdjęcie, na którym wyświetlono wszystkie punkty pomiarowe. Na rys. 53 zaprezentowano wyselekcjonowane punkty, które są oddalone powyżej 6 centymetrów od płaszczyzny odniesienia. Można zauważyć, że istnieje duże prawdopodobieństwo, że są to obserwacje do metalowych elementów dachu i parapetów oraz do naroży okien. W przypadku tak niepewnych punktów, należy je usunąć ze zbioru.

Rys. 53. Wyselekcjonowane dane pomiarowe, oddalone powyżej 6 centymetrów od płaszczyzny odniesienia

Ostatecznie do budowy trójwymiarowych modeli wykorzystano 1016 punktów pomiarowych. Z tego zbioru punktów wyinterpolowano model GRID algorytmem Natural Neighbour o rozdzielczości $0,15 \times 0,15$ m (rys. 54) oraz zbudowano model TIN (rys. 55). Poza tym, wykonano przykładowy profil w odległości 4,1 m od lewej krawędzi budynku.

Rys. 54. Model GRID ściany budynku z nałożonym zdjęciem

Rys. 55. Model TIN ściany budynku

Ocena dokładności

W metodzie biegunowej 3D instrument został zorientowany w lokalnym układzie współrzędnych, w którym oś OX była skierowana w przybliżeniu prostopadle do ściany budynku. Dokładność wyznaczenia odchyleń ściany budynku od płaszczyzny pionowej zależy przede wszystkim od dokładności wyznaczenia współrzędnej *X*, uzależnionej głównie od dokładności pomiaru odległości. Producent tachimetru TPS 1201 Leica podaje, że dokładność wyznaczenia odległości dalmierzem impulsowym w tym instrumencie wynosi ± 3 mm + 2 ppm. Należy zaznaczyć, że na dokładność wyznaczenia odległości poza czynnikami atmosferycznymi mają również wpływ inne czynniki jak np. kąt padania wiązki lasera, struktura i kolor obserwowanego obiektu. Dlatego

zdecydowano przyjąć wartość błędu odległości na poziomie $m_d = \pm 10$ mm. W poniższej ocenie dokładności przyjęto położenie stanowiska pomiarowego za bezbłędne, a błąd wyznaczenia azymutu jako równy dokładności pomiaru kąta. Dane:

$$d = 43,298 \text{ m} \pm 0,01 \text{ m}$$

$$A_{st.-P} = 382,0388^{g} \pm 3^{cc}$$

$$X_{P} = X_{st.} + d\cos A_{st.-P}$$

$$m_{X_{P}}^{2} = \left(\frac{\partial X_{P}}{\partial d}\right)^{2} m_{d}^{2} + \left(\frac{\partial X_{P}}{\partial A_{st.-P}}\right)^{2} m_{A_{st.-P}}^{2}$$

$$m_{X_{P}}^{2} = \cos^{2} A_{st.-P} m_{d}^{2} + (-d\sin A_{st.-P})^{2} m_{A_{st.-P}}^{2}$$

$$m_{X_{P}}^{2} = \cos^{2} 382,0388 \cdot 0,01^{2} + (-43,298 \cdot \sin 382,0388)^{2} \left(\frac{3}{636620}\right)^{2}$$

$$m_{X_{P}} = \pm 0,010 m$$
(8.7)

Przy ocenie dokładności modelu GRID należy wziąć pod uwagę nie tylko wyznaczoną wartość błędu m_X , ale również błędy wynikające z interpolacji, które zależą głównie od zagęszczenia punktów pomiarowych, wyboru algorytmu interpolacyjnego i rozdzielczości siatki GRID.

Operat pomiarowy

Ostateczne opracowanie realizowane w ramach ćwiczenia powinno stanowić operat pomiarowy, w skład którego wchodzi:

- sprawozdanie techniczne,
- szkic lokalizacji budynku z rozmieszczeniem stanowisk pomiarowych,
- dziennik pomiarowy (raport w formie elektronicznej),
- transformacja współrzędnych punktów obserwowanych z układu bazy do układu obiektu (raport w formie elektronicznej),
- trójwymiarowa prezentacja modelu ściany budynku typu TIN i GRID,
- ocena dokładności,
- wnioski.

9. Pomiary odchyleń obiektów wysmukłych od pionowości

Cel ćwiczenia

Zadaniem ćwiczenia jest pomiar odchylenia od pionu obiektu wysmukłego np. komina, masztu itp. przy wykorzystaniu metody trygonometrycznej. W metodzie tej wyznacza się odchylenia kątowe środków geometrycznych trzonu budowli na poszczególnych poziomach, w stosunku do środka geometrycznego na najniższym poziomie. Kierunki służące do określenia odchyleń wyznacza się jako średnią arytmetyczną z kierunków otrzymanych po nacelowaniu na skrajne tworzące.

Sprzęt pomiarowy

Do wykonania pomiaru niezbędny jest następujący sprzęt pomiarowy:

- tachimetr ze statywem,
- tyczka z reflektorem,
- dodatkowo odbiornik GPS do wyznaczenia punktów osnowy pomiarowej oraz szkicownik.

Pomiar

1. Wybór stanowisk pomiarowych.

Pomiar wykonujemy zazwyczaj z trzech stanowisk pomiarowych, oddalonych od badanego obiektu przynajmniej półtorej jego wysokości. Stanowiska najlepiej rozmieścić w taki sposób, aby tworzyły trójkąt równoboczny z obiektem umieszczonym w środku jego ciężkości (rys. 57a). Taka lokalizacja stanowisk zapewnia otrzymanie najkorzystniejszych wyników biorąc pod uwagę trójkąt błędów. W przypadku, gdy zagospodarowanie terenu uniemożliwia takie rozmieszczenie stanowisk, dopuszcza się ich lokalizację po jednej stronie obiektu (rys. 57b) lub nawet wykonanie pomiaru z dwóch stanowisk pomiarowych (rys. 57c). Poza tym, należy pamiętać o tym, aby z każdego stanowiska była możliwość obserwacji tych samych poziomów obiektu.

Rys. 57. Teoretyczne rozmieszczenie stanowisk w pomiarach odchyleń od pionowości obiektów wysmukłych

2. Zdefiniowanie trójwymiarowego układu lokalnego.

Wykonujemy pomiar odległości, kątów poziomych i przewyższeń pomiędzy sąsiednimi stanowiskami pomiarowymi. W przypadku braku wizury można zastosować techniki satelitarne do wyznaczenia współrzędnych stanowisk (w układzie państwowym) i dodatkowych punktów kierunkowych, które posłużą do orientacji instrumentu.

3. Wybór miejsc celowania na poszczególnych poziomach.

Należy pamiętać o tym, że wybrane poziomy powinny być w przybliżeniu równomiernie rozłożone na całej wysokości obiektu oraz jednoznacznie identyfikowalne z każdego stanowiska. Za miejsce celowania przyjmuje się np. malowane pasy, stalowe obejmy itp.

- 4. Wykonanie na każdym kolejnym stanowisku pomiarowym następujących czynności:
 - centrowanie i poziomowanie instrumentu;
 - pomiar wysokości instrumentu;
 - orientacja instrumentu w nawiązaniu na sąsiednie stanowiska pomiarowe lub punkty kierunkowe;
 - pomiar w dwóch położeniach lunety kierunków poziomych przy nacelowaniu na skrajne tworzące obiektu na poszczególnych jego poziomach. Ich uśredniona wartość pozwoli wyznaczyć kierunek do środka geometrycznego obiektu. W celu zmniejszenia wpływu błędu celowania należy każdorazowo wykonywać dwukrotne naprowadzenie krzyża kresek na cel;
 - pomiar kąta pionowego do badanych poziomów.
- 5. Sporządzenie szkicu sytuacyjnego.

Rys. 58. Schemat obserwacji obiektu wysmukłego metodą trygonometryczną

Opracowanie danych metodą analityczno-graficzną

1. Obliczenie średnich kierunków na każdym poziomie z każdego stanowiska pomiarowego:

$$k_{sr}^{j} = \frac{k_{l}^{j} + k_{p}^{j}}{2}$$
(9.1)

2. Obliczenie odchyleń kątowych osi obiektu:

$$\Delta \alpha_j = k_{\rm sr}^j - k_{\rm sr}^0 \tag{9.2}$$

3. Obliczenie odchyleń liniowych osi obiektu:

$$r_j = d \cdot tg \Delta \alpha_j = d \cdot \frac{\Delta \alpha_j}{\rho}$$
(9.3)

4. Obliczenie wysokości poszczególnych poziomów z każdego stanowiska pomiarowego:

$$H_j^{st.1} = H_{st.1} + i + d \cdot tg\varphi_j \tag{9.4}$$

$$H_{j} = \frac{H_{j}^{st.1} + H_{j}^{st.2} + H_{j}^{st.3}}{3}$$
(9.5)

- 5. Sporządzenie prezentacji graficznej wyników pomiarów obejmującej:
 - wykres wysokości obserwowanych poziomów obiektu,
 - wykres odchylenia osi obiektu z każdego stanowiska pomiarowego w rzucie na płaszczyznę pionową,
 - wykres odchylenia osi geometrycznej obiektu od pionowości w rzucie na płaszczyznę poziomą wraz z trójkątem błędów (metoda graficzna Langa).

Metodę graficzną Langa realizujemy w następujących krokach:

- 1. Skartowanie ze współrzędnych, w odpowiednio dobranej skali, położenia stanowisk pomiarowych i środka geometrycznego obserwowanego obiektu na poziomie zerowym (P_0).
- 2. Wykreślenie kierunków łączących stanowiska pomiarowe ze środkiem geometrycznym najniższego poziomu.
- 3. Wykreślenie dla i-tego poziomu kolejnych linii równoległych do uprzednio wyznaczonych kierunków zerowych i oddalonych od nich o obliczoną wielkość odchylenia r_i. Odchylenia odkładamy w odpowiednio dobranej skali (zazwyczaj z przedziału1:1-10), w ten sposób, że odchylenia dodatnie odkładane są po prawej stronie, natomiast ujemne po lewej. Teoretycznie linie przesunięć poprowadzone z trzech stanowisk powinny przeciąć się w jednym punkcie, lecz ze względu na występujące różnego typu błędy pomiarowe tworzą one trójkąt, którego środek ciężkości wyznacza najprawdopodobniejsze położenie szukanego punktu [3]. Zazwyczaj największe trójkąty występują na najwyższych poziomach ponieważ obserwacje tych poziomów obarczone są największymi błędami pomiarowymi.
- Połączenie środków ciężkości trójkątów błędu między kolejnymi poziomami, otrzymując odchylenie od pionowości osi budowli w rzucie na płaszczyznę poziomą.

Opracowanie danych metodą ścisłą

Opracowanie danych metodą ścisłą należy wykonać dwuetapowo. W pierwszej kolejności należy wyrównać osnowę wraz z punktem zlokalizowanym w środku geometrycznym budowli na poziomie zerowym, a następnie dokonać wyrównania obserwacji do punktów na każdym kolejnym poziomie.

Jeśli przyjmie się, że kątowe odchylenia $\Delta \alpha$ są różniczkowalnymi zmianami azymutów *A* wówczas można zapisać zależność w następującej postaci [5]:

$$\Delta \alpha_i^j = -\frac{\sin A_i}{d_i} \rho \cdot w_X^j + \frac{\cos A_i}{d_i} \rho \cdot w_Y^j$$
(9.6)

W przypadku prowadzenia obserwacji z co najmniej trzech stanowisk układa się równania aproksymacyjne poprawki wyrównawczej do obserwowanego kierunku:

$$v_{\Delta\alpha_i}^j = -\frac{\sin A_i^0}{d_i^0} \rho \cdot w_X^j + \frac{\cos A_i^0}{d_i^0} \rho \cdot w_Y^j + \left(\Delta\alpha_i^0 - \Delta\alpha_i^{ob}\right)^j$$

Współrzędne przybliżone środków geometrycznych obiektu (P) dla wszystkich badanych poziomów (j) najwygodniej przyjąć takie same, jak dla punktu na poziomie zerowym. Otrzymane w wyniku wyrównania niewiadome (w_X, w_Y) będą wtedy równe składowym prostokąta wektora odchylenia w odniesieniu do poziomu zerowego [3]. Poza tym, powyższy wzór uprości się, ponieważ wielkość przybliżona $\Delta \alpha_i^0 = 0$ i przyjmie następującą postać:

$$v_{\Delta\alpha_i}^j = -\frac{\sin A_i^0}{d_i^0} \rho \cdot w_X^j + \frac{\cos A_i^0}{d_i^0} \rho \cdot w_Y^j + \left(-\Delta\alpha_i^{ob}\right)^j \tag{9.7}$$

gdzie:

- A_i^0, d_i^0 długość i azymut linii łączących i-te stanowisko ze środkiem najniższego poziomu obserwowanego obiektu, wyliczone ze współrzędnych,
- w_X^j, w_Y^j wyznaczone wielkości odchyleń na j-tym poziomie względem poziomu zerowego,
- poziomu zerowego, $\Delta \alpha_i^0, \Delta \alpha_i^{ob}$ – wartość kąta pomiędzy kierunkiem k_i i k₀ wyznaczana odpowiednio na podstawie współrzędnych przybliżonych i w wyniku pomiaru bezpośredniego.

Zestawione równania poprawek w formie macierzowej można zapisać w następującej postaci:

$$\hat{\mathbf{V}}^{j} = \mathbf{A}\hat{\mathbf{d}}_{X}^{j} + \mathbf{L}^{j} \tag{9.8}$$

gdzie:

 $\widehat{\mathbf{V}}^{j}$ – wektor poprawek dla obserwacji dla j-tego poziomu,

A – macierz pochodnych cząstkowych funkcji wiążącej,

L – macierz wyrazów wolnych dla j-tego poziomu,

Do obliczeń należy przyjąć bezbłędność punktów osnowy pomiarowej (st. 1, 2, 3) oraz środkiem budowli na poziomie zerowym (P_0).

$$\mathbf{A} = \begin{bmatrix} -\frac{\sin A_1^0}{d_1^0} \rho & \frac{\cos A_1^0}{d_1^0} \rho \\ -\frac{\sin A_2^0}{d_2^0} \rho & \frac{\cos A_2^0}{d_2^0} \rho \\ -\frac{\sin A_3^0}{d_3^0} \rho & \frac{\cos A_3^0}{d_3^0} \rho \end{bmatrix} \qquad \mathbf{L}^j = -\begin{bmatrix} \left(\Delta \alpha_1^{ob}\right)^j \\ \left(\Delta \alpha_2^{ob}\right)^j \\ \left(\Delta \alpha_3^{ob}\right)^j \end{bmatrix}$$

Ostatecznie niewiadome wyznaczamy na podstawie wzoru:

$$\hat{\mathbf{d}}_{X}^{j} = -\left(\mathbf{A}^{T}\mathbf{P}\mathbf{A}\right)^{-1}\mathbf{A}^{T}\mathbf{P}\mathbf{L}^{j} = \begin{bmatrix} w_{X}^{j} \\ w_{Y}^{j} \end{bmatrix}$$
(9.9)

$$w^{j} = \sqrt{\left(w_{X}^{j}\right)^{2} + \left(w_{Y}^{j}\right)^{2}}$$
(9.10)

Azymut szukanego wektora odchyleń można wyznaczyć ze znanej zależności:

$$A^{j} = \operatorname{arctg} \frac{w_{Y}^{j}}{w_{X}^{j}} \tag{9.11}$$

Ocena dokładności zazwyczaj sprowadza się do obliczenie błędów średnich wyrównanych parametrów na podstawie macierzy kowariancji $\hat{\mathbf{C}}_{\hat{X}}$ i estymatora współczynnika wariancji m₀.

$$\hat{\mathbf{C}}_{\hat{\mathbf{X}}} = m_0^2 \left(\mathbf{A}^T \mathbf{P} \mathbf{A} \right)^{-1} = m_0^2 \begin{bmatrix} m_{\hat{X}}^2 & \hat{\operatorname{cov}}(\hat{X}, \hat{Y}) \\ \hat{\operatorname{cov}}(\hat{X}, \hat{Y}) & m_{\hat{Y}}^2 \end{bmatrix}$$
(9.12)
$$\hat{\mathbf{V}}^T \mathbf{P} \hat{\mathbf{V}}$$

$$m_0^2 = \frac{1}{n-r}$$

$$m_{\hat{X}} = \pm \sqrt{[\hat{\mathbf{C}}_{\hat{X}}]_{11}}, \quad m_{\hat{Y}} = \pm \sqrt{[\hat{\mathbf{C}}_{\hat{X}}]_{22}}, \quad m_P = \pm \sqrt{m_{\hat{X}}^2 + m_{\hat{Y}}^2}$$
(9.13)

Ostatnim etapem jest prezentacja uzyskanych wyników, w postaci wykresu odchyleń (w_X , w_Y) trzonu budowli.

Przykład A

Wykonano pomiar odchyleń od pionowości masztu służącego do badania charakterystyki wiatru (sił i kierunku wiatrów na różnych wysokościach), zlokalizowanego w Kotłowie w pobliżu Koszalina. Do pomiaru zastosowano tachimetr GTS-226 firmy Topcon. Rozmieszczenie stanowisk pomiarowych w stosunku do obserwowanego obiektu oraz sposób zdefiniowania lokalnego układu współrzędnych przedstawiono na rys. 61. Kierunki do masztu na danych poziomach były realizowane nie do skrajnych tworzących, tylko do środka geometrycznego masztu, ze względu na jego niewielką średnicę.

Rys. 61. Szkic rozmieszczenia stanowisk i poziomów obserwowanych podczas pomiaru odchyleń masztu od pionowości

Opracowanie danych z pomiaru przeprowadzono w kolejnych etapach:

1. Zdefiniowanie trójwymiarowego układu lokalnego.

Na podstawie pomierzonych katów poziomych i odległości pomiędzy punktami osnowy wyznaczono współrzedne X, Y punktów w układzie lokalnym. Punkty A i C potraktowano jako punkty stałe, natomiast współrzędne punktu B wyznaczono z ciągu poligonowego zamknietego. Obliczenia wykonano w programie C-Geo, a wyniki w postaci raportu zaprezentowano w tabeli 30. Wysokości punktów osnowy pomiarowej uzyskano z wyrównania ciągu niwelacyjnego zamkniętego, w którym jako reper nawiązania przyjęto punkt C wysokości 0,00 m, а przewyższenia wyznaczono Z niwelacii 0 trygonometrycznej (tabela 31).

Tabela 30. Raport z wyznaczenia współrzędnych punktów osnowy

Punkty nawiązania :

Numer	Х	Y	Azymut
А	0,000	0,000	
С	0,000	280,610	

Dane ciągu

Numer	Kąt	Bok	Х	Y
С	64,8360	292,330	0,000	280,610
В	65,2478	279,490	248,858	127,228
А	69,9119		0,000	0,000

Długość ciągu : 571,820fk = -0,0043, fl = 0,0101, fk max = 0,0312, fl max = 0,1821, fx = -0,0070, fy = -0,0073,

Tabela 31. Zestawienie obliczonych przewyższeń pomiędzy punktami osnowy

Stanowisko	Cel	Kąt horyzontalny [^g]	d [m]	i [m]	s [m]	Δh [m]
٨	С	-1,0939	280,61	1 46		-5,06
A	В	-0,5293	93 279,49 1,46 24 299,50		-2,56	
D	Α	0,6134	299,50	1.51	[m] 1,70	2,60
Б	С	-0,5066	292,33	1,51		-2,52
C	Α	1,1740	280,61	1.52		5,00
C	В	0,5744	292,33	1,52	[m] 1,70	2,45

Nr pkt.	X	Y [m]	H [m]
Α	0,000	0,000	5,04
В	248,858	127,228	2,47
C	0,000	280,610	0,00

Tabela 32. Wykaz współrzędnych punktów osnowy pomiarowej

2. Wyznaczenie współrzędnych środka geometrycznego masztu na najniższym poziomie (poziomie zerowym).

Współrzędne punktu P0 obliczono przy wykorzystaniu wcięcia kątowego w przód. Dla kontroli współrzędne wyznaczono z trzech wcięć, a wyniki uśredniono. Obliczenia wykonano w programie C-Geo.

Tabela 33. Raport z wyznaczenia współrzędnych środka masztu na poziomie zerowym

Nr	Х	Y
А	0,000	0,000
С	0,000	280,610
PO	94,890	160,893

Kąt na pkt A = 33,9232Kąt na pkt C = 42,6678

Nr	Х	Y
В	248,858	127,228
А	0,000	0,000
PO	94,908	160,882

Kąt na pkt B = 43,7880 Kąt na pkt A = 35,9827

Nr	Х	Y
С	0,000	280,610
В	248,858	127,228
PO	94,891	160,893

Kąt na pkt C = 22,1682Kąt na pkt B = 21,4598

Nr	Х	Y
P0 - średnie	94,896	160,889

3. Wyznaczenie odchyleń osi masztu na poszczególnych poziomach.

Odchylenia osi masztu wyznaczono zgodnie ze wzorami 9.2, 9.3, w których odległość pomiędzy stanowiskiem pomiarowym a punktem P0 wyznaczono ze współrzędnych.

	р ·	Kierunek	Odchylenie katowe	Odchvlenie liniowe
Stanowisko	Poziom	[g]	[g]	[m]
А	0	254,6012		
d_{Λ} po=186 79 m	1	254,6026	0,0014	0,004
A-P0 100,79 m	2	254,6102	0,0090	0,026
	3	254,6146	0,0134	0,039
	4	254,6249	0,0237	0,070
	5	254,6317	0,0305	0,089
	6	254,6409	0,0397	0,116
	7	254,6543	0,0531	0,156
В	0	164,5922		
$d_{B-P0} = 157.60 \text{ m}$	1	164,5897	-0,0025	-0,006
DIO /	2	164,5974	0,0052	0,013
	3	164,5953	0,0031	0,008
	4	164,5854	-0,0068	-0,017
	5	164,5899	-0,0023	-0,006
	6	164,5814	-0,0108	-0,027
	7	164,5770	-0,0152	-0,038
С	0	326,9868		
$d_{C-P0} = 152,77 \text{ m}$	1	326,9901	0,0033	0,008
	2	326,9749	-0,0119	-0,029
	3	326,9808	-0,0060	-0,014
	4	326,9773	-0,0095	-0,023
	5	326,9677	-0,0191	-0,046
	6	326,9637	-0,0231	-0,055
	7	326,9576	-0,0292	-0,070

 Tabela 34. Zestawienie wyznaczonych odchyleń masztu od pionu na poszczególnych poziomach z trzech stanowisk obserwacyjnych

4. Wyznaczenie wysokości obserwowanych poziomów.

Do obliczenia wysokości każdego poziomu masztu wykorzystano niwelację trygonometryczną.

m	Stanowis	ko A	Stanowis	sko B	Stanowi	sko C	Н	Н
Zio	Kąt	Н	Kąt	Н	Kąt	Н	śred.	zred.
P_0	[^g]	[m]	[g]	[m]	[g]	[m]	[m]	[m]
0	1,6159	11,24	2,9199	11,21	4,0473	11,25	11,23	0,00
1	3,1035	15,61	4,6953	15,62	5,8542	15,61	15,62	4,38
2	6,7230	26,30	8,9393	26,26	10,2346	26,29	26,28	15,05
3	10,0291	36,17	12,7990	36,10	14,2012	36,18	36,15	24,92
4	14,5140	49,84	18,0100	49,79	19,5063	49,85	49,83	38,59
5	16,5329	56,13	20,3310	56,09	21,8684	56,16	56,13	44,90
6	19,7825	66,49	24,0148	66,42	25,6116	66,53	66,48	55,24
7	22,6714	75,98	27,2540	75,90	28,8982	76,06	75,98	64,75
	$H_{A} = 5,0$	4 m	$H_{\rm B} = 2,4$	47 m	$H_{\rm C} = 0,$	00 m		
	i = 1,46	m	i = 1,5	2 m	i = 1,5	1 m		
	$d_{A-P0} = 186$,79 m	$d_{B-P0} = 15^{\circ}$	7,60 m	$d_{C-P0} = 15$	2,77 m		

 Tabela 35. Zestawienie obliczonych wysokości poszczególnych poziomów z trzech stanowisk pomiarowych

5. Graficzna prezentacja uzyskanych wyników.

Rys. 62. Odchylenie osi masztu od pionowości na poszczególnych poziomach w rzucie na płaszczyznę poziomą, wykreślone metodą Langa

Rys. 63. Wykres składowych z odchyleń osi masztu od pionowości zaobserwowanych z poszczególnych stanowisk pomiarowych w rzucie na płaszczyznę pionową

Analizując wykres z rys. 62 można zauważyć, że środek geometryczny masztu na poziomie 3 i 4 został określony z największym błędem, natomiast najdokładniej został wyznaczony środek geometryczny na poziomie 2.

Operat pomiarowy

Ostateczne opracowanie realizowane w ramach ćwiczeń powinno stanowić operat pomiarowy, w skład którego wchodzi:

- sprawozdanie techniczne,
- szkic lokalizacji badanego obiektu z rozmieszczeniem stanowisk pomiarowych,
- dzienniki pomiarowe lub raport z pomiarów,
- obliczenie współrzędnych punktów osnowy pomiarowej,
- zestawienie wyznaczonych odchyleń od pionowości badanego obiektu,

- prezentacja graficzna odchyleń osi obiektu wysmukłego od pionowości na poszczególnych poziomach w rzucie na płaszczyznę poziomą, wykreślonych metodą Langa,
- prezentacja graficzna składowych odchyleń osi obiektu wysmukłego od pionowości, wyznaczonych z każdego stanowiska pomiarowego w rzucie na płaszczyznę pionową,
- wnioski.

Przykład B – pomiar odchyleń od pionowości komina przemysłowego

Do pomiaru wybrano żelbetowy komin przemysłowy o wysokości 120 m, zlokalizowany przy ul. Mieszka I w Koszalinie.

Pomiar wykonano z trzech stanowisk pomiarowych A1, B1, C1, z których można było obserwować cały trzon komina od wysokości około 20 m nad terenem. Ze względu na występujące zagospodarowanie terenu, nie było możliwości wykonania bezpośredniego pomiaru odległości i kątów pomiędzy stanowiskami pomiarowymi, potrzebnych do zdefiniowania układu lokalnego. W związku z tym, położenie stanowisk pomiarowych i dodatkowych punktów kierunkowych wyznaczono przy wykorzystaniu techniki GPS RTK w układzie państwowym 2000. Do tego celu wykorzystano odbiornik GPS Leica Viva i specjalny stojak służący do podparcia tyczki. Obserwacje na każdym punkcie osnowy były wykonywane przez co najmniej minutę. Do otrzymania poprawek wykorzystano stację referencyjną ASG EUPOS umieszczoną na dachu budynku Politechniki Koszalińskiej przy ul. Śniadeckich 2, oddaloną od obserwowanego obiektu o około 3 km. W tabeli 36 zawarto wykaz wyznaczonych współrzędnych punktów osnowy oraz ich charakterystykę dokładności, natomiast na rys. 64 zaprezentowano szkic sytuacyjny pomiaru.

Obserwacje trzonu komina były wykonywane tachimetrem GTS-226 firmy Topcon. Na każdym stanowisku pomiarowym dokonywano pomiaru wysokości instrumentu nad punktem oraz orientacji na uprzednio wyznaczone punkty kierunkowe. Następnie wykonywano obserwacje kierunków stycznych do trzonu komina na każdym poziomie przy dwukrotnym nacelowaniu i w dwóch położeniach lunety. Obserwacje te były rejestrowane w wewnętrznej pamięci instrumentu. W tabeli 37 zestawiono uśrednione wyniki obserwacji oraz wyznaczone odchylenia kątowe trzonu komina z poszczególnych stanowisk pomiarowych.

Rys. 64. Szkic obserwacji komina przemysłowego

Nr	Х	Y	Н	H ant	e	sat	PDOP	RMS2D	RMS1D
A1	6007773,567	5575818,731	36,150	2,000	61	8	1,7	8,4	12,5
A2	6007735,292	5575801,763	36,471	2,000	60	8	1,8	10,2	15,6
A3	6007822,505	5575881,877	34,478	2,000	61	7	2,0	12,6	16,7
B1	6007617,295	5575227,953	45,334	2,000	60	6	2,5	8,6	17,3
B2	6007663,111	5575157,866	44,655	2,000	61	7	2,1	7,9	15,4
B3	6007543,163	5575326,823	42,138	2,000	60	6	2,6	8,6	18,1
C1	6008229,444	5575347,698	32,770	2,000	69	7	2,3	12,2	15,7
C2	6008208,688	5575383,617	33,060	2,000	60	7	2,0	11,9	22,5
C3	6008276,162	5575279,596	32,860	2,000	60	7	2,0	8,2	15,7
		śred	nia					9,8	16,6

Tabela 36. Raport z wyznaczenia punktów osnowy pomiarowej

Stacja referencyjna: RTCM-Ref 0014

Współrzędne stacji z RTCM: X=6008754,241 Y=5578150,224 H=89,807

Układ 2000-15, wysokość normalna

Wykorzystany strumień poprawek RTK: NAWGEO_POJ_3_1

		Nawiązani	e / Styczna		Odchylenie
Stanowisko	Cel	[1	g]	Dwusieczna - k _{śr}	katowe
		Lewa - k _l	Prawa – k _p	[5]	[g]
A1	A2	7,0	320		
i = 1,51 m	A3	238,	4910		
s = 1,70 m	0	98,9335	100,5500	99,7418	0,0000
,	1	98,9783	100,5053	99,7418	0,0000
	2	99,0295	100,4663	99,7479	0,0061
	3	99,0835	100,4205	99,7520	0,0102
	4	99,1365	100,3803	99,7584	0,0166
	5	99,1615	100,3353	99,7484	0,0066
	6	99,2028	100,2880	99,7454	0,0036
	7	99,2425	100,2425	99,7425	0,0007
	8	99,1963	100,2968	99,7465	0,0047
B1	B2	197,	5600		
i = 1,48 m	B3	1,6	535		
s = 1,70 m	0	315,7920	317,0593	316,4256	0,0000
,	1	315,8205	317,0345	316,4275	0,0019
	2	315,8645	316,9905	316,4275	0,0019
	3	315,8960	316,9548	316,4254	-0,0002
	4	315,9255	316,9225	316,4240	-0,0016
	5	315,9560	316,8968	316,4264	0,0008
	6	315,9973	316,8560	316,4266	0,0010
	7	316,0315	316,8290	316,4303	0,0047
	8	316,0025	316,8633	316,4329	0,0073
C1	C2	201,	9980		
i = 1,54 m	C3	6,9	245		
s = 1,70 m	0	239,1645	240,3853	239,7749	0,0000
,	1	239,1988	240,3508	239,7748	-0,0001
	2	239,2255	240,3135	239,7695	-0,0054
	3	239,2540	240,2753	239,7646	-0,0103
	4	239,2805	240,2393	239,7599	-0,0150
	5	239,3230	240,2100	239,7665	-0,0084
	6	239,3570	240,1793	239,7681	-0,0068
	7	239,3883	240,1475	239,7679	-0,0070
	8	239,3570	240,1793	239,7681	-0,0068

Tabela 37. Zestawienie obserwacji trzonu komina

W celu wyznaczenia odchylenia osi komina od pionowości dane pomiarowe opracowano metodą ścisłą. Proces wyrównania metodą parametryczną był realizowany według schematu zawartego w podręczniku Wiśniewski 2008.

I etap opracowania danych

W etapie tym dokonuje się wyrównania osnowy wraz z punktem zlokalizowanym w środku geometrycznym komina na poziomie zerowym. Punkty osnowy pomiarowej wyznaczone techniką satelitarną przyjmuje się jako bezbłędne i wówczas wyrównaniu podlega tylko punkt P0.

Przed wyrównaniem należało wyznaczyć współrzędne przybliżone środka trzonu komina na poziomie zerowym. Zazwyczaj do tego celu wykorzystuje się wcięcia kątowe w przód z bazą wcięcia utworzoną przez stanowiska pomiarowe. W tym celu niezbędne było obliczenie kątów wcinających ($\alpha_{L,C,P}$) z różnicy obserwowanych kierunków i azymutów nawiązania wyznaczonych ze współrzędnych.

$$\begin{aligned} \alpha_{B1,A1,P0} &= \left(k_{A1-P0} - k_{A1-A2}\right) - \left(A_{A1-B1} - A_{A1-A2}\right) = 35,7376^{g} \\ \alpha_{P0,A1,C1} &= \left(k_{A1-A3} - k_{A1-P0}\right) - \left(400 - \left(A_{A1-C1} - A_{A1-A3}\right)\right) = 29,6812^{g} \\ \alpha_{P0,B1A1} &= \left(k_{B1-B3} - k_{B1-P0}\right) - \left(A_{B1-B3} - A_{B1-A1}\right) = 27,8070^{g} \\ \alpha_{C1,B1,P0} &= \left(k_{B1-P0} - k_{B1-B2}\right) - \left(400^{g} - \left(A_{B1-B2} - A_{B1-C1}\right)\right) = 43,4263^{g} \\ \alpha_{A1,C1,P0} &= \left(k_{C1-P0} - k_{C1-C2}\right) - \left(A_{C1-A1} - A_{C1-C2}\right) = 22,1752^{g} \\ \alpha_{P0,C1,B1} &= \left(k_{C1-C3} - k_{C1-P0}\right) - \left(A_{C1-C3} - A_{C1-B1}\right) = 41,1696^{g} \end{aligned}$$

W celu sprawdzenia poprawności obliczeń zsumowano wszystkie kąty uzyskując wynik 199,9969^g i przyrównano do wielkości teoretycznej 200^g.

Na rys. 65 zestawiono obliczane wielkości kątów wcinających, a w tabeli 38 zestawiono wyniki obliczeń poszczególnych wcięć kątowych.

Rys. 65. Szkic z wyznaczonymi kątami

 Tabela 38. Wyznaczenie współrzędnych środka komina na poziomie zerowym (P0) metodą wcięcia kątowego w przód

Baza wcięcia	Kąt lewy	Kąt prawy	Punkt wo	inany P0
pkt lewy-pkt prawy	[g]	[g]	X [m]	Y [m]
B1–A1	27,8070	35,7376	6007865,277	5575525,139
C1–B1	41,1696	43,4263	6007865,343	5575525,160
A1–C1	29,6812	22,1832	6007865,313	5575525,076
	Średnia		6007865,311	5575525,125

Następnie ułożono układ równań poprawek do kąta według poniższego wzoru:

$$\begin{aligned} v_{\alpha_{LCP}} &= \frac{\Delta Y_{CL}^{0}}{\left(d_{CL}^{0}\right)^{2}} \rho d_{X_{L}} - \frac{\Delta X_{CL}^{0}}{\left(d_{CL}^{0}\right)^{2}} \rho d_{Y_{L}} - \frac{\Delta Y_{CP}^{0}}{\left(d_{CP}^{0}\right)^{2}} \rho d_{X_{P}} + \frac{\Delta X_{CP}^{0}}{\left(d_{CP}^{0}\right)^{2}} \rho d_{Y_{P}} + \\ &+ \left(\frac{\Delta Y_{CP}^{0}}{\left(d_{CP}^{0}\right)^{2}} - \frac{\Delta Y_{CL}^{0}}{\left(d_{CL}^{0}\right)^{2}}\right) \rho d_{X_{C}} + \left(\frac{\Delta X_{CP}^{0}}{\left(d_{CP}^{0}\right)^{2}} - \frac{\Delta X_{CL}^{0}}{\left(d_{CL}^{0}\right)^{2}}\right) \rho d_{Y_{C}} + \alpha_{LCP}^{0} - \alpha_{LCP}^{ob} \end{aligned}$$

gdzie:

 $\Delta X^0, \Delta Y^0$ – przyrosty współrzędnych wyznaczone na podstawie współrzędnych przybliżonych,

 α^0 , d^0 – kąt i odległość wyznaczone na podstawie współrzędnych przybliżonych,

 $a^{\rho b}$ – kąt wyznaczony na podstawie obserwacji terenowych.

Rys. 66. Pomocniczy rysunek do ułożenia równań poprawek

Otrzymano w ten sposób dla rozpatrywanego przykładu następujący układ równań poprawek kąta:

$$\begin{aligned} v_{\alpha_{P0A1A3}} &= \frac{\Delta Y_{A1P0}^{0}}{\left(d_{A1P0}^{0}\right)^{2}} \rho d_{X_{P0}} - \frac{\Delta X_{A1P0}^{0}}{\left(d_{A1P0}^{0}\right)^{2}} \rho d_{Y_{P0}} + \alpha_{P0A1A3}^{0} - \alpha_{P0A1A3}^{ob} \\ v_{\alpha_{A2A1P0}} &= -\frac{\Delta Y_{A1P0}^{0}}{\left(d_{A1P0}^{0}\right)^{2}} \rho d_{X_{P0}} + \frac{\Delta X_{A1P0}^{0}}{\left(d_{A1P0}^{0}\right)^{2}} \rho d_{Y_{P0}} + \alpha_{A2A1P0}^{0} - \alpha_{A2A1P0}^{ob} \\ v_{\alpha_{P0B1B3}} &= \frac{\Delta Y_{B1P0}^{0}}{\left(d_{B1P0}^{0}\right)^{2}} \rho d_{X_{P0}} - \frac{\Delta X_{B1P0}^{0}}{\left(d_{B1P0}^{0}\right)^{2}} \rho d_{Y_{P0}} + \alpha_{P0B1B3}^{0} - \alpha_{P0B1B3}^{ob} \\ v_{\alpha_{B2A1P0}} &= -\frac{\Delta Y_{B1P0}^{0}}{\left(d_{B1P0}^{0}\right)^{2}} \rho d_{X_{P0}} + \frac{\Delta X_{B1P0}^{0}}{\left(d_{B1P0}^{0}\right)^{2}} \rho d_{Y_{P0}} + \alpha_{B2B1P0}^{0} - \alpha_{B2B1P0}^{ob} \\ v_{\alpha_{P0C1C3}} &= \frac{\Delta Y_{C1P0}^{0}}{\left(d_{C1P0}^{0}\right)^{2}} \rho d_{X_{P0}} - \frac{\Delta X_{C1P0}^{0}}{\left(d_{C1P0}^{0}\right)^{2}} \rho d_{Y_{P0}} + \alpha_{P0C1C3}^{0} - \alpha_{P0C1C3}^{ob} \\ v_{\alpha_{C2C1P0}} &= -\frac{\Delta Y_{C1P0}^{0}}{\left(d_{C1P0}^{0}\right)^{2}} \rho d_{X_{P0}} + \frac{\Delta X_{C1P0}^{0}}{\left(d_{C1P0}^{0}\right)^{2}} \rho d_{Y_{P0}} + \alpha_{C2C1P0}^{0} - \alpha_{C2C1P0}^{ob} \end{aligned}$$

W tabeli 39 zestawiono obliczone przybliżone wartości azymutu i długości odcinków pomiędzy danym stanowiskiem a środkiem komina na poziomie zerowym.

 Tabela 39. Zestawienie azymutów i długości wyznaczonych ze współrzędnych punktów stałych i współrzędnych przybliżonych punktu P0

Bok	$egin{array}{c} A^0_{i} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	d ⁰ [m]
A1 - P0	319,2807	307,606
B1 - P0	55,7245	387,070
C1- P0	171,1355	405,059

Tabela 40. Zestawienie kątów wyznaczonych na podstawie współrzędnych (α^{0}) i kierunków obserwowanych (α^{ob})

<i>α</i> _{LCD}	α^0	α^{ob}	$\alpha^0 - \alpha^{ob}$
ECI	g	g	g
$\alpha_{\rm P0A1A3}$	138,7464	138,7492	-0,0028
α_{A2A1P0}	92,7156	92,7098	0,0058
$\alpha_{ m P0B1B3}$	85,2336	85,2279	0,0057
$\alpha_{ m B2B1P0}$	118,8659	118,8656	0,0003
α_{P0C1C3}	167,1424	167,1496	-0,0072
α_{C2C1P0}	37,7780	37,7769	0,0011

Z uprzednio obliczonych wielkości została wyznaczona macierz A oraz macierz wyrazów wolnych L.

_

$$\mathbf{A} = \begin{bmatrix} \frac{\Delta Y_{A1P0}^{0}}{\left(d_{A1P0}^{0}\right)^{2}} \rho^{g} & -\frac{\Delta X_{A1P0}^{0}}{\left(d_{A1P0}^{0}\right)^{2}} \rho^{g} \\ -\frac{\Delta Y_{B1P0}^{0}}{\left(d_{B1P0}^{0}\right)^{2}} \rho^{g} & -\frac{\Delta X_{B1P0}^{0}}{\left(d_{B1P0}^{0}\right)^{2}} \rho^{g} \\ -\frac{\Delta Y_{B1P0}^{0}}{\left(d_{B1P0}^{0}\right)^{2}} \rho^{g} & -\frac{\Delta X_{B1P0}^{0}}{\left(d_{B1P0}^{0}\right)^{2}} \rho^{g} \\ -\frac{\Delta Y_{C1P0}^{0}}{\left(d_{C1P0}^{0}\right)^{2}} \rho^{g} & -\frac{\Delta X_{C1P0}^{0}}{\left(d_{C1P0}^{0}\right)^{2}} \rho^{g} \\ -\frac{\Delta Y_{C1P0}^{0}}{\left(d_{C1P0}^{0}\right)^{2}} \rho^{g} & -\frac{\Delta X_{C1P0}^{0}}{\left(d_{C1P0}^{0}\right)^{2}} \rho^{g} \\ -\frac{\Delta Y_{C1P0}^{0}}{\left(d_{C1P0}^{0}\right)^{2}} \rho^{g} & -\frac{\Delta X_{C1P0}^{0}}{\left(d_{C1P0}^{0}\right)^{2}} \rho^{g} \end{bmatrix} = \begin{bmatrix} -0,0028 \\ 0,00584 & -0,14129 \\ -0,06884 & -0,14129 \end{bmatrix}$$

W obliczeniach przyjęto, że obserwacje kierunków (kątów) z poszczególnych stanowisk zostały wykonane z tą samą dokładnością i w związku z tym macierz wag $\mathbf{P} = \mathbf{I}$. Układ równań normalnych $\mathbf{A}^{T}\mathbf{P}\mathbf{A}\mathbf{\hat{d}}_{X} + \mathbf{A}^{T}\mathbf{P}\mathbf{L} = 0$ rozwiązano metodą nieoznaczoną.

$$\hat{\mathbf{d}}_{X} = -(\mathbf{A}^{T}\mathbf{P}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{P}\mathbf{L} = \begin{bmatrix} -0.018\\ 0.022 \end{bmatrix}_{(m)}$$

Następnie wyznaczono wektor poprawek do wyników pomiaru:

$$\hat{\mathbf{V}} = \mathbf{A}\hat{\mathbf{d}}_{X} + \mathbf{L} = \begin{bmatrix} -0,0005\\ 0,0035\\ 0,0011\\ 0,0049\\ -0,0053\\ -0,0007 \end{bmatrix}_{(g)}$$

oraz estymator współczynnika wariancji:

$$m_0^2 = \frac{\hat{\mathbf{V}}^T \mathbf{P} \hat{\mathbf{V}}}{n-r} = \frac{0,0000672}{6-2} = 0,0000168$$
$$m_0 = 0,0041$$

I etap kontroli:

Polega na sprawdzeniu czy spełniona jest równość s = s'.

$$s = \hat{\mathbf{V}}^T \mathbf{P} \hat{\mathbf{V}} = 0,00006724$$

$$s' = \mathbf{L}^T \mathbf{P} \mathbf{A} \hat{\mathbf{d}}_X + \mathbf{L}^T \mathbf{P} \mathbf{L} = 0,00006724$$

Po pozytywnym wyniku kontroli wyznaczamy wyrównane współrzędne punktu P0 i wyrównane kąty:

$$\hat{\mathbf{X}} = \mathbf{X}^{0} + \hat{\mathbf{d}}_{X} = \begin{bmatrix} 6007865,311 \\ 5575525,125 \end{bmatrix} + \begin{bmatrix} -0,018 \\ 0,022 \end{bmatrix} = \begin{bmatrix} 6007865,293 \\ 5575525,147 \end{bmatrix}_{(m)} = \begin{bmatrix} \hat{X}_{P0} \\ \hat{Y}_{P0} \end{bmatrix}$$
$$\hat{\mathbf{x}} = \mathbf{x}^{ob} + \hat{\mathbf{V}} = \begin{bmatrix} 138,7492 \\ 92,7098 \\ 85,2279 \\ 118,8656 \\ 167,1496 \\ 37,7769 \end{bmatrix} + \begin{bmatrix} -0,0005 \\ 0,0035 \\ 0,0011 \\ 0,0049 \\ -0,0053 \\ -0,0007 \end{bmatrix} = \begin{bmatrix} 138,7487 \\ 92,7133 \\ 85,2290 \\ 118,8705 \\ 167,1443 \\ 37,7762 \end{bmatrix}_{(g)} = \begin{bmatrix} \hat{\alpha}_{P0A1A3} \\ \hat{\alpha}_{A2A1P0} \\ \hat{\alpha}_{P0B1B3} \\ \hat{\alpha}_{B2B1P0} \\ \hat{\alpha}_{P0C1C3} \\ \hat{\alpha}_{C2C1P0} \end{bmatrix}$$

II etap kontroli:

Kontrola polega na porównaniu wyrównanych kątów ($\hat{\mathbf{x}}$) w stosunku do kątów wyliczonych na podstawie współrzędnych punktów stałych i wyrównanych współrzędnych punktu P0.

α_{LCP}	Na podstawie poprawek	Na podstawie wyrównanych współrzędnych	Kontrola
$\alpha_{\rm P0A1A3}$	138,7487	138,7487	✓
α_{A2A1P0}	92,7133	92,7133	✓
$\alpha_{\rm P0B1B3}$	85,2290	85,2290	✓
$\alpha_{\rm B2B1P0}$	118,8705	118,8705	✓
α_{P0C1C3}	167,1443	167,1443	✓
$\alpha_{\rm C2C1P0}$	37,7762	37,7762	\checkmark

Następnie wyznaczono macierz kowariancji wyrównanych parametrów:

$$\hat{\mathbf{C}}_{\hat{\mathbf{X}}} = m_0^2 (\mathbf{A}^T \mathbf{P} \mathbf{A})^{-1} = 0,0000168 \begin{bmatrix} 8,683640 & -2,144316 \\ -2,144316 & 14,865080 \end{bmatrix} = \\ = \begin{bmatrix} 0,000146 & -0,000036 \\ -0,000036 & 0,000250 \end{bmatrix} = \begin{bmatrix} m_{\hat{X}}^2 & \hat{\mathrm{cov}}(\hat{X}, \hat{Y}) \\ \hat{\mathrm{cov}}(\hat{X}, \hat{Y}) & m_{\hat{Y}}^2 \end{bmatrix}$$

i dokonano oceny dokładności obliczając błąd położenia punktu po wyrównaniu:

$$m_{\hat{X}} = \pm \sqrt{[\hat{\mathbf{C}}_{\hat{X}}]_{11}} = \pm 0,012 m$$
$$m_{\hat{Y}} = \pm \sqrt{[\hat{\mathbf{C}}_{\hat{X}}]_{22}} = \pm 0,016 m$$
$$m_{P} = \pm \sqrt{m_{\hat{X}}^{2} + m_{\hat{Y}}^{2}} = \pm 0,020 m$$

II etap opracowania danych

Kolejnym etapem jest wyznaczenie składowych wektora odchylenia w_X^J , w_Y^J każdego rozpatrywanego poziomu trzonu komina w odniesieniu do poziomu zerowego (przyjętego w dalszej części opracowania jako bezbłędny) zgodnie z poniższym układem równań poprawek:

$$v_{\Delta\alpha_i}^j = -\frac{\sin A_i^0}{d_i^0} \rho \cdot w_X^j + \frac{\cos A_i^0}{d_i^0} \rho \cdot w_Y^j + \left(-\Delta \alpha_i^{ob}\right)^j$$

Współrzędne przybliżone środka komina na każdym poziomie przyjęto równe współrzędnym wyrównanym środka komina na poziomie zerowym, a następnie wyznaczono wielkości przybliżone A_i^0 , d_i^0 .

Bok	A ⁰ [^g]	d _i [m]
A1 - P0	319,2784	307,580
B1 - P0	55,7291	387,075
C1- P0	171,1337	405,085

Tabela 41. Zestawienie azymutów i długości wyznaczonych ze współrzędnychpunktów stałych i współrzędnych wyrównanych punktu P0

Z zestawionych wielkości w tabeli 41 wyznaczono macierz A:

$$\mathbf{A} = \begin{bmatrix} -\frac{\sin A_{A1P0}^{0}}{d_{A1P0}^{0}} \rho & \frac{\cos A_{A1P0}^{0}}{d_{A1P0}^{0}} \rho \\ -\frac{\sin A_{B1P0}^{0}}{d_{B1P0}^{0}} \rho & \frac{\cos A_{B1P0}^{0}}{d_{B1P0}^{0}} \rho \\ -\frac{\sin A_{C1P0}^{0}}{d_{C1P0}^{0}} \rho & \frac{\cos A_{C1P0}^{0}}{d_{C1P0}^{0}} \rho \end{bmatrix} = \begin{bmatrix} 0,19756 & 0,06172 \\ -0,12628 & 0,10538 \\ -0,06884 & -0,14128 \end{bmatrix}$$

Następnie obliczono macierz kofaktorów Q:

$$\mathbf{Q} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} = \begin{bmatrix} 17,36475 & -4,28903 \\ -4,28903 & 29,73511 \end{bmatrix}$$

Kolejnym etapem jest wyznaczenie macierzy B, która przyjmuje następującą postać:

$$\mathbf{B} = \left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} = \mathbf{Q} \mathbf{A}^{T} = \begin{bmatrix} 3,16584 & -2,64475 & -0,58951 \\ 0,98803 & 3,67495 & -3,90559 \end{bmatrix}$$

Następnie definiujemy macierz wyrazów wolnych L dla każdego poziomu (j).

$$\mathbf{L}^{j} = -\begin{bmatrix} \Delta \alpha_{P0A1Pj}^{ob} \\ \Delta \alpha_{P0B1Pj}^{ob} \\ \Delta \alpha_{P0C1Pj}^{ob} \end{bmatrix}$$

Odchylenia kątowe $\Delta \alpha^{ob}$ pomiędzy poziomem *j*-tym, a poziomem zerowym z poszczególnych stanowisk pomiarowych (A1,B1,C1) zawarto w tabeli 37.

$$\mathbf{L}^{1} = \begin{bmatrix} 0,0000\\ -0,0019\\ 0,0001 \end{bmatrix}_{(g)}^{}, \quad \mathbf{L}^{2} = \begin{bmatrix} -0,0061\\ -0,0019\\ 0,0054 \end{bmatrix}_{(g)}^{}, \quad \mathbf{L}^{3} = \begin{bmatrix} -0,0102\\ 0,0002\\ 0,0103 \end{bmatrix}_{(g)}^{}, \quad \mathbf{L}^{4} = \begin{bmatrix} -0,0166\\ 0,0016\\ 0,0150 \end{bmatrix}_{(g)}^{}$$
$$\mathbf{L}^{5} = \begin{bmatrix} -0,0066\\ -0,0008\\ 0,0084 \end{bmatrix}_{(g)}^{}, \quad \mathbf{L}^{6} = \begin{bmatrix} -0,0036\\ -0,0010\\ 0,0068 \end{bmatrix}_{(g)}^{}, \quad \mathbf{L}^{7} = \begin{bmatrix} -0,0007\\ -0,0047\\ 0,0070 \end{bmatrix}_{(g)}^{}, \quad \mathbf{L}^{8} = \begin{bmatrix} -0,0047\\ -0,0073\\ 0,0068 \end{bmatrix}_{(g)}^{}$$

Dysponując tak zestawionymi wielkościami można już wyznaczyć odchylenie środka komina ($w_{X_i}w_Y$) na każdym poziomie (*j*) oraz dokonać oceny dokładności obliczając wektor poprawek (**V**), błąd średni obserwacji (m_0) oraz błąd położenia punktu po wyrównaniu (m_p). W obliczeniach przyjęto, że wszystkie obserwacje kierunków zostały wykonane z tą samą dokładnością, wówczas macierz **P**=**I**. Obliczenia dla poziomu 1 wykonuje się następująco:

$$\hat{\mathbf{d}}_{X}^{1} = -(\mathbf{A}^{T} \mathbf{P} \mathbf{A})^{-1} \mathbf{A}^{T} \mathbf{P} \mathbf{L}^{1} = \mathbf{B} \mathbf{L}^{1} = \begin{bmatrix} -0,005\\0,007 \end{bmatrix}_{(m)}^{(m)} = \begin{bmatrix} w_{X}^{1}\\w_{Y}^{1} \end{bmatrix}$$
$$w^{j} = \sqrt{(w_{X}^{1})^{2} + (w_{Y}^{1})^{2}} = 0,009 m$$
$$Az^{j} = \operatorname{arctg} \frac{w_{Y}^{1}}{w_{X}^{1}} = 137,7359^{g}$$
$$\hat{\mathbf{V}} = \mathbf{A} \hat{\mathbf{d}}_{X} + \mathbf{L} = \begin{bmatrix} -0,0005\\-0,0005\\-0,0006 \end{bmatrix}_{(g)}^{(g)}$$
$$m_{0}^{2} = \frac{\hat{\mathbf{V}}^{T} \mathbf{P} \hat{\mathbf{V}}}{n-r} = \frac{0,0000009}{3-2} = 0,0000009$$
$$m_{0} = 0,0009$$

I etap kontroli:

Polega na sprawdzeniu czy spełniona jest równość s = s'.

$$s = \hat{\mathbf{V}}^T \mathbf{P} \hat{\mathbf{V}} = 0,0000008824$$

$$s' = \mathbf{L}^T \mathbf{P} \mathbf{A} \mathbf{d}_X + \mathbf{L}^T \mathbf{P} \mathbf{L} = 0,0000008824$$

Po pozytywnym wyniku kontroli wyznaczamy wyrównane współrzędne punktu P1 i wyrównane odchylenia kątowe $\Delta \alpha$:

$$\hat{\mathbf{X}} = \mathbf{X}^{0} + \hat{\mathbf{d}}_{X} = \begin{bmatrix} 6007865, 293 \\ 5575525, 147 \end{bmatrix} + \begin{bmatrix} -0,005 \\ 0,007 \end{bmatrix} = \begin{bmatrix} 6007865, 288 \\ 5575525, 154 \end{bmatrix}_{(m)} = \begin{bmatrix} \hat{X}_{P1} \\ \hat{Y}_{P1} \end{bmatrix}$$
$$\hat{\mathbf{x}} = \mathbf{x}^{ob} + \hat{\mathbf{V}} = \begin{bmatrix} 0,0000 \\ 0,0019 \\ -0,0001 \end{bmatrix} + \begin{bmatrix} -0,0005 \\ -0,0005 \\ -0,0006 \end{bmatrix} = \begin{bmatrix} -0,0005 \\ 0,0014 \\ -0,0007 \end{bmatrix}_{(g)} = \begin{bmatrix} \Delta \alpha_{P0A1P1} \\ \Delta \alpha_{P0B1P1} \\ \Delta \alpha_{P0C1P1} \end{bmatrix}$$

II etap kontroli:

Kontrola polega na porównaniu wyrównanych odchyleń kątowych $(\hat{\mathbf{x}})$ w stosunku do tych samych odchyleń wyliczonych na podstawie współrzędnych punktów przyjętych za stałe (A1,B1,C1,P0) i wyrównanych współrzędnych punktu P1.

$\Delta lpha_{LCP}$	Na podstawie poprawek	Na podstawie wyrównanych współrzędnych	Kontrola
$\Delta \alpha_{\rm P0A1P1}$	-0,0005	-0,0005	✓
$\Delta \alpha_{\rm P0B1P1}$	0,0014	0,0014	✓
$\Delta \alpha_{P0C1P1}$	-0,0007	-0,0007	✓

Następnie wyznaczono macierz kowariancji wyrównanych parametrów:

$$\hat{\mathbf{C}}_{\hat{\mathbf{X}}} = m_0^2 (\mathbf{A}^T \mathbf{P} \mathbf{A})^{-1} = 0,000009 \begin{bmatrix} 17,36475 & -4,28903 \\ -4,28903 & 29,73511 \end{bmatrix} = \begin{bmatrix} 0,000015 & -0,000004 \\ -0,000004 & 0,000026 \end{bmatrix} = \begin{bmatrix} m_X^2 & \operatorname{cov}(X,Y) \\ \operatorname{cov}(X,Y) & m_Y^2 \end{bmatrix}$$

i dokonano oceny dokładności obliczając błąd położenia punktu po wyrównaniu:

$$m_{\hat{X}} = \pm \sqrt{[\hat{\mathbf{C}}_{\hat{X}}]_{11}} = \pm 0,004 \, m$$
$$m_{\hat{Y}} = \pm \sqrt{[\hat{\mathbf{C}}_{\hat{X}}]_{22}} = \pm 0,005 \, m$$
$$m_{P} = \pm \sqrt{m_{\hat{X}}^{2} + m_{\hat{Y}}^{2}} = \pm 0,006 \, m$$

Obliczenia dla pozostałych poziomów wykonuje się w analogiczny sposób jak dla poziomu 1 podstawiając odpowiednią macierz L^{j} . Wyniki obliczeń dla wszystkich poziomów zestawiono w tabeli 42.

Poziom	WX [m]	WY [m]	w [m]	A [^g]	m _x [m]	m _y [m]	m _p [m]
1	-0,005	0,007	0,009	137,7359	0,004	0,005	0,006
2	0,017	0,034	0,038	69,8589	0,004	0,005	0,007
3	0,039	0,050	0,063	57,6474	0,004	0,005	0,007
4	0,066	0,069	0,095	51,6431	0,005	0,006	0,008
5	0,024	0,042	0,048	67,4319	0,005	0,007	0,009
6	0,013	0,034	0,036	77,0119	0,007	0,010	0,012
7	-0,006	0,000	0,006	108,5038	0,007	0,009	0,011
8	0,000	0,058	0,058	99,5408	0,009	0,012	0,015

 Tabela
 42. Zestawienie wyników obliczeń pomiaru odchyleń trzonu komina od pionowości

Rys. 67. Odchylenie osi trzonu komina od pionowości na poszczególnych poziomach w rzucie na płaszczyznę poziomą

Opracowanie danych można również wykonać w dowolnym oprogramowaniu geodezyjnym, które posiada moduł wyrównania ścisłego np. C-Geo. Tok postępowania jest taki sam jak zaprezentowany powyżej, gdyż najpierw dokonuje się wyrównania osnowy pomiarowej ze środkiem komina na poziomie zerowym (rys. 68), a następnie wyrównania oddzielnie dla każdego poziomu przyjmując odpowiednio współrzędne przybliżone P_j równe współrzędnym wyrównanym P0 (rys. 69).

w 💦	/yrównanie ścisłe (P	OZIOM_0.wyr)												17	1		×
۵	ල 📴 ඉ Sieć j	ooz. 💡 Sieć niw.	🛄 Do tabeli	0	Qt 🗎			N m=?	\mathbf{v}	翻							
Lp	Numer	X	Y	mx	my	mp	Χw		Υw		mx w	my w	mp w	A	В	Az (A)	
1	A1	6007773,567	5575818,731	0,000	0,000	0,025 6	600777:	3,567	55758	18,731	0,000	0,000	0,000	0,000	0,000	0,0000	3
2	A3	6007822,505	5575881,877	0,000	0,000	0,025 6	600782	2,505	557588	81,877	0,000	0,000	0,000	0,000	0,000	0,0000	
3	A2	6007735,292	5575801,763	3 0,000	0,000	0,025 6	600773	5,292	557580	01,763	0,000	0,000	0,000	0,000	0,000	0,0000	
4	B1	6007617,295	5575227,953	0,000	0,000	0,025 6	600761	7,295	557522	27,953	0,000	0,000	0,000	0,000	0,000	0,0000	
5	B3	6007543,163	5575326,823	8 0,000	0,000	0,025 8	600754	3,163	557532	26,823	0,000	0,000	0,000	0,000	0,000	0,0000	
6	B2	6007663,111	5575157,866	0,000	0,000	0,025 6	600766	3,111	557515	57,866	0,000	0,000	0,000	0,000	0,000	0,0000	
7	C1	6008229,444	5575347,698	3 0,000	0,000	0,025 8	600822	9,444	557534	47,698	0,000	0,000	0,000	0,000	0,000	0,0000	
8	C2	6008208,688	5575383,617	0,000	0,000	0,025 6	600820	8,688	557538	83,617	0,000	0,000	0,000	0,000	0,000	0,0000	
9	C3	6008276,162	5575279,596	0,000	0,000	0,025 8	600827	6,162	557523	79,596	0,000	0,000	0,000	0,000	0,000	0,0000	
10	PO	6007865,311	5575525,125	5 0,000	0,000	0,000 6	600786	5,293	557552	25,147	0,018	0,024	0,030	0,024	0,017	119,3068	
N D	lyrównanie ścisłe (P 🗁 📴 💡 Sieć (OZIOM_0.wyr) boz. 🏾 Sieć niw.	🛄 Do tabeli	8	0, 1	≜ ≩ '		№ m =?	\sim	E				17			×
Lp	Stanowisko	Cel	Kierunek	mk	popr.	Kierunek w	v mk	< W									
1	A1	A3	238,4910	0,0020	0,0008	238,49	18 0,1	0024									
2	A1	A2	7,0320	0,0020	-0,0022	7,029	98 0,1	0024									
3	A1	PO	99,7418	0,0020	0,0014	99,743	32 0,1	0031									
4	B1	83	1,6535	0,0020	0,0024	1,655	59 0,1	0024									
5	B1	B2	197,5600	0,0020	-0,0037	197,556	63 0,	0024									
6	B1	PO	316,4256	0,0020	0,0013	316,426	69 0,1	0032									
7	C1	C2	201,9980	0,0020	0,0022	202,000	02 0,1	0023									
	C1	C3	6,9245	0,0020	-0,0038	6,920	07 0,1	0023									
8							2005 Barris	00000									
9	C1	PO	239,7749	0,0020	0,0015	239,776	64 0,1	0030									

Rys. 68. Moduł wyrównania ścisłego programie C-Geo – poziom 0

۵	c 🖺 💡	Sieć po	z. 💡 Sieć niw.	🛄 Do tabeli	0	CR 🗎	₽ \$	1	N m≓	\sim	830							
Lp	Numer	1	X	Y	mx	my	mp	×	w	Υw	1	mx w	my w	mp w	A	В	Az (A)	
1		A1	6007773,567	5575818,731	0,000	0,000	0,000	600	7773,567	55758	18,731	0,000	0,000	0,000	0,000	0,000	0,0000	
2		B1	6007617,295	5575227,953	0,000	0,000	0,000	600	7617,295	55752	27,953	0,000	0,000	0,000	0,000	0,000	0,0000	
3		C1	6008229,444	5575347,698	0,000	0,000	0,000	600	8229,444	55753	47,698	0,000	0,000	0,000	0,000	0,000	0,0000	
4		PO	6007865,293	5575525,147	0,000	0,000	0,000	6003	7865,293	55755	25,147	0,000	0,000	0,000	0,000	0,000	0,0000	
5		P1	6007865,293	5575525,147	0,000	0,000	0,000	600	7865,288	55755	25,154	0,004	0,005	0,006	0,005	0,004	119,2997	
							-											
v 🕅	Vyrównanie ści	iłe (PO Sieć po	ZIOM_1.wyr) z. 🏾 og Sieć niw.	🥅 Do tabeli	0		Zmienic	ino	10 m=	· ~	SU			!	7 [[×
V V Lp	Vyrównanie ści 🕞 📴 💡 Stanowisko	iłe (PO Sieć po	ZIOM_1.wyr) z. op Siećniw. Cel	Do tabeli Kierunek	Q mk	popr.	Zmienic	kw	N m =1	~	m			1	7 1		- 0	×
 Х V С Цр 1	Vyrównanie ści 🕞 📴 💡 Stanowisko	iłe (PO Sieć po A1	ZIOM_1.wyr) z. © Sieć niw. Cel P0	Do tabeli Kierunek 99,7418	2 mk 0,0020	Dk ■ popr. 0,0003	Zmienio	k w 7421	N m=3 mk w 0,0006	~	800			1	7 [×
V D Lp 1 2	Vyrównanie ści 🕞 📴 💡 Stanowisko	iłe (PO Sieć po A1 A1	ZIOM_1.wyr) z. 💡 Sieć niw. Cel P0 P1	Do tabeli Kierunek 99,7418 99,7418	2 mk 0,0020 0,0020	popr. 0,0003 -0,0003	Zmienio	k w 7421	N m=1 mk w 0,0006 0,0006	~	800			<u>!</u>	7 E			*
Lp 1 3	Vyrównanie ści Co 📲 💡 Stanowisko	He (PO Sieć po A1 A1 B1	ZIOM_1.wyr) z. © Sieć niw. Cel P0 P1 P0 P1	Do tabeli Kierunek 99,7418 99,7418 316,4256	mk 0,0020 0,0020 0,0020	popr. 0,0003 -0,0003 0,0002	Zmienio Kierune 99, 99, 316,	k w 7421 7415 4258	(N) m= ¹ mk w 0,0006 0,0006 0,0006	~	E			1	7 1			*
Lp 1 2 3 4	Vyrównanie ści Co 📲 💡 Stanowisko	He (PO Sieć po A1 A1 B1 B1	ZIOM_1.wyr) z. © Sieć niw. Cel P0 P1 P0 P1	Do tabeli Kierunek 99,7418 99,7418 316,4256 316,4275	mk 0,0020 0,0020 0,0020 0,0020	popr. 0,0003 -0,0003 0,0002 -0,0002	Zmienio Kierune 99, 99, 316, 316,	k w 7421 7415 4258 4273	N m =1 mk w 0,0006 0,0006 0,0006 0,0006	v	E			1	7 []		- -	*
Lp 1 2 3 4 5	Vyrównanie ści Ce 📴 👔 Stanowisko	He (PO Sieć po A1 A1 B1 B1 C1	ZIOM_1.wyr) z. @ Sieć niw. Cel P0 P1 P0 P1 P0 P1	Do tabeli Kierunek 99,7418 99,7418 316,4256 316,4275 39,7749	Rk 0,0020 0,0020 0,0020 0,0020 0,0020	popr. 0,0003 -0,0003 -0,0002 -0,0002 0,0002	Zmienio Kierune 99, 99, 316, 316, 316, 339,	k w 7421 7415 4258 4273 7752	(N) m=1 mk w 0,0006 0,0006 0,0006 0,0006 0,0006	~	30			1	7 []			*
Lp 1 2 3 4 5 6	Vyrównanie ści Ce 📑 o Stanowisko	He (PO Sieć po A1 A1 B1 B1 C1 C1	ZIOM_1.wyr) z V Sieć niw. Cel P0 P1 P0 P1 P1 P1 P1 P1 P0 P1	Do tabeli Kierunek 99,7418 99,7418 316,4256 316,4275 39,7749 39,7748	mk 0,0020 0,0020 0,0020 0,0020 0,0020 0,0020	popr. 0,0003 0,0003 0,0002 -0,0002 0,0002 0,0003 -0,0003	Zmienio E 2 Kierune 99, 316, 316, 316, 339, 39, 39,	k w 7421 7415 4258 4273 7752 7745	Image: Note of the second se	~	80				7 [×
Lp 1 2 3 4 5 6 7	Vyrównanie ści Ce 📑 o Stanowisko	Al Al Bl Cl Cl	ZIOM_1.wyr) z V Sieć niw. Cel P0 P1 P0 P1 P0 P1 P0 P1 P0 P1	Do tabeli Kierunek 99,7418 99,7418 316,4256 316,4275 39,7749 39,7749	Imk 0,0020 0,0020 0,0020 0,0020 0,0020 0,0020 0,0020 0,0020 0,0020	popr. 0,0003 0,0002 -0,0002 0,0002 0,0003 -0,0003	Zmienio Kierune 99, 316, 316, 39, 316, 39, 39, 39, 39, 39, 39, 39, 39	k w 7421 7415 4258 4273 7752 7745	N m =1 mk w 0,0006 0,0006 0,0006 0,0006 0,0006	~	BID			1	7 [*
Lp Lp 1 2 3 4 5 6 6 7 7	Vyrównanie ści Contra Contra Stanowisko Stanowisko Stanowisko Stanowisko	ele (PO Sieć po A1 A1 B1 B1 C1 C1 C1 C1 C1	ZIOM_1.wyr) z. Q Sieć niw. Cel P0 P1 P0 P1 P0 P1 A Kierunki /	Do tabeli Kierunek 99,7418 99,7418 316,4256 316,4275 39,7749 39,7749 39,7748 Qdległości	mk 0,0020 0,0020 0,0020 0,0020 0,0020 0,0020	popr. 0,0003 -0,0003 -0,0002 -0,0002 -0,0003 -0,0003 -0,0003 -0,0003 -0,0003 -0,0003 -0,0003	Zmienio E 1 Kierune 99, 99, 316, 316, 39, 39, (Przew	k w 7421 7415 4258 4273 7752 7745 yższe	Image Image mk w 0,0006 0,0006 0,0006 0,0006 0,0006 0,0006 0,0006 0,0006 0,0006 nia /	~	80			1	7 11			*

Rys. 69. Moduł wyrównania ścisłego w programie C-Geo – poziom 1

Cal	stanowis	ko Al	stanowis	ko B1	stanowis	ko C1	IJ.	и.
Cei	kąt zenit.	Н	kąt zenit.	Н	kąt zenit.	Н	Пśr.	Πzred.
0	95,8590	57,70	98,2230	57,72	96,3182	57,76	57,73	0,00
1	92,9130	72,05	95,8762	72,02	94,0792	72,09	72,05	14,33
2	90,0232	86,27	93,5558	86,23	91,8788	86,26	86,25	28,53
3	87,1592	100,56	91,2358	100,54	89,6766	100,58	100,56	42,83
4	84,3960	114,60	88,9790	114,60	87,5385	114,63	114,61	56,88
5	81,6232	129,01	86,7002	128,98	85,3760	129,03	129,00	71,28
6	78,9410	143,30	84,4640	143,30	83,2630	143,33	143,31	85,58
7	77,0350	153,70	82,8640	153,69	81,7472	153,74	153,71	95,98
8	76,3265	157,63	82,2655	157,62	81,1802	157,67	157,64	99,91
	$H_{A1} = 36$	5,15 m	$H_{B1} = 45$,33 m	$H_{C1} = 32$	2,77 m		
	i = 1,51 m		i = 1,5	8 m	i = 1,5	4 m		
	$d_{A1P0} = 30^{\circ}$	7,606 m	$d_{B1P0} = 38$	87,07 m	$d_{C1P0} = 40$	5,059 m		

Tabela 43. Zestawienie obliczonych wysokości obserwowanych poziomów komina

Rys. 70. Wysokości poszczególnych poziomów komina
Maksymalne odchylenie badanego komina wyniosło 0,095 m, natomiast dopuszczalne odchylenie trzonu komina żelbetowego zgodnie z Polską Normą [19] wynosi:

$$f_{\max} = \frac{H}{200} = \frac{100\,m}{200} = 0,500\,m$$

Skład operatu

Ostateczne opracowanie realizowane w ramach ćwiczenia powinno stanowić operat pomiarowy, w skład którego wchodzi:

- sprawozdanie techniczne,
- szkic lokalizacji badanego obiektu z rozmieszczeniem stanowisk pomiarowych,
- dzienniki pomiarowe lub raport z pomiarów,
- obliczenie współrzędnych punktów osnowy pomiarowej razem z środkiem obiektu wysmukłego na poziomie zerowym metodą ścisłą,
- obliczenie odchyleń trzonu komina na każdym poziomie metodą ścisłą,
- zestawienie wyznaczonych odchyleń od pionu badanego obiektu,
- prezentacja graficzna odchyleń osi obiektu wysmukłego w rzucie na płaszczyznę poziomą,
- wnioski.

Literatura

- [1] Bielicki T., Bryś H., Zielina L., *Metoda inwentaryzacyjnych i realizacyjnych pomiarów napowietrznych przewodów elektroenerge-tycznych za pomocą BRT-006*, Przegląd geodezyjny nr 6 1973.
- [2] Czesyk R., Osman J., *Pomiary osiadań zespołu budynków położonych przy ul. Śniadeckich 2*, Praca dyplomowa napisana pod kierunkiem prof. dr hab. inż. A. Wasilewskiego, Koszalin 2011.
- [3] *Ćwiczenia terenowe z geodezji inżynieryjnej i miejskiej*, red. M. Pękalski, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2003.
- [4] Damięcka M., Jagoda M., Suchocki Cz., Metoda biegunowa 3D z wykorzystaniem tachimetru bezlustrowego w zastosowaniu do rejestracji geometrii ściany budynku, Biuletyn Naukowy Uniwersytet Warmińsko-Mazurski Nr 28, Olsztyn 2007.
- [5] Gocał J., *Geodezja inżynieryjno-przemysłowa*, część III, Wydawnictwo AGH, Kraków 2010.
- [6] Janusz W., *Obsługa geodezyjna budowli i konstrukcji*, Państwowe Przedsiębiorstwo Wydawnictw Kartograficznych, Warszawa 1971.
- [7] Jasiak A., Lelonkiewicz H., Wójcik M., Wyczałek I., *Pomiary inżynierskie*, Wydawnictwo Politechniki Poznańskiej, 1999.
- [8] Kocoł Ł., Łada J., Pomiary osiadań zespolu budynków położonych przy ul. Śniadeckich 2, Praca dyplomowa napisana pod kierunkiem prof. dr hab. inż. A. Wasilewskiego, Koszalin 2012.
- [9] Grala M., Kopiejewski G., Wasilewski A., *Geodezja inżynieryjna*, Wydawnictwo ART., Olsztyn 1988.
- [10] Lazzarini T., Pomiary geodezyjne przemieszczeń budowli i ich otoczenia, Państwowe Przedsiębiorstwo Wydawnictw Kartograficznych, Warszawa 1977.
- [11] Łada J., Kocoł Ł., Pomiary osiadań zespołu budynków położonych przy ul. Śniadeckich 2, Praca dyplomowa napisana pod kierunkiem prof. dr. hab. inż. A. Wasilewskiego, Koszalin 2013.

- [12] Mąkolski K., Kuchmister J., Wyznaczanie osiadań obiektów budowlanych Uniwersytetu Przyrodniczego we Wrocławiu, Czasopismo techniczne, Wydawnictwo Politechniki Krakowskiej, Kraków 2008.
- [13] Mendygrał M., Nowiński W., *Pomiary osiadań zespołu budynków położonych przy ul. Śniadeckich 2*", Praca dyplomowa napisana pod kierunkiem prof. dr. hab. inż. A. Wasilewskiego, Koszalin 2010.
- [14] *Niwelacja precyzyjna*, Praca zbiorowa, Państwowe Przedsiębiorstwo Wydawnictw Kartograficznych, Warszawa 1971.
- [15] Osińska I., Kowalska U., Wyznaczenie odchyleń ściany budynku od płaszczyzny pionowej, Praca dyplomowa napisana pod kierunkiem dr inż. Cz. Suchockiego, Koszalin 2011.
- [16] Pawłowski W., Przewłocki S., Pomiary inżynierskie metodami geodezyjnymi, Ćwiczenia z przykładami, Wydawnictwo Politechniki Łódzkiej, 1997.
- [17] Pogoda J., Wykrywacz GEOPILOT X, Instrukcja obsługi.
- [18] Polska Norma PN-EN 1993-1-1: 2006 *Projektowanie konstrukcji stalowych*. Część 1-1 Reguły ogólne i reguły dla budynków.
- [19] Polska Norma PN-B-03004:1988 Kominy murowane i żelbetowe Obliczenia statyczne i projektowanie.
- [20] Robaczyński L., GEOPILOT S, Instrukcja użytkowania.
- [21] Wiśniewski Z., *Rachunek wyrównawczy w geodezji (z przykładami)*, Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego w Olsztynie, 2005.